当前位置:文档之家› 通原FM实验报告

通原FM实验报告

通原FM实验报告
通原FM实验报告

技术文件

完成时间:2016年4月12日

1

组号:015

姓名:张弛(组长)、李京蓓、赵忆漠

上海交通大学电子信息与电气工程学院 2

目录

目录 (3)

1. 实验目的 (5)

2. 实验原理 (6)

2.1 FM调制原理 (6)

2.1.1教材中的实现原理 (6)

2.1.2基于USRP IQ调制的FM调制 (6)

2.2 FM解调原理 (7)

2.2.1教材上的解调原理 (7)

2.2.2基于USRP IQ解调的FM解调 (7)

3. USRP简介与使用说明简介 (9)

3.1 USRP简介 (9)

3.2 USRP实验参数设置 (9)

4. 实验设计方案与内容 (11)

4.1 FM调制与解调仿真 (11)

4.1.1实验框图设计 (11)

4.1.2参数设置及仿真结果 (13)

4.1.3仿真结果分析 (15)

4.2音频信号调制与解调仿真 (16)

4.2.1仿真实验框图设计 (16)

4.2.2部分仿真结果 (16)

4.2.3仿真结果分析 (17)

5. USRP测试内容与结果 (18)

5.1正弦信号的发送与接收 (18)

上海交通大学电子信息与电气工程学院 3

5.1.1程序框图和参数设计 (18)

5.1.2实验结果 (19)

5.2音频信号的发送与接收部分 (21)

5.2.1程序框图和参数设计 (21)

5.2.2实验结果 (21)

5.3调频收音机模块的搭建与测试 (22)

5.3.1程序框图和参数设计 (22)

5.3.2实验结果 (22)

6. 实验中遇到的问题及体会 (22)

7. 参考文献 (23)

上海交通大学电子信息与电气工程学院 4

上海交通大学电子信息与电气工程学院地址:东川路800号

邮编:200240 5

1.通过LabVIEW和NI USRP数字通信实验平台,产生基带信号频率、载波参数及频偏等

参数可调整的FM调制信号,并且观察参数变化对调制信号以及调制后信号FFT功率谱的影响。

2.掌握LabVIEW图形化编程,以及NI USRP数字通信实验平台的使用方法。

3.学习整体通信链路的构建与测试。

上海交通大学电子信息与电气工程学院地址:东川路800号

邮编:200240 6

2.1FM调制原理

2.1.1教材中的实现原理

FM调制是载波频率随基带信号幅度的改变而改变的非线性调制方式。下面的框图描述了基本的FM调制原理。

图2.1 FM调制电路原理图

正如上面的框图所示,FM信号的连续时域表达为:

公式(2.1-1)其中表示频率偏移系数,在m(t)归一化的情况下,它代表FM信号相对于载频的最大瞬时频率偏移,其取值一般为载频的0.5到0.8倍;A的取值不可超过1,这是由USRP的硬件限制所决定的。

将式2.1-1写成离散的形式:

公式(2.1-2)课本上所述的FM调制方式是将USRP作为无线通信的“黑箱”,忽略了USRP的IQ调制的作用,上述的实信号s(i)被直接传入USRP的一路进行IQ调制,因而在无线信道中实际上是经过二次调制的信号,本质上不是FM信号。

2.1.2基于USRP IQ调制的FM调制

IQ调制时将I和Q信号分别与载波和90°相移后的载波相乘,再将这两路正交的数据流相加,得到调制后的信号,其表达式如下:

公式(2.1-3)其中,

上海交通大学电子信息与电气工程学院地址:东川路800号

邮编:200240 7

在使用LabVIEW驱动USRP时,I、Q两路信号是通过一个复信号传入USRP的,I路从复数的实部取得,Q路从复数的虚部取得,如此一来,式2-1.3中的A(t)、可看做是该复信号的模值和相角。

因而要生成FM信号,由式2-1.2可知,传入USRP的复信号应为:

公式(2.1-4)受USRP硬件的限制,A一般取1。另外,在进入调制模块前,m(t)要先归一化处理。

可以看到:FM信号的基带信息在IQ复信号相角的差分之中。

2.2FM解调原理

2.2.1教材上的解调原理

针对2.1.1中所述的调制方式,可采用非相干的包络检波方法解调。具体方法为:对已调制的信号(如上式(2.1-1)所示),首先进行求导运算得到公式(2.2-1)。

公式(2.2-1)再对(2.2-1)式中大于零的部分进行包络检波,此步骤采用Hilbert变换,得到的信号如式(2.2-2)所示。

公式(2.2-2)然后进分别将式2.2-1和2.2-2作为实部和虚部,然后取复数信号的幅值可以得到:

公式(2.2-3)最后对2.2-3的信号滤去直流分量,并做归一化处理,即可得到基带信号。

2.2.2基于USRP IQ解调的FM解调

USRP接收端IQ解调时,将接收到的射频信号分别与接收机的本地载波和载波90°偏移信号相乘,再通过低通滤波得到I、Q两路正交基带信号,注意到接收信号的载波和本地载波不可能严格同相,因而得到的IQ复信号的相位会较发送端有一个常数的偏移,但是FM调制信号的基带信息在IQ信号角度的差分之中,因而可以有效抵抗这里的载波不同步问题。

针对2.1.2中的调制方式,解调模块可以这样设计:

先对接收到的IQ复信号取相角,假设无线信道理想,得到IQ信号相角的表达式如下,

公式(2.2-4)

上海交通大学电子信息与电气工程学院地址:东川路800号

邮编:200240 8

其中表示将角度通过加减2π划归到内的结果,这是由LabVIEW取复数相角的模块特性所决定的。是接收机本地载波与接收信号载波的相位差。

然后计算的差分

公式(2.2-5)其中的(±2π)代表修正项:

①当在第三象限,在第二象限,且发送端时会有的修正项;

②当在第二象限,在第三象限,且发送端时会有的修正项;

③其他情况即从到没有越过-x轴时,没有修正项;

因而要想从式(2.2-5)中得到基带信号就要判断处于上述三种情况的哪种情况.我们的做法是通过的所处的范围来判断处于哪种情况。在发送端m(t)归一化的前提下,出现①情况时,

出现②情况时,

出现③情况时,

在通常的参数设定下()A、B、C三个范围是不相交的,例如频偏75k,,采样率200k 时A = (-2π, -1.25π), B = (1.25π, 2π), C = (-0.75π, 0.75π)。

为了使得解调器尽可能正确地判断这三种情况,我们选定A的上界和C的下界的中点

公式(2.2-6)

上海交通大学电子信息与电气工程学院地址:东川路800号

邮编:200240 9

作为①③情况的分界,同样计算得到π是②③情况的分界。

因而基带信号可以这样表达:

公式(2.2-7)https://www.doczj.com/doc/cc10874979.html,RP简介与使用说明简介

3.1USRP简介

USRP(Universal Software Radio Peripheral,通用软件无线电外设)旨在使普通计算机能像高带宽的软件无线电设备一样工作。从本质上讲,USRP充当了一个无线电通讯系统的射频和部分中频部分,PC担任部分中频和基频的信号处理。USRP采用IQ调制解调,在2.1.2和2.2.2中已有介绍。在本实验中,我们使用的型号为NI USRP 2920,其硬件结构图如下图所示:

图3.1 USRP硬件原理图

3.2USRP实验参数设置

1.在控制面板中将PC机的IP设定为19

2.168.10.1(与USRP在同一个局域网网段)。

上海交通大学电子信息与电气工程学院地址:东川路800号

邮编:200240 10

2.在windows的开始菜单中All Programs\\National Instruments\\NI-USRP目录下面找到

NI-USRP Configuration Utility,在Change IP Address 选项卡中点击右下角的Find devices,应该能够看到设备(包括Device ID, IP Address, Type/revision),并填写该IP地址到前面板的DEVICE NAME的空格处;如果找不到硬件,则需要更新PC的驱动软件或者对USRP 重新写入固件。

3.设置USRP参数:配置发送端天线为TX1,接收端天线为RX2;USRP载频最好设置得大

一些,USRP 2920允许的载频在50M~2.2G之间,选择为2G较为合适,USRP2921允许的载频只能是2.4G和5G中的一个,使用时应特别注意;IQ速率的设置应考虑到所采用的PC机的运算速度限制,比如在作者所采用的PC机上,2M以上的IQ速率就会使得缓存溢出. 图3.2中列出了USRP2920的一些常用参数,配置USRP时应注意这些参数的限制。

4.基波频率,频偏,载波频率、IQ速率以及样本数N的数值可根据实验要求进行调整。但应

注意它们之间存在以下的制约关系:

在2.1.1所述的调制方式中,①IQ速率应远大于自己设置的载波频率(区别于USRP的载波频率),至少是5倍关系,才可使得波形足够平滑;②频偏取值应约为载波频率的

0.5~0.8倍,切不可让频偏超过载波频率;③基波频率原则上应远小于载波频率;

在2.1.2所述的调制方式中,应该保证IQ速率是频偏的至少两倍以上,在发送接收音频或者用2.2.2所述的解调器收听FM广播的时候,IQ速率一般就设置为200k,频偏设置为75k;

图3.2 USRP 2920相关参数

上海交通大学电子信息与电气工程学院地址:东川路800号

邮编:200240 11

4.实验设计方案与内容

4.1FM调制与解调仿真

4.1.1实验框图设计

1.方法一调制与解调框图

上海交通大学 电子信息与电气工程学院 地 址:东川路800号 邮 编:200240

12

图4.1 FM 调制部分程序框图-方法一(对应2.1.1)

图4.2 FM 解调部分程序框图-方法一(对应2.2.1)

注:这里的解调端末端加入了一个截止频率可调的低通FIR 滤波器,抽头长度100是实验调试过程中的经验值,由于滤波后会引入时延,因而在滤波后去掉前50个数据点,为了保证数据长度不变也去掉后49个数据点,滤波器主要用以抵抗噪声干扰,同时减小边缘处的误差,在后面方法二的解调器中,这一滤波器的设计也被保留下来;图中解调端的末尾还有一个减法器,偏移deta 可调,用以去掉解调信号中的直流分量。

2. 方法二调制与解调框图

上海交通大学 电子信息与电气工程学院 地 址:东川路800号 邮 编:200240

13

图4.3 FM 调制部分程序框图-方法二(对应2.1.2)

图4.4 FM 解调部分程序框图-方法二(对应2.2.2)

注:这里xita in 和xita out 两个控件的引入是为了使得循环运行调制解调模块时角度值保持连续,在外部使用这个模块的时候需要将它们接在一个移位寄存器的两端。

4.1.2 参数设置及仿真结果

将图4.1和图4.2的两个模块直接相连进行仿真,程序框图这里不再列出,仿真时的参数如下图4.5所示. 其中的low cutoff freq 是图4.2中低通FIR 滤波器的截止频率,这里设置为50k ;图4.6是在该参数设置下的FM 时域和频域波形。

上海交通大学 电子信息与电气工程学院 地 址:东川路800号 邮 编:200240

14

图4.5 方法1仿真参数设置以及解调情况

图4.6 FM 信号时域和频域波形

如果将截止频率设置为f s /2(即500k ),滤波器的作用就可忽略(近似为一个全通器),得到下面图4.7的解调结果。

上海交通大学 电子信息与电气工程学院 地 址:东川路800号 邮 编:200240

15

图4.7 滤波器的作用可忽略时的解调结果

将图4.3和4.4的调制解调模块直接相连对方式2进行仿真,参数设置和仿真结果如下图4.8,其中的standard deviation 代表加入的噪声的标准差,此时为0代表无噪声加入。

图4.8 方法2仿真参数和解调情况

4.1.3 仿真结果分析

上海交通大学电子信息与电气工程学院地址:东川路800号

邮编:200240 16

图4.5、图4.7以及图4.8中的基带信号和解调信号基本一致说明了解调器的正确性,同时,图4.7的解调波形边缘的杂波和图4.5的解调波形边缘几近平滑说明了所加入的低通滤波器确实起到了作用;另外,图4.6的FM时域、频域波形与理论预计相一致,说明了方案一调制模块的正确性;

4.2音频信号调制与解调仿真

4.2.1仿真实验框图设计

使用前述的两种调制解调模块来搭建传输音频信号的仿真系统,为避免报告内容繁复冗余,我们只挑取2.1.2和2.2.2所述的调制解调模块进行仿真。仿真程序在课程所给的demo程序的框架下进行更改,去掉USRP硬件部分,采用“生产者消费者”的模式加入一个队列作为数据缓存实现调制和解调模块之间的数据传输通道,部分程序框图如图4.9。仿真时,系统采用固定的参数,采样率200k,每次20k个采样点,频偏设置为75k,接收滤波器截止频率20k。

图4.9 音频传输实验仿真系统框图

4.2.2部分仿真结果

上海交通大学 电子信息与电气工程学院 地 址:东川路800号 邮 编:200240

17

图4.10 调制端的基带信号

图4.11 解调端的得到的基带信号

4.2.3 仿真结果分析

看到图4.10与图4.11所示的波形基本一致,而且能十分清晰地听到音乐播放,表明调制解调模块正确,所设计的调制解调模块也可以用于对音频信号的FM 调制和解调.

上海交通大学 电子信息与电气工程学院 地 址:东川路800号 邮 编:200240

18

5. USRP 测试内容与结果

5.1 正弦信号的发送与接收 5.1.1 程序框图和参数设计

这里我们仅仅列出采用2.1.1和2.2.1即方案一的调制解调模块的USRP 发送接收程序.如图5.1是发射机顶层程序,其中使用的FM_TOP 模块封装了生成基波和对基波进行FM 调制的功能,图5.2是这一模块的框图,其中的FM_Mod 模块就是图4.1中所示的FM 调制模块;图5.3是接收机顶层程序,其中的FM_Demod 即为图4.2中所示的FM 解调模块。实验时采用IQ 速率1M ,USRP 载频2G ,载波频率60k ,频偏20k ,基频1k ,滤波器截止频率20k 。

图5.1 发射机顶层程序

图5.2 FM_TOP 框图

上海交通大学 电子信息与电气工程学院 地 址:东川路800号 邮 编:200240

19

图5.4 接收机顶层模块

5.1.2 实验结果

图5.5 正弦信号经FM 调制后的基波和FM 时域波形(发射机)

上海交通大学电子信息与电气工程学院地址:东川路800号

邮编:200240 20

图5.6 接收机接收到的时域波形和解调后的波形

北邮scilab_通信原理软件实验报告

信息与通信工程学院通信原理软件实验报告

实验二时域仿真精度分析 一、实验目的 1. 了解时域取样对仿真精度的影响 2. 学会提高仿真精度的方法 二、实验原理 一般来说,任意信号s(t)是定义在时间区间(-无穷,+无穷)上的连续函数,但所有计算机的CPU 都只能按指令周期离散运行,同时计算机也不能处理这样一个时间段。为此将把s(t)按区间[-T/2 ,+T/2 ]截短为按时间间隔dert T均匀取样,得到的取样点数为N=T/dert T. 仿真时用这个样值集合来表示信号s(t)。Dert T反映了仿真系统对信号波形的分辨率,越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱是频率的周期函数,其重复周期是1/t; 。如果信号的最高频率为 那么必须有 才能保证不发生频域混叠失真,这是奈奎斯特抽样定理。设 则称为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是,那么不能用 此仿真程序来研究带宽大于这的信号或系统。换句话说,就是当系统带宽一定的情况下,信号的采样频率最小不得小于2*Bs,如此便可以保证信号的不失真,在此基础上时域采样频率越高,其时域波形对原信号的还原度也越高,信号波形越平滑。也就是说,要保证信号的通信成功,必须要满足奈奎斯特抽样定理,如果需要观察时域波形的某些特性,那么采样点数越多,可得到越真实的时域信号。 三、实验步骤 1.将正弦波发生器模块、示波器模块、时钟模块按下图连接:

时钟设置0.01,得到的结果如下: 时钟设置0.3,以后得到的结果如下:

五、思考题 (1)观察分析两图的区别,解释其原因。 答:因为信号周期是1,而第一个图的采样周期是0.01,所以一个周期内能采样100个点,仿真出来的波形能较精确地显示成完整波形,而第二个图采样周期是0.3,所以一个周期内只有三个采样点,故信号失真了。 (2)将示波器的控制时钟的period的参数改为0.5,观察仿真结果,分析其原因。 结果如下:

微机原理与接口技术硬件实验报告

微原硬件实验报告 班级:07118 班 学号:070547 班内序号:26 姓名:杨帆

实验一熟悉实验环境及IO的使用 一,实验目的 1. 通过实验了解和熟悉实验台的结构,功能及使用方法。 2. 通过实验掌握直接使用Debug 的I、O 命令来读写IO 端口。 3. 学会Debug 的使用及编写汇编程序 二,实验内容 1. 学习使用Debug 命令,并用I、O 命令直接对端口进行读写操作, 2.用汇编语言编写跑马灯程序。(使用EDIT 编辑工具)实现功能 A.通过读入端口状态(ON 为低电平),选择工作模式(灯的闪烁方式、速度 等)。 B.通过输出端口控制灯的工作状态(低电平灯亮) 三,实验步骤 1.实验板的IO 端口地址为EEE0H 在Debug 下, I 是读命令。(即读输入端口的状态---拨码开关的状态) O 是写命令。(即向端口输出数据---通过发光管来查看) 进入Debug 后, 读端口拨动实验台上八位拨码开关 输入I 端口地址回车 屏幕显示xx 表示从端口读出的内容,即八位开关的状态ON 是0,OFF 是 1 写端口 输入O 端口地址xx (xx 表示要向端口输出的内容)回车 查看实验台上的发光二极管状态,0 是灯亮,1 是灯灭。 2. 在Debug 环境下,用a 命令录入程序,用g 命令运行 C>Debug -a mov dx, 端口地址 mov al,输出内容 out dx, al

mov ah, 0bh int 21h or al, al jz 0100 int 20h -g 运行查看结果,修改输出内容 再运行查看结果 分析 mov ah, 0bh int 21h or al, al jz 0100 int 20h 该段程序的作用 3.利用EDIT 工具编写汇编写跑马灯程序程序 实现功能 A.通过读入端口状态(ON 为低电平),选择工作模式(灯的闪烁方式、速度等)。 B.通过输出端口控制灯的工作状态(低电平灯亮) C>EDIT 文件名.asm 录入程序 按Alt 键打开菜单进行存盘或退出 编译文件 C>MASM 文件名.asm 连接文件 C>LINK 文件名.obj 运行文件或用Debug 进行调试。 四,程序流程图

北邮通原硬件实验报告(DOC)

2013年通信原理硬件实验报告 学院:信息与通信工程学院 班级:2011211104 姓名: 学号: 班内序号: 组号: 同组人:

目录 实验一:双边带抑制载波调幅(DSB-SC AM) (3) 实验二:具有离散大载波的双边带调幅波(AM) (14) 实验三:调频(FM) (21) 实验六:眼图 (28) 实验七:采样,判决 (31) 实验八:二进制通断键控(OOK) (34) 实验十一:信号星座(选作) (41) 实验十二:低通信号的采样与重建 (45)

实验一双边带抑制载波调幅(DSB-SC AM) 一.实验目的 (1)了解DSB-SC AM信号的产生及相干解调的原理和实现方法。 (2)了解DSB-SC AM的信号波形及振幅频谱的特点,并掌握其测量方法。 (3)了解在发送DSB-SC AM信号加导频分量的条件下,收端用锁相环提取载波的原理及其实现方法。 (4)掌握锁相环的同步带和捕捉带的测量方法,掌握锁相环提取载波的测试方法。 二.实验器材 PC机一台、TIMS实验平台、示波器、导线等。 三.实验原理 1.双边带抑制载波调幅(DSB-SC AM)信号的产生和表达式 图1.1 2.双边带抑制载波调幅信号的解调 基本思路:利用恢复的载波与信号相乘,将频谱搬移到基带,还原出原基带信号。 图1.2 3.DSB-SC AM信号的产生及相干解调原理框图 ()()()()() cos c c c s t m t c t m t A t ω? ==+

图1.3 四.实验内容及结果 1.DSB-SC AM信号的产生 (1)实验步骤: 图1.4 1.按照上图,将音频振荡器输出的模拟音频信号及主振荡器输出的100KHz模

北京邮电大学通信原理软件实验报告

北京邮电大学实验报告 题目:基于SYSTEMVIEW通信原理实验报告

实验一:验证抽样定理 一、实验目的 1、掌握抽样定理 2. 通过时域频域波形分析系统性能 二、实验原理 低通滤波器频率与m(t)相同 三、实验步骤 1. 要求三个基带信号相加后抽样,然后通过低通滤波器恢复出原信号。 2. 连接各模块完成系统,同时在必要输出端设置观察窗。 3. 设置各模块参数。 三个基带信号的频率从上到下分别设置为10hz、12hz、14hz。 抽样信号频率设置为28hz,即2*14hz。(由抽样定理知,) 将低通滤波器频率设置为14hz,则将恢复第三个信号(其频率为14hz)进行系统定时设置,起始时间设为0,终止时间设为1s.抽样率设为1khz。 3.观察基带信号、抽样后的信号、最终恢复的信号波形

四、实验结果 最上面的图为原基带信号波形,中间图为最终恢复的信号波形,最下面的图为抽样后的信号波形。 五、实验讨论 从实验结果可以看出,正如前面实验原理所述,满足抽样定理的理想抽样应该使抽样后的波形图如同冲激信号,且其包络图形为原基带信号波形图。抽样后的信号通过低通滤波器后,恢复出的信号波形与原基带信号相同。 由此可知,如果每秒对基带模拟信号均匀抽样不少于2次,则所得样值序列含有原基带信号的全部信息,从该样值序列可以无失真地恢复成原来的基带信号。 讨论:若抽样速率少于每秒2次,会出现什么情况? 答:会产生失真,这种失真被称为混叠失真。 六、实验建议、意见 增加改变抽样率的步骤,观察是否产生失真。

实验二:奈奎斯特第一准则 一、实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性; (3)通过时域、频域波形分析系统性能。 二、实验原理 在现代通信系统中,码元是按照一定的间隔发送的,接收端只要能够正确地恢复出幅度序列,就能够无误地恢复传送的信号。因此,只需要研究如何使波形在特定的时刻无失真,而不必追求整个波形不变。 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变,即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号,因为信息完全恢复携带在抽样点幅度上。 奈奎斯特准则要求在波形成形输入到接收端的滤波器输出的整个传送过程传递函数满足:,其充分必要条件是x(t)的傅氏变换X ( f )必须满足 奈奎斯特准则还指出了信道带宽与码速率的基本关系。即R B =1/T B =2? N =2B N。 式中R b 为传码率,单位为比特/每秒(bps)。f N 和B N 分别为理想信道的低通截止 频率和奈奎斯特带宽。上式说明了理想信道的频带利用率为R B /B N =2。 在实际应用中,理想低通滤波器是不可能实现的,升余弦滤波器是在实际中满足无码间干扰传输的充要条件,已获得广泛应用的滤波器。 升余弦滤波器的带宽为:。其中,α为滚降系数,0 ≤α≤1, 三、实验步骤 1.根据奈奎斯特准则,设计实现验证奈奎斯特第一准则的仿真系统,同时在必 要输出端设置观察窗。设计图如下

北邮微原硬件实验报告

2013年微机原理硬件实验报告 学院:信息与通信工程学院班级:2011211104 姓名:

实验一 I/O地址译码 一.实验目的 掌握I/O地址译码电路的工作原理。 二.实验原理和内容 1.实验电路如图1-1所示,其中74LS74为D触发器,可直接使用实验台上数字电路实验区的D触发器,74LS138为地址译码器。 译码输出端Y0~Y7在实验台上“I/O地址“输出端引出,每个输出端包含8个地址,Y0:280H~287H,Y1:288H~28FH,……当CPU执行I/O指令且地址在280H~2BFH范围内,译码器选中,必有一根译码线输出负脉冲。 例如:执行下面两条指令 MOV DX,2A0H OUT DX,AL(或IN AL,DX) Y4输出一个负脉冲,执行下面两条指令 MOV DX,2A8H OUT DX,AL(或IN AL,DX) Y5输出一个负脉冲。 原理:地址2A0H的A5,A4,A5为100,在输入或输出时,IOW或I OR为0,使得74LS138被选中,经过译码,在Y4口输出负脉冲。其他同理。 图1-1 利用这个负脉冲控制L7闪烁发光(亮、灭、亮、灭、……),时间间隔通过软件延时实现。 2.接线:Y4/IO地址接CLK/D触发器

Y5/IO 地址 接 CD/D 触发器 D/D触发器 接 SD/D 角发器 接 +5V Q /D 触发器 接 L7(L ED 灯)或 逻辑笔 三.程序流程图 四.源程序 DA TA ?SE GMENT D ATA ??ENDS ST ACK SE GME NT ST ACK 'STA CK' DB 100H DU P(?) STA CK ENDS 否

计算机组成原理实验报告

重庆理工大学 《计算机组成原理》 实验报告 学号 __11503080109____ 姓名 __张致远_________ 专业 __软件工程_______ 学院 _计算机科学与工程 二0一六年四月二十三实验一基本运算器实验报告

一、实验名称 基本运算器实验 二、完成学生:张致远班级115030801 学号11503080109 三、实验目的 1.了解运算器的组成结构。 2.掌握运算器的工作原理。 四、实验原理: 两片74LS181 芯片以并/串形式构成的8位字长的运算器。右方为低4位运算芯片,左方为高4位运算芯片。低位芯片的进位输出端Cn+4与高位芯片的进位输入端Cn相连,使低4位运算产生的进位送进高4位。低位芯片的进位输入端Cn可与外来进位相连,高位芯片的进位输出到外部。 两个芯片的控制端S0~S3 和M 各自相连,其控制电平按表2.6-1。为进行双操作数运算,运算器的两个数据输入端分别由两个数据暂存器DR1、DR2(用锁存器74LS273 实现)来锁存数据。要将内总线上的数据锁存到DR1 或DR2 中,则锁存器74LS273 的控制端LDDR1 或LDDR2 须为高电平。当T4 脉冲来到的时候,总线上的数据就被锁存进DR1 或DR2 中了。 为控制运算器向内总线上输出运算结果,在其输出端连接了一个三态门(用74LS245 实现)。若要将运算结果输出到总线上,则要将三态门74LS245 的控制端ALU-B 置低电平。否则输出高阻态。数据输入单元(实验板上印有INPUT DEVICE)用以给出参与运算的数据。其中,输入开关经过一个三态门(74LS245)和内总线相连,该三态门的控制信号为SW-B,取低电平时,开关上的数据则通过三态门而送入内总线中。 总线数据显示灯(在BUS UNIT 单元中)已与内总线相连,用来显示内总线上的数据。控制信号中除T4 为脉冲信号,其它均为电平信号。 由于实验电路中的时序信号均已连至“W/R UNIT”单元中的相应时序信号引出端,因此,需要将“W/R UNIT”单元中的T4 接至“STATE UNIT”单元中的微动开关KK2 的输出端。在进行实验时,按动微动开关,即可获得实验所需的单脉冲。 S3、S2、 S1、S0 、Cn、M、LDDR1、LDDR2、ALU-B、SW-B 各电平控制信号则使用“SWITCHUNIT”单元中的二进制数据开关来模拟,其中Cn、ALU-B、SW-B 为低电平有效,LDDR1、LDDR2 为高电平有效。 对于单总线数据通路,作实验时就要分时控制总线,即当向DR1、DR2 工作暂存器打入数据时,数据开关三态门打开,这时应保证运算器输出三态门关闭;同样,当运算器输出结果至总线时也应保证数据输入三态门是在关闭状态。 运算结果表

通原实验报告

振幅调制(Amplitude Modulation)与解调实验目的: 了解TIMS 实验的软硬件环境和基本的软件调试方式; 掌握AM 信号的调制方法; 掌握AM 信号的解调方法; 掌握调制系数的含义; 实验原理: 具有离散大载波(AM)调制的基本原理,原理框图如下: AM 信号调制原理框图 包络检波器的基本构成和原理,原理框图如下: AM 信号解调原理框图 AM信号输出 AM信号产生实验连接图

AM信号的非相干解调实验连接图 实验器件: 音频振荡器(Audio Oscillator),可变直流电压(Variable DC), 主振荡器(Master Signals),加法器(Adder),乘法器(Multiplier),移相器(Phase Shifer),共享模块(Utilities Module)和音频放大器(Headphone Amplifier) 实验步骤: 按照设计图设计AM 调制与解调系统,模拟基带信号频率为1KHz,电压振幅为1V;载波为一高频信号,电压振幅为1V; 实现AM 调制与解调系统,分别观察基带信号、调制信号和解调信号的波形; 调制系统参数,观察调制系数为a>1,a=1,a<1 时调制信号和解调信号的波形变化。实验波形: a>1

a=1 a<1 思考题: 1、若用同步检波,如何完成实验?比较同步检波和包络检波的有缺点。 用同步检波则在接受AM调制信号端乘一个恢复载波信号,再经过低通滤波器就完成同步解调了。同步检波要求恢复载波于接受信号载波同频同相,一般要在发端加一离散的载频分量即导频,则在发端要分配一部分功率给导频,或者在收端提取载波分量,复杂且不经济。线形良好,增益高,对调制系数没要求。包络检波不需要提取载波分量,比较简单经济,但要求调制系数小于等于1,抗干扰差。 2、若调制系数大于1,是否可以用包络检波来还原信号。 不可以,这时已经出现失真现象。 3、调制系数分别”<1”,”>1”,”=1”时,如何计算已调信号的调制系数? A B分别表示波形垂直方向上的最大和最小长度,代入下述公式即可求出 调幅系数ma = [(A-B)/(A+B)] ? 100 %

北邮通原软件实验

实验一 实验目的:假设基带信号为m(t)=sin(2000πt)+2cos(1000πt),载波频率为20kHz,请仿真出AM,DSB-SC,SSB信号,观察已调信号的波形和频谱。 1.AM信号: (1)信号的表达式 (3)流程图 AM信号 s= (1+0.3*m).*cos(2*pi*fc*t); 绘制时域波形及频谱 傅氏变换S= t2f(s,fs) (2)源代码 %AM信号的产生 fs= 800; %采样频率KHz T= 200; %截短时间ms N= T*fs; %采样点数 dt= 1/fs; t= [-T/2:dt:T/2-dt]; df= 1/T; f=[-fs/2:df:fs/2-df]; fm= 1; % kHz fc= 20; % kHz m= sin(2*pi*fm*t)+2*cos(1*fm*pi*t); s= (1+0.3*m).*cos(2*pi*fc*t); %AM 信号 S= t2f(s,fs); figure(1) plot(f,abs(S1)) title('AM信号频谱') xlabel('f') ylabel('S(f)') axis([-25,25,0,max(abs(S1))]); %xset('window',2)figure(2) plot(t,s1) title('AM信号波形') xlabel('t') ylabel('s(t)') axis([-3,3,-3,3]); (4)实验结果

精选文库 -3 -2-1 0123 -3-2 -1 1 2 3 AM 信号波形 t(ms) s (t ) -25 -20 -15 -10 -5 05 10 15 20 25 0102030405060708090 100AM 信号频谱 f(kHz) S (f )

北邮微原硬件实验

信息与通信工程学院 微原硬件实验报告 姓名: 班级: 学号: 班内序号: 【一.基本的I/O实验】 实验一 I/O地址译码 一、实验目的 掌握I/O地址译码电路的工作原理。 二、实验原理和内容 1、实验电路如图1-1所示,其中74LS74为D触发器,可直接使用实验台 上数字电路实验区的D触发器,74LS138为地址译码器。译码输出端Y0~Y7在实验台上“I/O地址“输出端引出,每个输出端包含8个地址,Y0:

280H~287H,Y1:288H~28FH,……当CPU执行I/O指令且地址在280H~2BFH范围内,译码器选中,必有一根译码线输出负脉冲。 例如:执行下面两条指令 MOV DX,2A0H OUT DX,AL(或IN AL,DX) Y4输出一个负脉冲,执行下面两条指令 MOV DX,2A8H OUT DX,AL(或IN AL,DX) Y5输出一个负脉冲。 图1-1 利用这个负脉冲控制L7闪烁发光(亮、灭、亮、灭、……),时间间隔通过软件延时实现。 2、接线: Y4/IO地址接 CLK/D触发器 Y5/IO地址接 CD/D触发器 D/D触发器接 SD/D角发器接 +5V Q/D触发器接 L7(LED灯)或逻辑笔 三、硬件接线图及软件程序流程图 1.硬件接线图 2.软件程序流程图

四、源程序 DATA SEGMENT DATA ENDS STACK SEGMENT STACK 'STACK' DB 100H DUP(?) STACK ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA,SS:STACK ;基本框架;延时子程序 DELAY1 PROC NEAR MOV BX,500H PUSH CX LOOP2: MOV CX,0FFFH WAIT1: LOOP WAIT1 DEC BX JNZ LOOP2 POP CX RET DELAY1 ENDP START: MOV CX,0FFFFH ;L7闪烁控制 LOOP1: MOV DX,2A0H ;灯亮 OUT DX,AL CALL DELAY1 MOV DX,2A8H ;灯灭 OUT DX,AL CALL DELAY1 LOOP LOOP1 ;循环闪烁 CODE ENDS END START 五、实验结果 灯L7闪烁 实验二简单并行接口 一、实验目的 掌握简单并行接口的工作原理及使用方法。(选择273进行实验)二、实验原理和内容

北邮-通原软件实验报告-16QAM

实验一: 16QAM调制与解调 一、实验目的 1、熟悉16QAM信号的调制与解调,掌握SYSTEMVIEW软件中,观察眼图与星座图的方 法。 2、强化SYSTEMVIEW软件的使用,增强对通信系统的理解。 二、实验原理 1、16QAM 16QAM是指包含16种符号的QAM调制方式。 16QAM 调制原理方框图: 图一16QAM调制框图 16QAM解调原理方框图: 图二16QAM解调框图 16QAM 是用两路独立的正交 4ASK 信号叠加而成,4ASK 是用多电平信号去键控载波而得到的信号。它是 2ASK 体制的推广,和 2ASK 相比,这种体制的优点在于信息传

输速率高。 正交幅度调制是利用多进制振幅键控(MASK)和正交载波调制相结合产生的。 16 进制的正交振幅调制是一种振幅相位联合键控信号。16QAM 的产生有 2 种方法: (1)正交调幅法,它是有 2 路正交的四电平振幅键控信号叠加而成; (2)复合相移法:它是用 2 路独立的四相位移相键控信号叠加而成。 在这里我们使用第一种方法。 16QAM信号的星座图: 图三16QAM星座图 上图是16QAM的星座图,图中f1(t)和f2(t)是归一化的正交基函数。各星座点等概出现。 星座图中最近的距离与解调误码率有很密切的关系。上图中的最小距离是dmin=2。 16QAM的每个星座点对应4个比特。哪个星座点代表哪4比特,叫做星座的比特映射。通常采用格雷映射,其规则是:相邻的星座点只差一个比特。 实验所需模块连接图如下所示: 图四模块连接图 各个模块参数设置:

三、实验步骤 (1)按照实验所需模块连接图,连接各个模块 (2)设置各个模块的参数: ①信号源部分:PN序列发生器产生双极性NRZ序列,频率10HZ 图五信号源设置示意图 ②载频:频率设置为100Hz。

8086软硬件实验报告(微机原理与接口技术上机实验)

实验一实验环境熟悉与简单程序设计 实验目的 (1)掌握DEBUG调试程序的使用方法。 (2)掌握简单程序的设计方法。 实验内容 编程将BH中的数分成高半字节和低半字节两部分,把其中的高半字节放到DH中的低4位(高4位补零),把其中的低半字节放到DL中的低4位(高4位补零)。如: BH=10110010B 则运行程序后 DH=00001011B DL=00000010B 实验准备 (1)熟练掌握所学过的指令。 (2)根据实验内容,要求预先编好程序。 实验步骤 (1)利用DEBUG程序输入、调试程序。 (2)按下表要求不断地修改BH的内容,然后记录下DX的内容。 实验报告 (1)给出程序清单。 (2)详细说明程序调试过程。

程序: CODE SEGMENT START : MOV BH,00111111B MOV AL,BH MOV CL,4 SHR AL,CL MOV DH,AL MOV AL,BH AND AL,00001111B MOV DL,AL MOV CL,0 CODE ENDS END START

实验二简单程序设计 实验目的 (3)掌握DEBUG调试程序的使用方法。 (4)掌握简单程序的设计方法。 实验内容 试编写一个汇编语言程序,要求实现功能:在屏幕上显示:Hello world My name is Li Jianguo 参考程序如下:(有错) data segment out1 db 'Hello world' ax db 'My name is Li Jianguo' data ens code segment assume cs:code;ds:data lea dx,out1 mov ah,2 int 21h mov dl,0ah mov ah,2

北邮通信原理软件实验报告

通信原理软件实验报告 学院:信息与通信工程学院班级:

一、通信原理Matlab仿真实验 实验八 一、实验内容 假设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20kHz,请仿真出AM、DSB-SC、SSB信号,观察已调信号的波形和频谱。 二、实验原理 1、具有离散大载波的双边带幅度调制信号AM 该幅度调制是由DSB-SC AM信号加上离散的大载波分量得到,其表达式及时间波形图为: 应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制: AM信号的频谱特性如下图所示: 由图可以发现,AM信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。

2、双边带抑制载波调幅(DSB—SC AM)信号的产生 双边带抑制载波调幅信号s(t)是利用均值为0的模拟基带信号m(t)和正弦载波c(t)相乘得到,如图所示: m(t)和正弦载波s(t)的信号波形如图所示: 若调制信号m(t)是确定的,其相应的傅立叶频谱为M(f),载波信号c(t)的傅立叶频谱是C(f),调制信号s(t)的傅立叶频谱S(f)由M(f)和C(f)相卷积得到,因此经过调制之后,基带信号的频谱被搬移到了载频fc处,若模拟基带信号带宽为W,则调制信号带宽为2W,并且频谱中不含有离散的载频分量,只是由于模拟基带信号的频谱成分中不含离散的直流分量。 3、单边带条幅SSB信号 双边带抑制载波调幅信号要求信道带宽B=2W, 其中W是模拟基带信号带宽。从信息论关点开看,此双边带是有剩余度的,因而只要利用双边带中的任一边带来传输,仍能在接收机解调出原基带信号,这样可减少传送已调信号的信道带宽。 单边带条幅SSB AM信号的其表达式: 或 其频谱图为:

通原实验报告

实验一:双边带抑制载波调幅(DSB-SC AM) 一、实验目的: *了解DSB-SC AM信号的产生及相干解调的原理和实现方法。 *了解DSB-SC AM信号波形及振幅频谱特点,并掌握其测量方法。 *了解在发送DSB-SC AM信号加导频分量的条件下,收端用锁相环提取载波的原理及其实现方法。 *掌握锁相环的同步带和捕捉带的测量方法,掌握锁相环提取载波的测试方法。 二、实验原理: DSB-SC AM信号的产生及相干解调原理: 增益G 将均值为零的模拟基带信号m(t)与正弦载波相乘得到DSB-SC AM信号,其频谱不包含载波分量。 DSB-SC AM信号的解调只能采用相干解调。为了能在接收端获取载波,在发端加导频。收端用窄带锁相环来提取导频信号作为恢复载波。锁定后的VCO输出信号与导频同频且几乎同相。 相干解调是将发来的信号s(t)与恢复载波相乘,再经过低通滤波后输出模拟基带号。 三、实验步骤 (A) DSB-SC AM信号的产生 1、实验步骤: (1)调整音频振荡器输出的模拟信号频率为10KHZ,作为均值为零的调制信号m(t)。主振荡器输出100KHZ的模拟载波信号。如下图:

主振荡器输出音频振荡器输出 将两路信号连接到乘法器的两个输入端。 (2)乘法器输出波形如下图,波形在调制信号半周期的整数倍处的过零点存在相位翻转。 (3)已调信号的振幅频谱如下图: 该频谱具有以下特点:没有单独的载波分量,在载波频率的两侧有相互对称的两个冲击信号,分别称为上、下边带。该频谱是将基带信号线性搬移到载波频率上得到的。 (4)将DSB-SC AM信号和导频分别连接到加法器的输入端,调整加法器的增益G和g (a)调整G=1

北京邮电大学微机原理硬件实验报告

北京邮电大学微机原理硬件实验报告

实验报告一:I/0地址译码和简单并行接口 ——实验一&实验二 一、实验目的 掌握I/O地址译码电路的工作原理;掌握简单并行接口的工作原理及使用方法。 二、实验原理及内容 a) I/0地址译码 1、实验电路如图1-1所示,其中74LS74为D触发器,可直接使用实验台上数 字电路实验区的D触发器,74LS138为地址译码器。译码输出端Y0~Y7在实验台上“I/O地址“输出端引出,每个输出端包含8个地址,Y0:280H~ 287H,Y1:288H~28FH,……当CPU执行I/O指令且地址在280H~2BFH范围内,译码器选中,必有一根译码线输出负脉冲。 例如:执行下面两条指令 MOV DX,2A0H OUT DX,AL(或IN AL,DX) Y4输出一个负脉冲,执行下面两条指令 MOV DX,2A8H OUT DX,AL(或IN AL,DX) Y5输出一个负脉冲。 利用这个负脉冲控制L7闪烁发光(亮、灭、亮、灭、……),时间间隔经过软件延时实现。 2、接线: Y4/IO地址接 CLK/D触发器

Y5/IO地址接 CD/D触发器 D/D触发器接 SD/D触发器接 +5V Q/D触发器接L7(LED灯)或逻辑笔 b) 简单并行接口 1、按下面图4-2-1简单并行输出接口电路图连接线路(74LS273插通 用插座,74LS32用实验台上的“或门”)。74LS273为八D触发器, 8个D输入端分别接数据总线D0~D7,8个Q输出端接LED显示电 路L0~L7。 2、编程从键盘输入一个字符或数字,将其ASCⅡ码经过这 个输出接口输出,根据8个发光二极管发光情况验证正确 性。 3、按下面图4-2-2简单并行输入接口电路图连接电路 (74LS244插通用插座,74LS32用实验台上的“或门”)。 74LS244为八缓冲器,8个数据输入端分别接逻辑电平开关 输出K0~K7,8个数据输出端分别接数据总线D0~D7。 4、用逻辑电平开关预置某个字母的ASCⅡ码,编程输入这 个ASCⅡ码,并将其对应字母在屏幕上显示出来。 5、接线:1)输出 按图4-2-1接线(图中虚线为实验所需接线,74LS32为实验 台逻辑或门) 2)输入 按图4-2-2接线(图中虚线为实验所需接线,74LS32为实 验台逻辑或门) 三、硬件连线图 1、I/O地址译码

北邮通原软件实验报告

北京邮电大学实验报告题目:基于SYSTEMVIEW通信原理实验报告 班级: 专业: 姓名: 成绩: 实验1:抽样定理 一.实验目的 (1)掌握抽样定理 (2)通过时域频域波形分析系统性能

二.实验原理 抽样定理:设时间连续信号m(t),其最高截止频率为fm ,如果用时间间隔为T<=1/2fm 的采样序列对m(t)进行抽样时,则m(t)就可被样值信号唯一地表示。 抽样过程原理图(时域)重建过程原理图(频域) 具体而言:在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,这种信号必定是个周期性的信号,当抽样频率f S≥2 f h时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。根据这一特性,可以完成信号的模-数转换和数-模转换过程。 三.实验步骤 1.将三个基带信号相加后抽样,然后通过低通滤波器恢复出原信号。实现验证抽样定理的仿真系统,同时在必要的输出端设置观察窗。如下图所示 2.设置各模块参数 三个基带信号频率从上至下依次为10hz、20hz、40hz。 抽样信号频率fs设置为80hz,即2*40z。(由抽样定理知,fs≥2fH)。低通滤波器频率设置为40hz 。设置系统时钟,起始时间为0,终止时间设为1s.抽样率为1khz。 3.改变抽样速率观察信号波形的变化。

五.实验建议、意见 将抽样率fs设置为小于两倍fh的值,观察是否会产生混叠失真。 实验2:验证奈奎斯特第一准则 一.实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性; (3)通过时域、频域波形分析系统性能。 二.实验原理 基带传输系统模型 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变,即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号,因为信息完全恢复携带在抽样点幅度上。 无码间干扰基带传输时,系统冲击响应必须满足x(nTs)=1(n=0); x(nTs)=0(n=!0)。相应的推导出满足x(t)的傅里叶变换X(f)应满足的充分必要条件: 该充要条件被称为无码间干扰基带传输的奈奎斯特准则。 奈奎斯特准则还指出了信道带宽与码速率的基本关系。即Rb=1/Tb=2?N=2BN。说明了理想信道的频带利用率为Rb/BN=2。 在实际应用中,理想低通滤波器是不可能实现的,升余弦滤波器是在实际中满足无码间干扰传输的充要条件,已获得广泛应用。 三.实验步骤 1.根据奈奎斯特准则,设计实现验证奈奎斯特第一准则的仿真系统,同时在必要输出端设置观察窗。如下图所示

微原软件实验报告

微机原理与接口技术软件实验 一、实验目的 1.掌握汇编程序的编辑,编译,连接和执行的全过程; 2.学习和掌握用DEBUG调试程序的方法. 二、源程序 DAT SEGMENT A D B 4 ;(自定) B DB 5 ;(自定) Y DB 3 DUP(0) Z DB 0,0 DAT ENDS STA SEGMENT STACK DW 50 DUP(?) STA ENDS COD SEGMENT ASSUME CS:COD,DS:DAT STAR PROC FAR PUSH DS XOR AX,AX PUSH AX MOV AX,DAT MOV DS,AX MOV AX,STA MOV SS,AX MOV AL,A MOV Z,AL MOV Z+1,AL CALL SUB1 ;A*A

MOV AL,B MOV Z,AL MOV Z+1,AL CALL SUB1 ;B*B MOV AL,A MOV Z,AL MOV AL,B MOV Z+1,AL ;Z stores the two OPRD temporally CALL SUB1 ;A*B ADD WORD PTR Y,AX ADC BYTE PTR[Y+2],0 ;A*B*2 RET STAR ENDP SUB1 PROC MOV AL,Z MOV AH,Z+1 MUL AH ADD WORD PTR Y,AX ;Y stores the result ADC BYTE PTR[Y+2],0 ;Y+2 stores the signal flag RET SUB1 ENDP COD ENDS END STAR 三、实验文档中的要求 (1)用D 命令观察数据区在内存中的具体内容,记录单元A 和B 的具体地址.

《通信原理》实验设计报告

中南大学《通信原理》 实验设计报告 学院: 专业班级: 姓名: 学号: 指导老师: 设计时间:

目录 第一部分硬件部分实验报告 实验一:模拟锁相环与载波同步 (1) 实验五:数字锁相环与位同步 (6) 实验六:帧同步 (13) 实验七:时分复用数字基带通信系统 (17) 第二部分实验设计部分 设计任务与要求 (22) 方案设计与论证 (22) 源程序与仿真结果 (24) 系统性能分析 (29) 程序调试 (29) 结论与心得 (30) 参考文献 (31)

第一部分硬件部分实验报告 实验一:模拟锁相环与载波同步 一、实验目的 1. 掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念。 2. 掌握用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法。 3. 了解相干载波相位模糊现象产生的原因。 二、实验内容 1. 观察模拟锁相环的锁定状态、失锁状态及捕捉过程。 2. 观察环路的捕捉带和同步带。 3. 用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象。 三、基本原理 通信系统中常用平方环或同相正交环(科斯塔斯环)从2DPSK信号中提取相干载波。本实验系统的载波同步提取模块用平方环,原理方框图如图3-1所示,电原理图如图3-2所示(见附录)。模块内部使用+5V、+12V、-12V电压,所需的2DPSK输入信号已在实验电路板上与数字调制单元2DPSK输出信号连在一起。 图3-1 载波同步方框图 本模块上有以下测试点及输入输出点: ? MU平方器输出测试点,VP-P>1V ? VCO VCO输出信号测试点,VP-P>0.2V ? Ud鉴相器输出信号测试点 ? CAR-OUT 相干载波信号输出点/测试点 图3-1中各单元与电路板上主要元器件的对应关系如下: ? 平方器 U25:模拟乘法器MC1496

北京邮电大学通信原理软件实验报告-28页文档资料

《通信原理软件》实验报告专业通信工程 班级 2011211118 姓名朱博文 学号 2011210511 报告日期 2013.12.20

基础实验: 第一次实验 实验二时域仿真精度分析 一、实验目的 1. 了解时域取样对仿真精度的影响 2. 学会提高仿真精度的方法 二、实验原理 一般来说,任意信号s(t)是定义在时间区间上的连续函数,但所有计算机的CPU 都只能按指令周期离散运行,同时计算机也不能处理这样一个时间段。为此将把s(t)截短,按时间间隔均匀取样,仿真时用这个样值集合来表示信号 s(t)。△t反映了仿真系统对信号波形的分辨率,△t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱是频率的周期函数,才能保证不发生频域混叠失真,这是奈奎斯特抽样定理。设为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是,那么不能用此仿真程序来研究带宽大于的信号或系统。换句话说,就是当系统带宽一定的情况下,信号的采样频率最小不得小于2*f,如此便可以保证信号的不失真,在此基础上时域采样频率越高,其时域波形对原信号的还原度也越高,信号波形越平滑。也就是说,要保证信号的通信成功,必须要满足奈奎斯特抽样定理,如果需要观察时域波形的某些特性,那么采样点数越多,可得到越真实的时域信

号。 三、实验内容 1、方案思路: 通过改变取点频率观察示波器显示信号的变化 2、程序及其注释说明: 3、仿真波形及频谱图: Period=0.01 Period=0.3 4、实验结果分析: 以上两图区别在于示波器取点频率不同,第二幅图取点频率低于第一幅图,导致示波器在画图时第二幅图不如第一幅图平滑。 四、思考题 1.两幅图中第一幅图比第二幅图更加平滑,因为第一幅图中取样点数更 多 2.改为0.5后显示为一条直线,因为取点处函数值均为0 实验三频域仿真精度分析 一、实验目的

五邑大学计算机组成原理实验报告三:微程序控制器实验

《计算机组成原理》 实验报告 学院:计算机学院 专业:计算机科学与技术 班级学号:150801 3115000820 学生姓名:黄家燊 实验日期:2016.12.25 指导老师:李鹤喜 五邑大学计算机学院计算机组成原理实验室

实验一 一、实验名称:微程序控制器实验 二、实验目的 (1)掌握微程序控制器的功能、组成知识。 (2)掌握为程序的编制、写入、观察微程序的运行 二、实验设备: PC机一台,TD-CM3+实验系统一套 三、实验原理: 微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制的硬件逻辑部件的为命令序列,完成数据传送和个汇总处理操作,他的执行方法是将控制各部件的微命令的集合进行编码,即将微命令的集合仿照及其指令一眼,用数字代码的形式表示,这种表示陈伟微指令。这样就可以用一个微指令序列表示一条机器指令,这种为指令序列称作为程序。微程序存储在一种专用的存储器中,成为控制储存器 四、实验步骤 1.对为控制器进行读写操作: (1)手动读写: ①按图连线:

②将MC单元编程开关置为“编程”档,时序单元状态开关置为“单步”档,ADDR 单元状态开关置为“置数”档 ③使用ADDR单元的低六位SA5…SA0给出微地址MA5…MA0,微地址可以通过MC 单元的MA5…MA0微地址灯显示 ④CON单元SD27…SD20,SD17…SD10,SD07…SD00开关上置24位微代码,待写入值由MC单元的M23…M024位LED灯显示 ⑤启动时序电路(按动一次TS按钮),即将微代码写入到E2PROM2816的相应地址对应单元中 ⑥重复③④⑤三步,将下图微代码写入2816芯片中 二进制代码表 (2)联机读写: ①将微程序写入文件,联机软件提供了微程序下载功能,以代替手动读写微控制器,但微程序得以指定的格式写入 本次试验的微程序如下: ://************************************************************// :// // :// 微控器实验指令文件 // :// // ://************************************************************// ://***************Start Of MicroController Data****************//

通信原理硬件实验报告(-哈工程)

必爾牘N理2普实验报告 工程大学教务处制

实验一、数字基带信号实验 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI、HDB2的编码规则 3、了解HDB3(AMI)编译码集成电路CD22103. 二、实验仪器 双踪示波器、通信原理VI实验箱一台、M6信源模块 三、实验容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。 2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。 3、用示波器观察HDB3、AMI译码输出波形。 四、基本原理 1、单极性码、双极性码、归零码、不归零码 对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即 数字信号由矩形脉冲组成。 a)单极性不归零码,无电压表示"0",恒定正电压表示"1",每个码元时间的中间点是采样时间,判决门限为半幅电平。 b)双极性不归零码,"1"码和"0"码都有电流,"1"为正电流,"0"为负电流,正和负的幅度相等,判决门限为零电平。 c)单极性归零码,当发"1"码时,发出正电流,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲;当发"0"码时,仍然不发送电流。

d)双极性归零码,其中"1"码发正的窄脉冲,"0"码发负的窄脉冲,两个码元的时间间隔可以大于每一个窄脉冲的宽度,取样时间是对准脉冲的中心。 归零码和不归零码、单极性码和双极性码的特点: 不归零码在传输中难以确定一位的结束和另一位的开始,需要用某种方法使发送器和接 收器之间进行定时或同步;归零码的脉冲较窄,根据脉冲宽度与传输频带宽度成反比的关系,因而归零码在信道上占用的频带较宽。 单极性码会积累直流分量,这样就不能使变压器在数据通信设备和所处环境之间提供良好绝缘的交流耦合,直流分量还会损坏连接点的表面电镀层; 双极性码的直流分量大大减少,这对数据传输是很有利的 2、AMI、HDB3 码特点 (1)AMI 码 我们用“ 0”和“ 1 ”代表传号和空号。AMI码的编码规则是“ 0”码不变,“ 1”码则交替地转换为+ 1和—1。当码序列是1时,AMI码就变为:+ 100 —1000 + 1 — 1 + 10 —1。这种码型交替出现正、负极脉冲,所以没直流分量,低频分量也很少,它的频谱如图5-1 所示,AMI码的能量集中于f0/2处(f0为码速率)。 信息代码:1 0 0 1 1 0 0 0 1 1 1 …… AMI 码:+1 0 0-1 + 1 0 0 0-1 + 1-1 …… 由于AMI码的传号交替反转,故由于它决定的基带信号将出现正负脉冲交替,而0电 位保持不变的规律。这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。

相关主题
文本预览
相关文档 最新文档