当前位置:文档之家› 离散傅里叶变换逆变换实验

离散傅里叶变换逆变换实验

离散傅里叶变换逆变换实验
离散傅里叶变换逆变换实验

实验四:离散傅里叶变换/逆变换实验

4.1实验目的:

(1) 深入理解离散傅里叶变换/逆变换的过程。

(2) 了解原始信号与其离散傅里叶变换的关系。

(3) 掌握用计算机实现离散傅里叶变换/逆变换的方法。

4.2实验内容:

(1) 计算离散有限长信号x[n] = {1, 1, 1, 1} 的离散傅里叶变换/逆变换,并编程画出原信号及其变换

(2) 计算离散有限长信号x[n] = {1, -1, 1, -1} 的离散傅里叶变换/逆变换,并编程画出原信号及其变换

(3) 计算离散有限长信号x[n] = {1, 2, 3, 4} 的离散傅里叶变换/逆变换,并编程画出原信号及其变换

(4) 计算离散有限长信号x[n] = {4, 3, 2, 1} 的离散傅里叶变换/逆变换,并编程画出原信号及其变换

(5) 自己生成任意有限长离散信号并计算其离散傅里叶变换/逆变换,编程画出原信号及其变换

4.3实验讨论:

(1) 原始信号与其离散傅里叶变换具有怎样的关系?

(2) 若将原始信号周期拓展得到一个新的周期信号,则新信号的离散傅里叶级数与原始信号的离散傅里叶变换具有怎样的关系?

4.4 实验过程:

傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示。傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。

t=[1,2,3,4];

y1=[1,1,1,1];

figure(1);

stem(t,y1);

y2=fft(y1);

figure(2);

plot(y1,y2);

t=[1,2,3,4];

y1=[1,-1,1,-1];

figure(1);

stem(t,y1);

y2=fft(y1);

figure(2);

plot(y1,y2);

t=[1,2,3,4];

y1=[1,2,3,4];

figure(1);

stem(t,y1);

y2=fft(y1);

figure(2);

plot(y1,y2);

t=[1,2,3,4];

y1=[4,3,2,1];

figure(1);

stem(t,y1);

y2=fft(y1);

figure(2);

plot(y1,y2);

4.5 实验总结:

通过本次实验,我深入理解离散傅里叶变换/逆变换的过程。了解了原始信号与其离散傅里叶变换的关系。基本掌握了用计算机实现离散傅里叶变换/逆变换的方法。这是最后一次实习,通过这门课的实习,我们有学会了一种新的语言,而且基本能熟练的应用用这种语言来编写有关信号与系统的相关实验,通过编写程序,让我们对一些抽象的东西有了简单的认识,我想,这也达到了实习的目的。

2

快速傅里叶变换实验报告

快速傅里叶变换实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

快速傅里叶变换实验报告 机械34班 刘攀 2013010558 一、 基本信号(函数)的FF T变换 1. 000()sin()sin 2cos36x t t t t π ωωω=+++ 1) 采样频率08s f f =,截断长度N =16; 取02ωπ=rad/s,则0f =1Hz ,s f =8Hz ,频率分辨率 f ?=s f f N ?= =0.5Hz 。 最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2) 采样频率08s f f =,截断长度N=32; 取02ωπ=rad/s ,则0f =1Hz,s f =8Hz ,频率分辨率f ?=s f f N ?==0.25Hz 。 最高频率c f =30f =3H z,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度04T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2. 00()sin()sin116x t t t π ωω=++ 1) 采样频率08s f f =,截断长度N=16; 取02ωπ=ra d/s,则0f =1Hz ,s f =8Hz,频率分辨率f ?=s f f N ?==0.5H z。 最高频率c f =110f =11H z,s f <2c f ,故不满足采样定理,会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图:

离散傅里叶变换(DFT)试题

第一章 离散傅里叶变换(DFT ) 填空题 (1) 某序列的DFT 表达式为 ∑-==1 )()(N n kn M W n x k X ,由此可以看出,该序列时域的长 度为 ,变换后数字频域上相邻两个频率样点之间的间隔是 。 解:N ; M π 2 (2)某序列DFT 的表达式是 ∑-==1 0)()(N k kl M W k x l X ,由此可看出,该序列的时域长度 是 ,变换后数字频域上相邻两个频率样点之间隔是 。 解: N M π 2 (3)如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件 。 解:纯实数、偶对称 (4)线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统 的极点为 ;系统的稳定性为 。系统单位冲激响应)(n h 的初值为 ;终值 )(∞h 。 解: 2,2 1 21-=- =z z ;不稳定 ;4)0(=h ;不存在 (5) 采样频率为Hz F s 的数字系统中,系统函数表达式中1 -z 代表的物理意义是 ,其中时域数字 序列)(n x 的序号 n 代表的样值实际位置是 ;)(n x 的N 点DFT )k X (中,序号k 代表的样值实际 位置又是 。 解:延时一个采样周期F T 1=,F n nT =,k N k πω2= (6)已知 }{}{4,3,2,1,0;0,1,1,0,1][,4,3,2,1,0;1,2,3,2,1][=-===k n h k n x ,则][n x 和 ][n h 的5点循环卷积为 。 解:{}]3[]2[][][][][---+?=?k k k k x k h k x δδδ {}4,3,2,1,0;2,3,3,1,0])3[(])2[(][55==---+=k k x k x k x (7)已知}{}{3,2,1,0;1,1,2,4][,3,2,1,0;2,0,2,3][=--=== k n h k n x 则][][n h n x 和的 4点循环卷积为 。

实验三傅里叶变换及其性质

1 / 7 信息工程学院实验报告 课程名称:信号与系统 实验项目名称:实验 3 傅里叶变换及其性质实验时间: 2013-11-29 班级: 姓名:学号: 一、实验目的: 1、学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换; 2、学会运用MATLAB 求连续时间信号的频谱图; 3、学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。 二、实验环境: 1、硬件:在windows 7 操作环境下; 2、软件:Matlab 版本7.1 三、实验原理: 3.1傅里叶变换的实现 信号()f t 的傅里叶变换定义为:() [()] ()j t F F f t f t e dt , 傅里叶反变换定义为: 1 1()[()] ()2 j t f t F F f e d 。 信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方法,下面分别加以探讨。同时, 学习连续时间信号的频谱图。 3.1.1 MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函数fourier( )和ifourier( )。 Fourier 变换的语句格式分为三种。 (1)F=fourier(f):它是符号函数 f 的Fourier 变换,默认返回是关于的函数。 (2)F=fourier(f,v) :它返回函数F 是关于符号对象 v 的函数,而不是默认的 ,即 ()()j v t Fv fte d t 。 (3)F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的函数,即 ()()jvu F v f t e du 。 傅里叶反变换的语句格式也分为三种。(1)f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为 ,默认返回是关于 x 的函数。 (2)f=ifourier(F,u):它返回函数 f 是u 的函数,而不是默认的 x 。 (3)f=ifourier(F,u,v) :是对关于v 的函数F 进行反变换,返回关于 u 的函数f 。 成 绩: 指导教师(签名):

实验四-离散傅里叶变换

实验四:离散傅里叶变换 实验原理: DFT的快速算法FFT利用了的三个固有特性:(1)对称性(2)周期性(3)可约性。FFT算法基本上可以分为两大类,即按时间抽选法(DIT,Decimation-In-Time)和按频率抽选法(DIF,Decimation-In-frequency)。 MATLAB中提供了进行快速傅里叶变换的fft函数: X=fft(x),基2时间抽取FFT算法,x是表示离散信号的向量;X是系数向量; X=fft(x,N),补零或截断的N点DFT,当x得长度小于N时,对补零使其长度为N,当x的长度大于N时,对x截断使其长度为N。 实验内容: =60; n=[0:1:k/2]; xa1=2*sin(10*pi*n/k)+cos(18*pi*n/k); subplot(321) stem(n,xa1) xlabel('N');ylabel('x(n)'); xk1=fft(xa1);xk1=abs(xk1) subplot(322) stem(n,xk1) xlabel('k');ylabel('X(k)'); n=[0:1:k*]; xa1=2*sin(10*pi*n/k)+cos(18*pi*n/k); subplot(323) stem(n,xa1) xlabel('N');ylabel('x(n)'); xk1=fft(xa1);xk1=abs(xk1) subplot(324) stem(n,xk1) xlabel('k');ylabel('X(k)'); n=[0:1:k*2]; xa1=2*sin(10*pi*n/k)+cos(18*pi*n/k); subplot(325) stem(n,xa1) xlabel('N');ylabel('x(n)'); xk1=fft(xa1);xk1=abs(xk1) subplot(326) stem(n,xk1) xlabel('k');ylabel('X(k)');

离散傅里叶变换的分析与研究

XXXX大学 2012届学士学位论文 离散傅里叶变换的分析与研究 学院、专业物理与电子信息学院 电子信息工程 研究方向数字信号处理 学生姓名XX 学号 XXXXXXXXXXX 指导教师姓名XXX 指导教师职称讲师 2012年4月26日

离散傅里叶变换的分析与研究 XX 淮北师范大学物理与电子信息学院 235000 摘要离散傅里叶变换是连续傅里叶变换在时域和频域上都离散的形式,是对连续时间信号频谱分析的逼近。离散傅里叶变换不仅在理论上有重要意义,而且在各种信号的处理中亦起着核心作用。 本文首先介绍了离散傅里叶变换的定义及性质,然后介绍了离散傅里叶变换的应用,主要包括对线性卷积的计算和对连续信号的谱分析。在理解理论的基础上,在matlab环境下实现了线性卷积和对连续信号频谱分析的仿真。仿真结果表明:当循环卷积长度大于或等于线性卷积长度时,可利用循环卷积计算线性卷积;利用DFT对连续信号进行频谱分析必然是近似的,其近似的结果与信号带宽,采样频率和截取长度都有关。 关键词离散傅里叶变换;线性卷积;谱分析

The Analysis and Research of Discrete Fourier Transform XX School of Physics and Electronic Information, Huai Bei Normal University, Anhui Huaibei, 235000 Abstract The discrete Fourier transform is the form that the continuous Fourier transform are discrete both in the time domain and frequency domain,it is a approach to the analysis of continuous time signal spectrum . The discrete Fourier transform not only has important significance in theory, but also plays a central role in all kinds of signal processing . This paper introduced the definition and properties of the discrete Fourier transform first of all.Then introduced the application of the discrete Fourier transform, which mainly including the calculation of linear convolution and analysis of continuous signal the spectral. On the basement of understanding theory, we realized the linear convolution and analysis of continuous signal spectrum on the Matlab environment . The simulation results show that when the length of the cyclic convolution is equal to or greater than linear convolution,we can use cyclic convolution to calculate linear convolution;It is approximately use continuous DFT spectrum to analyze the frequency domain of continuous time signal, the approximation of the results is related to the signal bandwidth, sampling frequency and intercept length. Keywords The discrete Fourier transform; Linear convolution; Spectrum analysis

离散信号的傅里叶变换(MATLAB实验)

离散信号的变换(MATLAB 实验) 一、实验目的 掌握用Z 变换判断离散系统的稳定与否的方法,掌握离散傅立叶变换及其基本性质和特点,了解快速傅立叶变换。 二、实验内容 1、已经系统函数为 5147.13418.217.098.2250 5)(2342-++--+=z z z z z z Z H (1) 画出零极点分布图,判断系统是否稳定; (2)检查系统是否稳定; (3) 如果系统稳定,求出系统对于u(n)的稳态输出和稳定时间b=[0,0,1,5,-50];a=[2,-2.98,0.17,2.3418,-1.5147]; subplot(2,1,1);zplane(b,a);title('零极点分布图'); z=roots(a); magz=abs(z) magz = 0.9000 0.9220 0.9220 0.9900 n=[0:1000]; x=stepseq(0,0,1000); s=filter(b,a,x); subplot(2,1,2);stem(n,s);title('稳态输出'); (1)因为极点都在单位园内,所以系统是稳定的。 (2)因为根的幅值(magz )都小于1,所以这个系统是稳定的。 (3)稳定时间为570。 2、综合运用上述命令,完成下列任务。 (1) 已知)(n x 是一个6点序列: ???≤≤=其它,050,1)(n n x

计算该序列的离散时间傅立叶变换,并绘出它们的幅度和相位。 要求:离散时间傅立叶变换在[-2π,2π]之间的两个周期内取401个等分频率上进行数值求值。 n=0:5;x=ones(1,6); k=-200:200;w=(pi/100)*k; X=x*(exp(-j*pi/100)).^(n'*k); magX=abs(X);angX=angle(X); subplot(2,1,1);plot(w/pi,magX);grid;title('幅度'); subplot(2,1,2);plot(w/pi,angX);grid;title('相位'); (2) 已知下列序列: a. ,1000),52.0cos()48.0cos()(≤≤+=n n n n x ππ; b .)4sin()(πn n x =是一个N =32的有限序列; 试绘制)(n x 及它的离散傅立叶变换 )(k X 的图像。 a . n=[0:1:100];x=cos(0.48*pi*n)+cos(0.52*pi*n); subplot(2,1,1);plot(n,x);title('x(n)的图像'); X=dft(x,101); magX=abs(X); subplot(2,1,2);plot(n,magX);title('丨X(k)丨的图像');

离散傅里叶变换和快速傅里叶变换

戶幵,戈丿、弟实验报告 课程名称:彳 _____________ 指导老师 _____________ 成绩: ____________________ 实验名称:离散傅里叶变换和快速傅里叶变换 实验类型: _________________ 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 掌握DFT 的原理和实现 2. 掌握FFT 的原理和实现,掌握用 FFT 对连续信号和离散信号进行谱分析的方法。 二、实验内容和原理 2.1 DTFT 和 DFT N 1 如果x(n)为因果有限长序列,n=0,1,...,N-1,则x(n)的DTFT 表示为:X(e j ) x(n)e n 0 序列的N 点DFT 是DTFT 在[0,2 n 上的N 点等间隔采样,采样间隔为2 d N 。通过DFT , 可以完成由一组有限个信号采样值 x(n)直接计算得到一组有限个频谱采样值 X(k)。X(k)的幅 度谱为X(k) v 'x R (k ) X |2(k ) , X R (k)和X i (k)分别为X(k)的实部和虚部。X(k)的相位谱 为(k) 列吩 序列x(n)的离散事件傅里叶变换(DTFT )表示为: X(e j ) x( n)e x(n)的离散傅里叶变换(DFT )表达式为: X(k) x(n)e n 0 j^nk N (k 0,1,…,N 1)

IDFT )定义为 x(n)丄 N \(k)e j_Nnk (n 0,1,…,N 1) N n 0 2.2 FFT 快速傅里叶变换(FFT )是DFT 的快速算法,它减少了 DFT 的运算量,使数字信号的处理 速度大大提高。 三、主要仪器设备 PC 一台,matlab 软件 四、实验内容 4.1第一题 x(n)的离散时间 傅里叶变换(DTFT ) X(e j Q )并绘图。 0 其2他n 2; (2)已知 x(n) 2n 0 n 10。 0其他 4.1.1理论分析 1) 由DTFT 计算式, X (Q)是实数,可以直接作出它的图像。 离散傅里叶反变换 求有限长离散时间信号 (1)已知 x(n) X( ) x(n)e j n e 2j 1 5j e 1 e j e 2? e 2? 0.5j e 0.5 j e sin(2.5 )

实验四 离散傅里叶变换的性质

实验四离散傅里叶变换的性质 一、实验目的 1. 熟悉matlab软件中离散傅里叶变换的实现方法及FFT函数的使用方法; 2. 通过软件仿真,加深对离散傅里叶变换性质的理解。 二、实验内容 1. 验证离散傅里叶变换的线性性质; 2. 掌握用matlab实现圆周移位的方法; 3. 验证圆周卷积与线性卷积的关系。 三、实验步骤 1. 验证线性性质 设两个有限长序列分别为xn1=[3,1,-2,2,3,4],xn2=[1,1,1,1],做4DFT[xn1]+2DFT[xn2],及DFT[4xn1+2xn2]的运算,比较它们的结果。 代码如下: clear,N=20;n=[0:1:N-1]; xn1=[3,1,-2,2,3,4];n1=0:length(xn1)-1; %定义序列xn1 xn2=[1,1,1,1];n2=0:length(xn2)-1; %定义序列xn2 yn1=4*xn1;yn2=2*xn2;[yn,ny]=seqadd(yn1,n1,yn2,n2); %计算4xn1+2xn2 xk1=fft(xn1,N);xk2=fft(xn2,N); %分别求DFT[xn1] 和DFT[xn2] yk0=4*xk1+2*xk2; %计算4DFT[xn1]+2DFT[xn2] yk=fft(yn,N); %计算DFT[4xn1+2xn2] subplot(2,1,1);stem(n,yk0);title('傅里叶变换之和') %显示4DFT[xn1]+2DFT[xn2] subplot(2,1,2);stem(n,yk);title('序列和之傅里叶变换') %显示DFT[4xn1+2xn2] 运行结果如图1所示,从图中可知,用两种方法计算的DFT完全相等,所以离散傅里叶变换的线性性质得到验证。

实验2 离散时间傅里叶变换

电 子 科 技 大 学 实 验 报 告 学生姓名:项阳 学 号: 2010231060011 指导教师:邓建 一、实验项目名称:离散时间傅里叶变换 二、实验目的: 熟悉序列的傅立叶变换、傅立叶变换的性质、连续信号经理想采样后进行重建,加深对时域采样定理的理解。 三、实验内容: 1. 求下列序列的离散时间傅里叶变换 (a) ()(0.5)()n x n u n = (b) (){1,2,3,4,5}x n = 2. 设/3()(0.9),010,j n x n e n π=≤≤画出()j X e ω并观察其周期性。 3. 设()(0.9),1010,n x n n =--≤≤画出()j X e ω并观察其共轭对称性。 4. 验证离散时间傅里叶变换的线性、时移、频移、反转(翻褶)性质。 5. 已知连续时间信号为t a e t x 1000)(-=,求: (a) )(t x a 的傅里叶变换)(Ωj X a ; (b) 采样频率为5000Hz ,绘出1()j X e ω,用理想内插函数sinc()x 重建)(t x a ,并对结果进行讨论; (c) 采样频率为1000Hz ,绘出2()j X e ω,用理想内插函数sinc()x 重建)(t x a ,并对结果进行讨论。 四、实验原理:

1. 离散时间傅里叶变换(DTFT)的定义: 2.周期性:()j X e ?是周期为2π的函数 (2)()()j j X e X e ??π+= 3.对称性:对于实值序列()x n ,()j X e ?是共轭对称函数。 *()() Re[()]Re[()] Im[()]Im[()]()() ()() j j j j j j j j j j X e X e X e X e X e X e X e X e X e X e ??????????-----===-=∠=-∠ 4.线性:对于任何12,,(),()x n x n αβ,有 1212[()()][()][()]F x n x n F x n F x n αβαβ+=+ 5.时移 [()][()]()j k j j k F x n k F x n e X e e ωωω---== 6.频移 00()[()]()j n j F x n e X e ωωω-= 7.反转(翻褶) [()]()j F x n X e ω--= 五、实验器材(设备、元器件): PC 机、Windows XP 、MatLab 7.1 六、实验步骤: 本实验要求学生运用MATLAB 编程产生一些基本的离散时间信号,并通过MATLAB 的几种绘图指令画出这些图形,以加深对相关教学内容的理解,同时也通过这些简单的函数练习了MATLAB 的使用。 [()]()()(), ()j j jn z e n n F x n X e X z x n e x n ωωω∞-==-∞∞=-∞===<∞∑∑收敛条件为:

实验离散时间傅里叶变换和离散傅里叶变换

实验二离散时间傅里叶变换和离散傅里叶变换 一.实验目的 1.深刻理解离散时间信号傅里叶变换的定义,与连续傅里叶变换之间的关系; 2.深刻理解序列频谱的性质(连续的、周期的等); 3.能用MATLAB编程实现序列的DTFT,并能显示频谱幅频、相频曲线; 4.深刻理解DFT的定义、DFT谱的物理意义、DFT与DTFT之间的关系; 5.能用MATLAB编程实现有限长序列的DFT; 6.熟悉循环卷积的过程,能用MA TLAB编程实现循环卷积运算。 二.实验原理 1.离散时间信号的频谱和图示化 2.离散傅里叶变换的定义和图示化 三.实验结果 w=[0:2:500]*pi*2/500; h=(1+0.9*exp(-j*w))./(1-0.9*exp(-j*w)); magh=abs(h); plot(w/pi,magh);grid;xlabel('f');ylabel('|H(w)|'); n=[0:127]; m=[0:127]; x=exp(j*2*pi/128*m.*n); [xk]=dft(x,128); stem(n,xk);xlabel('n');ylabel('xk');

n=[0:127]; m=[0:127]; x=cos(2*pi/128*m.*n); [xk]=dft(x,128); stem(n,xk);xlabel('n');ylabel('xk'); n=[0:127]; m=[0:127]; [xk]=dft(x,128); stem(n,xk);xlabel('n');ylabel('xk'); n=[0:127];m=[0,127]; x=sin(n); [xk]=dft(x,128); stem(n,xk);xlabel('n');ylabel('xk');

基于Labview的快速傅里叶变换的实现

一、概述 FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。DFT对于X(K)的每个K值,需要进行4N次实数相乘和(4N-2)次相加,对于N个k值,共需N*N乘和N(4N-2)次实数相加。改进DFT算法,减小它的运算量,利用DFT中的周期性和对称性,使整个DFT的计算变成一系列迭代运算,可大幅度提高运算过程和运算量,这就是FFT的基本思想。虽然它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。 虽然FFT大幅度地降低了常规傅立叶变换的运算量,但对于一般的单片机而言,处理FFT运算还是力不从心。主要原冈是FFT计算过程中的蝶形运算是复数运算,要分开实部和虚部分别计算。在这里利用LabVIEW来实现快速傅立叶变化。LabVIEW是一种程序开发环境,类似于BASIC开发环境;但LabVIEW与其它计算机语言相比,有一个特别重要的不同点:其它计算机语言都是采用基于文本的语言产生代码行;而LabVIEW使用图形化编程语言G编写程序,产生.的程序是框图的形式。像C或BASIC一样,LabVIEW也是通用的编程系统,有一个可完成任何编程任务的庞大的函数库。LabVIEW的函数库包括数据采集、GPIB、串口控制、数据分析、数据显示及数据存储等。LabVIEW也有传统的程序调试工具,如设置断点、以动画方式显示数据及其通过程序(子V1)的结果、单步执行等,便于程序的调试。 二、方案论证 1:单一频率正弦信号的FFT 采用Labview的信号产生模板提供的常用的信号发生器,从中找到正弦信号发生器,使其产生一个正弦信号。将此正弦信号输入到实数FFT.vi中的X端进行快速傅里叶变换处理,使时域信号转换为频域信号。然后经过复数至极坐标转换后将其显示出来。其结构如图1所示。 图1 单一频率正弦信号的FFT结构图

离散傅里叶变换

第三章离散傅里叶变换 离散傅里叶变换不仅具有明确的物理意义,相对于DTFT他更便于用计算机处理。但是,直至上个世纪六十年代,由于数字计算机的处理速度较低以及离散傅里叶变换的计算量较大,离散傅里叶变换长期得不到真正的应用,快速离散傅里叶变换算法的提出,才得以显现出离散傅里叶变换的强大功能,并被广泛地应用于各种数字信号处理系统中。近年来,计算机的处理速率有了惊人的发展,同时在数字信号处理领域出现了许多新的方法,但在许多应用中始终无法替代离散傅里叶变换及其快速算法。 § 3-1 引言 一.DFT是重要的变换 1.分析有限长序列的有用工具。 2.在信号处理的理论上有重要意义。 3.在运算方法上起核心作用,谱分析、卷积、相关都可以通DFT在计算机上实现。 二.DFT是现代信号处理桥梁 DFT要解决两个问题: 一是离散与量化, 二是快速运算。 傅氏变换 § 3-2 傅氏变换的几种可能形式 一.连续时间、连续频率的傅氏变换-傅氏变换

对称性: 时域连续,则频域非周期。 反之亦然。 二.连续时间、离散频率傅里叶变换-傅氏级数 时域信号 频域信号 连续的 非周期的 非周期的 连续的 t ? ∞ ∞ -Ω-= Ωdt e t x j X t j )()(:? ∞ ∞ -ΩΩ Ω= d e j X t x t j )(21 )(:π 反

*时域周期为Tp, 频域谱线间隔为2π/Tp 三.离散时间、连续频率的傅氏变换 --序列的傅氏变换 p T 0= Ω时域信号 频域信号 连续的 周期的 非周期的 离散的 ? -Ω-= Ω2 /2 /00)(1 )(:p p T T t jk p dt e t x T jk X 正∑ ∞ -∞ =ΩΩ= k t jk e jk X t x 0)()(:0反

实验三离散傅里叶变换

实验三 离散傅里叶变换 一 实验目的 1、理解和加深DFS 和DFT 的概念及其性质; 2、学习利用离散傅里叶变换分析信号的频谱。 二 实验设备 1、计算机 2、MA TLAB R2007a 仿真软件 三 实验原理 离散傅里叶变换在时域和频域都离散有限的特点,使其成为信号分析与处理中的一个最根本的也是最常用的变换。然而,但序列的长度N 很大时,直接计算DFT 需要很大的计算量。快速傅里叶变换使DFT 的运算效率提高数个数量级,为数字信号处理技术应用与各种信号的实时处理创造了良好的条件。MA TLAB 提供了用于快速计算DFT 的fft 函数,其调用格式为:y=fft(x) 或 y=fft(x,N);fft 函数用来计算序列)(n x 的N 点DFT ,如果序列的长度小于N ,则函数在序列的尾部补零至N 点;而当序列的长度大于N 时,函数对序列进行截短。为了提高运行速度,通常将N 取为2的整数次幂。 四 实验内容 1、上机实验前,认真阅读实验原理,掌握DFS 和DFT 的基本概念; 2、掌握离散傅里叶变换分析信号频谱的MATLAB 实现方法。 实例1:求周期序列)()(~ 5 ~ n R n x ,周期分别为N=20 和N=60时的)(~ k X 。 将下列指令编辑到“exlfft.m ”文件中: clc; close all; clear all; L=5;N1=20;N2=60; xn1=[ones(1,L),zeros(1,N1-L)]; xn2=[ones(1,L),zeros(1,N2-L)]; n1=0:N1-1; n2=0:N2-1; Xk1=fft(xn1,N1); Xk2=fft(xn2,N2); magXk1=abs(Xk1); magXk2=abs(Xk2); k1=[-N1/2:N1/2];

数字信号处理基于MATLAB的离散傅里叶变换的仿真

数字信号处理设计报告书 课题名称 应用MATLAB 对信号进行频谱分析及 滤波 姓 名 何 晨 学 号 20076089 院、系、部 电气系 专 业 电子信息工程 指导教师 刘鑫淼 2010年 6 月27日 ※※※※※※※※※ ※※ ※ ※ ※※ ※※ ※※※※※ ※※ 2007级数字信号处理 课程设计

应用MATLAB对信号进行频谱分析及滤波 20076089 何晨 一、设计目的

要求学生会用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。 二、设计要求 1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图; 2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明; 3、绘制三种信号的均方根图谱; 4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 三、系统原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N 有关,因为FFT能够实现频率分辨率是2π/N。 x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为: X(k)=DFT[x(n)]= kn N W N n n x ∑ - = 1 ) ( ,k=0,1,...,N-1 N j e N Wπ2- = 逆变换:x(n) =IDFT[X(k)]= kn N W k X N n N - ∑ - = 1 ) ( 1 ,k=0,1,...,N-1 但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。 四、程序设计 fs=input('please input the fs:');%设定采样频率 N=input('please input the N:');%设定数据长度 t=0:0.001:1; f=100;%设定正弦信号频率 %生成正弦信号

MATLAB的离散傅里叶变换的仿真

应用MATLAB对信号进行频谱分析及滤波 设计目的 要求学生会用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。 一、设计要求 1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图; 2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明; 3、绘制三种信号的均方根图谱; 4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 二、系统原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现频率分辨率是2π/N。 x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为: N?1?2?kn)(nx j?W W NN e?0?n N X(k)=DFT[x(n)]=,k=0,1,...,N-1N?11?kn?)(WXk N N0?n x(n) =IDFT[X(k)]= 逆变换:,k=0,1,...,N-1 但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。 三、程序设计 fs=input('please input the fs:');%设定采样频率 N=input('please input the N:');%设定数据长度 t=0:0.001:1; f=100;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f*t); figure(1); subplot(211); plot(t,x);%作正弦信号的时域波形 axis([0,0.1,-1,1]); title('正弦信号时域波形'); z=square(50*t); subplot(212) plot(t,z) axis([0,1,-2,2]); title('方波信号时域波形');grid;

离散傅里叶变换的分析与研究 开题报告

本科学生毕业论文(设计)开题报告题目离散傅里叶变换的分析与研究 姓名XX 专业电子信息工程 学号XXXXXXXXXX 学院物理与电子信息学院 指导教师XXX 淮北师范大学教务处制

一、本课题研究现状及可行性分析 离散傅里叶变换,其实质是有限长序列傅立叶变换的有限点离散采样,从而实现了频域离散化,使数字信号处理可以在频域采用数值运算的方法进行,这样就大大增加了数字信号处理的灵活性。更为重要的是,离散傅里叶变换有多种快速算法,统称为快速傅里叶变换,从而使信号的实时处理和设备的简化得以实现。所以说,离散傅立叶变换不仅在理论上有重要意义,而且在各种信号的处理中亦起着核心作用。 离散傅里叶变换在数字通信、语音信号处理、图像处理、功率谱估计、系统分析与仿真、雷达信号处理、光学、医学、地震以及数值分析等各个领域都有着广泛的应用。 目前,我们已具备有关的大量参考文献和基本的原始程序,对本论文的开展不存在根本性的问题,我们的研究方法是可行的。 二、本课题研究的关键问题及解决问题的思路 关键问题: 线性卷积与循环卷积之间的关系,及对信号的频谱分析。并在MA TLAB环境下的编程实现。 解决思路: 在理解和掌握线性卷积,循环卷积以及信号频谱分析的基础上,用MA TLAB语言编写线性卷积,循环卷积以及频谱分析的设计程序,最后通过仿真结果验证理论的正确性。 三、论文纲要 1 绪论 1.1 DFT的定义 1.2 DFT与傅里叶变换和Z变换的关系 2 DFT的基本性质 2.1 线性性质 2.2 循环卷积性质 2.3循环卷积定理 3 DFT的应用 3.1 用DFT计算线性卷积 3.2 用DFT对信号进行谱分析 3.3 用DFT进行谱分析的误差问题

离散傅里叶变换

第3章 离散傅里叶变换 在第二章讨论了利用序列的傅里叶变换和z 变换来表示序列和线性时不变系统的 方法,公式分别为:∑∞ -∞ =-= n n z n x z X )()(和∑∞ -∞ =-= n jwn jw e n x e X )()(。对于有限长序列, 也可以用序列的傅里叶变换和z 变换来分析和表示,但还有一种方法更能反映序列的有限长这个特点,即离散傅叶里变换。这就是我们这一章要讨论的问题。离散傅里叶变换除了作为有限长序列的一种傅里叶表示法在理论上相当重要之外,而且由于存在着计算离散傅里叶变换的有效快速算法,因而离散傅里叶变换在各种数字信号处理的算法中起着核心的作用。这一章讨论的问题有: 1、 傅里叶变换的几种可能形式:至今学过很多种傅里叶变换形式,到底之间有什么 不 同,需要分析一下; 2、 周期序列的离散傅里叶级数(DFS):通常的周期信号都可以表示成傅里叶级数,然 后根据傅里叶级数可以得到傅里叶变换;也就是说傅里叶级数与傅里叶变换之间有一定的关系; 3、 有限长序列的离散傅里叶变换(DFT):这是我们的重点,我们会对其性质等作分析 讨论; 4、 DFT 的应用:学习了这种傅里叶变换,怎么用?计划作一个实验。 3.1 傅里叶变换的几种形式 傅里叶变换就是建立以时间为自变量的"信号"与以频率为自变量的"频率函数"之间的某种变换关系。都是指在分析如何综合一个信号时,各种不同频率的信号在合成信号时所占的比重。 如连续时间周期信号)()(mT t f t f +=,可以用指数形式的傅里叶级数来表示,可以分解成不同次谐波的叠加,每个谐波都有一个幅值,表示该谐波分量所占的比重。 傅里叶表示形式为:∑∞ -∞ =Ω= n t jn n e F t f )(? - Ω-= ?2 2 )(1T T t jn n dt e t f T F (Fn 离散、衰减、 非周期)。例如周期性矩形脉冲,其频谱为 ,1,0,/) /sin(±==n T n T n T F n πτπττ。画出图 形。

离散傅里叶变换及其特性验证

实验名:离散傅里叶变换及其特性验证 一、实验目的 1、掌握离散时间傅立叶变换(DTFT )的计算方法和编程技术。 2、掌握离散傅立叶变换(DFT )的计算方法和编程技术。 3、理解离散傅立叶变换(DFT )的性质并用MA TLAB 进行验证。 二、实验原理与计算方法 1、离散时间傅立叶变换 如果序列x (n )满足绝对可和的条件,即 ∞<∑∞ -∞ =n n x |)(|, 则其离散时间傅立叶变换定义为: ∑∞ -∞ =-= =n n j j e n x n x F e X ωω)()]([)( (1) 假设序列x (n )在N n n n ≤≤1(即不一定在[0, N -1])有N 个样本,要估计下列各点上的X (e j ω): M k k M k ...,2,1,0== , π ω 它们是[0,π]之间的(M +1)个等间隔频点,则(1)式可写成: M k n x e e X N l l kn M j j l ...,2,1,0)()(1==∑=-, πω (2) 将{x (n l )}和{X (e j ωk )}分别排列成向量x 和X ,则有: X=Wx (3) 其中W 是一个(M +1)×N 维矩阵: ? ?? ???=≤≤=-M k n n n e N kn M j ...,2,1,0;1, πW 将{k }和{n }排成列向量,则????????? ? ?-=n k W T M j πexp 在MA TLAB 中,把序列和下标排成行向量,对(3)式取转置得: ? ???? ???? ??-=k n x X T T T M j πexp 其中n T k 是一个N ×(M +1)维矩阵。用MATLAB 实现如下: k=[0:M]; n=[n1:n2]; X=x*(exp(-j*pi/M)).^(n ’*k); 2、离散傅立叶变换 一个有限长序列的离散傅立叶变换对定义为: 10,)()(1 0-≤≤=∑-=N k W n x k X N n nk N (4) 10,)(1 )(1 -≤≤=∑-=-N n W k X N n x N k kn N (5) 以列向量x 和X 形式排列x (n )和X (k ),则式(4)、(5)可写成: X =W N x 可由下面的MA TLAB 函数dft 和idft 实现离散傅立叶变换运算。

MATLAB离散傅里叶变换及应用

MATLAB 离散傅里叶变换及应用 一、DFT 与IDFT 、DFS 、DTFT 的联系 1、 序列的傅里叶变换(DFT)和逆变换(IDFT) 在实际中常常使用有限长序列。如果有限长序列信号为x(n),则该序列的离散傅里叶变换对可以表示为 1N ,0,1,k , W x (n)DFT[x (n)]X(k)1 N 0n nk N -===∑-=Λ (12-1) 1 N ,0,1,n , W X(k)N 1IDFT[X(k)]x (n)1N 0 k nk N -===∑-=-Λ (12-2) 已知x(n)=[0,1,2,3,4,5,6,7],求x(n)的DFT 和IDFT 。要求: (1)画出序列傅里叶变换对应的|X(k)|和arg [X(k)]图形。 (2)画出原信号与傅里叶逆变换IDFT [X(k)]图形进行比较。 程序源代码: xn=[0,1,2,3,4,5,6,7]; N=length(xn); n=0:(N-1);k=0:(N-1); Xk=xn*exp(-j*2*pi/N).^(n'*k); x=(Xk*exp(j*2*pi/N).^(n'*k))/N;

subplot(2,2,1),stem(n,xn); title('x(n)'); subplot(2,2,2),stem(n,abs(x)); title('IDFT|X(k)|'); subplot(2,2,3),stem(k,abs(Xk)); title('|X(k)|'); subplot(2,2,4),stem(k,angle(Xk)); title('arg|X(k)|'); 运行图如下: x(n) IDFT|X (k)| 2 4 6 8 |X (k)| 2 4 6 8 arg|X (k)| 从得到的结果可见,与周期序列不同的是,有限长序列本身是仅有N 点的离散序列,相当于周期序列的主值部分。因此,其频谱也对应序列的主值部分,是含N 点的离散序列。

相关主题
文本预览
相关文档 最新文档