当前位置:文档之家› matlab频域分析法

matlab频域分析法

matlab频域分析法
matlab频域分析法

实验六 频域时域分析法

一、实验目的

1.掌握控制系统频域分析的基本方法; 2. 掌握控制系统PID 设计方法。 二、实验内容

1. 已知二阶环节222

(),0.72n

n n n

G s s s ωωξωω==++,分别绘制0.1,0.4,1.0,1.6,2.0ξ= 时的Bode 图。

w=[0,logspace(-2,2,200)]; wn=0.7;

t=[0.1,0.4,1.0,1.6,2.0]; for j=1:5

sys=tf([wn*wn],[1,2*t(j)*wn*wn,wn*wn]); bode(sys,w) hold on end

gtext('t=0.1');gtext('t=0.4');gtext('t=1.0');gtext('t=1.6');gtext('t=2.0');

2. 已知系统开环传递函数5(0.01671)

()(0.031)(0.00251)(0.0011)

s G s s s s s +=

+++,试求系统的

,h γ,并绘制Bode 图。

num=5*[0.0167,1];

den=conv(conv([1,0],[0.03,1]),conv([0.0025,1],[0.001,1])); G=tf(num,den);

w=logspace(0,4,50); bode(G,w)

grid

[Gm,Pm,Wcg,WcP]=margin(G) Gm = 455.2548 Pm =85.2751 Wcg =602.4232

WcP=4.9620

3. 已知单位负反馈系统开环传递函数为:5325

()314921

G s s s s s =

++++,分别

绘制该系统的Nyquist 图和Bode 图。 num = 5;

den=[1 0 3 14 9 21]; G=tf(num, den); bode(G); grid

figure(2) nyquist(G); grid

4. 己知系统的开环传递函数为:

试绘制系统的极坐标图,并利用Nyquist 稳定判据判断闭环系统的稳定性。 k=100; z=-5;

p=[2,-8,-20]; G=zpk(z,p,k) nyquist(G) grid

100(5)()(-2)(8)(20)

s GH s s s s +=++

Zero/pole/gain: 100 (s+5) ------------------ (s-2) (s+8) (s+20)

5. 已知单位负反馈控制系统开环传递函数1

()(2)(4)

G s s s s =

++,分别用临界比

例度法设计PID 控制器,并绘制系统的单位阶跃响应曲线。

48

P K =

第5章频域分析法习题解答

第5章频域分析法 学习要点 1 频率特性的概念,常用数学描述与图形表示方法; 2 典型环节的幅相频率特性与对数频率特性表示及特点; 3 系统开环幅相频率特性与对数频率特性的图示要点; 4 应用乃奎斯特判据判断控制系统的稳定性方法; 5 对数频率特性三频段与系统性能的关系; 6 计算频域参数与性能指标; 思考与习题祥解 题判断下列概念的正确性 ω的正弦信号加入线性系统,这个系统的稳态输出也将是同 (1) 将频率为 一频率的。 M仅与阻尼比ξ有关。 (2) 对于典型二阶系统,谐振峰值 p (3) 在开环传递函数中增加零点总是增加闭环系统的带宽。 (4) 在开环传递函数中增加极点通常将减少闭环系统的带宽并同时降低稳定性。 (5) 对于最小相位系统,如果相位裕量是负值,闭环系统总是不稳定的。 (6) 对于最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (7) 对于最小相位系统,如果幅值裕量是负分贝值,闭环系统总是不稳定的。 (8) 对于非最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (9) 对于非最小相位系统,须幅值裕量大于1且相位裕量大于0,闭环系统才是稳定的。 (10) 相位穿越频率是在这一频率处的相位为0。 (11) 幅值穿越频率是在这一频率处的幅值为0dB。 (12) 幅值裕量在相位穿越频率处测量。 (13) 相位裕量在幅值穿越频率处测量。 (14) 某系统稳定的开环放大系数25 K<,这是一个条件稳定系统。 (15) 对于(-2/ -1/ -2)特性的对称最佳系统,具有最大相位裕量。 (16) 对于(-2/ -1/ -3)特性的系统,存在一个对应最大相位裕量的开环放大系数值。 (17) 开环中具有纯时滞的闭环系统通常比没有时滞的系统稳定性低些。 (18) 开环对数幅频特性过0分贝线的渐近线斜率通常表明了闭环系统的相对稳定性。 M和频带宽BW (19) Nichols图可以用于找到一个闭环系统的谐振峰值 p 的信息。

matlab频谱分析

设计出一套完整的系统,对信号进行频谱分析和滤波处理; 1.产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,分别设计三种高通,低通,带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。 2.采集一段含有噪音的语音信号(可以录制含有噪音的信号,或者录制语音后再加进噪音信号),对其进行采样和频谱分析,根据分析结果设计出一合适的滤波器滤除噪音信号。 %写上标题 %设计低通滤波器: [N,Wc]=buttord() %估算得到Butterworth低通滤波器的最小阶数N和3dB截止频率Wc [a,b]=butter(N,Wc); %设计Butterworth低通滤波器 [h,f]=freqz(); %求数字低通滤波器的频率响应 figure(2); % 打开窗口2 subplot(221); %图形显示分割窗口 plot(f,abs(h)); %绘制Butterworth低通滤波器的幅频响应图 title(巴氏低通滤波器''); grid; %绘制带网格的图像 sf=filter(a,b,s); %叠加函数S经过低通滤波器以后的新函数 subplot(222); plot(t,sf); %绘制叠加函数S经过低通滤波器以后的时域图形 xlabel('时间(seconds)'); ylabel('时间按幅度'); SF=fft(sf,256); %对叠加函数S经过低通滤波器以后的新函数进行256点的基—2快速傅立叶变换 w= %新信号角频率 subplot(223); plot()); %绘制叠加函数S经过低通滤波器以后的频谱图 title('低通滤波后的频谱图'); %设计高通滤波器 [N,Wc]=buttord() %估算得到Butterworth高通滤波器的最小阶数N和3dB截止频率Wc [a,b]=butter(N,Wc,'high'); %设计Butterworth高通滤波器 [h,f]=freqz(); %求数字高通滤波器的频率响应 figure(3); subplot(221); plot()); %绘制Butterworth高通滤波器的幅频响应图 title('巴氏高通滤波器'); grid; %绘制带网格的图像 sf=filter(); %叠加函数S经过高通滤波器以后的新函数 subplot(222); plot(t,sf); ;%绘制叠加函数S经过高通滤波器以后的时域图形 xlabel('Time(seconds)'); ylabel('Time waveform'); w; %新信号角频率 subplot(223);

用MATLAB进行FFT频谱分析

用MATLAB 进行FFT 频谱分析 假设一信号: ()()292.7/2cos 1.0996.2/2sin 1.06.0+++=t t R ππ 画出其频谱图。 分析: 首先,连续周期信号截断对频谱的影响。 DFT 变换频谱泄漏的根本原因是信号的截断。即时域加窗,对应为频域卷积,因此,窗函数的主瓣宽度等就会影响到频谱。 实验表明,连续周期信号截断时持续时间与信号周期呈整数倍关系时,利用DFT 变换可以得到精确的模拟信号频谱。举一个简单的例子: ()ππ2.0100cos +=t Y 其周期为0.02。截断时不同的持续时间影响如图一.1:(对应程序shiyan1ex1.m ) 图 错误!文档中没有指定样式的文字。.1 140.0160.0180.02 截断时,时间间期为周期整数倍,频谱图 0.0250.03 0100200300400500600 7008009001000 20 40 60 80 100 截断时,时间间期不为周期整数倍,频谱图

其次,采样频率的确定。 根据Shannon 采样定理,采样带限信号采样频率为截止频率的两倍以上,给定信号的采样频率应>1/7.92,取16。 再次,DFT 算法包括时域采样和频域采样两步,频域采样长度M 和时域采样长度N 的关系要符合M ≧N 时,从频谱X(k)才可完全重建原信号。 实验中信号R 经采样后的离散信号不是周期信号,但是它又是一个无限长的信号,因此处理时时域窗函数尽量取得宽一些已接近实际信号。 实验结果如图一.2:其中,0点位置的冲激项为直流分量0.6造成(对应程序为shiyan1.m ) 图 错误!文档中没有指定样式的文字。.2 ?ARMA (Auto Recursive Moving Average )模型: 将平稳随机信号x(n)看作是零均值,方差为σu 2的白噪声u(n)经过线性非移变系统H(z)后的输出,模型的传递函数为 020406080100120140160180200 0.4 0.50.60.7 0.800.050.10.150.20.250.30.350.40.450.5 50100 150

实验二连续时间信的频域分析

实验二连续时间信号的频域分析 一、实验目的 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因; 3、掌握连续时间傅里叶变换的分析方法及其物理意义; 4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质; 5、学习掌握利用Matlab语言编写计算CTFS、CTFT和DTFT的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT、DTFT的若干重要性质。 基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用Matlab编程完成相关的傅里叶变换的计算。 二、原理说明 1、连续时间周期信号的傅里叶级数CTFS分析 任何一个周期为T 1 的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。 三角傅里叶级数为: ∑∞=+ + = 1 0 0 )] sin( ) cos( [ )( k k k t k b t k a a t xω ω 2.1

或: ∑∞ =++=100)cos()(k k k t k c a t x ?ω 2.2 其中1 02T πω=,称为信号的基本频率(Fundamental frequency ),k k b a a ,和,0分别是信号)(t x 的直流分量、余弦分量幅度和正弦分量幅度,k k c ?、为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率0ωk 的函数,绘制出它们与0ωk 之间的图像,称为信号的频谱图(简称“频谱”),k c -0ωk 图像为幅度谱,k ?-0ωk 图像为相位谱。 三角形式傅里叶级数表明,如果一个周期信号x(t),满足狄里克利条件,就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的正弦信号所组成,其中每一个不同频率的正弦信号称为正弦谐波分量 (Sinusoid component),其幅度(amplitude )为k c 。也可以反过来理解三角傅里叶级数:用无限多个正弦谐波分量可以合成一个任意的非正弦周期信号。 指数形式的傅里叶级数为: ∑∞-∞== k t jk k e a t x 0)(ω 2.3 其中,k a 为指数形式的傅里叶级数的系数,按如下公式计算: ? --=2/2/1110)(1T T t jk k dt e t x T a ω 2.4 指数形式的傅里叶级数告诉我们,如果一个周期信号x(t),满足狄里克利条件,那么,它就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的周期复指数信号所组成,其中每一个不同频率的周期复指数信号称为基本频率分量,其复幅度

Matlab频谱分析程序

Matlab频谱分析程序

Matlab 信号处理工具箱 谱估计专题 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()() 2 xx S X ωω=,其中 ()/2 /2 lim N j n n N N X x e N ωω=-=∑ πωπ -<≤。 其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,

其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ = ∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωππ ωωπ- -= =?? 序列n x 在整个Nyquist 间隔上的平均功率可以 表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f ππ ωωπ- -= =?? 上式中的 ()()2xx xx S P ωωπ = 以及()()xx xx s S f P f f = 被定义为平稳随机信号n x 的power spectral density (PSD)(功率谱密度) 一个信号在频带[]1 2 1 2 ,,0ωωωω π ≤<≤上的平均功率 可以通过对PSD 在频带上积分求出 []()()2 1 121 2 ,xx xx P P d P d ωωωωωω ωωωω-- = +?? 从上式中可以看出()xx P ω是一个信号在一个无 穷小频带上的功率浓度,这也是为什么它叫做功率谱密度。

离散系统频域分析及matlab实现

《数字信号处理》 课程设计报告 离散系统的频域分析及matlab实现 专业:通信工程 班级:通信11级 组次: 姓名及学号: 姓名及学号:

离散系统的频域分析及matlab 实现 一、设计目的 1.熟悉并掌握matlab 软件的使用; 2.掌握离散系统的频域特性; 3.学会分析离散系统的频域特性的方法; 二、设计任务 1.设计一个系统函数系统的频率响应进行分析; 2.分析系统的频域响应; 3.分析系统的因果稳定性; 4.分析系统的单位脉冲响应; 三、设计原理 1. 系统函数 对于离散系统可以利用差分方程,单位脉冲响应,以及系统函数对系统进行描述。 在本文中利用系统函数H(z)进行描述。若已知一个差分方程为 ∑∑==---=M i N i i i i n y a i n x b n 0 1 )()()(y ,则可以利用双边取Z 变换,最终可以得到系统函数的一 般式H(z),∑∑=-=-== N i i i M i i i z a z b z X z z H 0 0) () (Y )(。若已知系统的单位脉冲响应,则直接将其进行Z 变换就可以得到系统函数H(z)。系统函数表征系统的复频域特性。 2.系统的频率响应: 利用Z 变化分析系统的频率响应:设系统的初始状态为零,系统对输入为单位脉冲序列 ) (n δ的响应输出称为系统的单位脉冲响应h (n )。对h(n)进行傅里叶变换,得到: ∑∞ ∞∞-==-)(jw n j |)(|)(e H w j n n j e e H e n h ?ω) (

其中|)(|jwn e H 称为系统的幅频特性函数,)(ω?称为系统的相位特性函数。)(jw e H 表示的是系统对特征序列jwn e 的响应特性。对于一个系统输入信号为n )(ωj e n x =,则系统的输出信号为jwn e )(jw e H 。由上可以知道单频复指数信号jwn e 通过频率响应函数为)(jw e H 后,输出仍为单频复指数信号,其幅度放大了|)(|jw e H ,相移为)(ω?。 对于系统函数H(z)与H(w)之间,若系统函数H(z)的收敛域包含单位圆|z|=1,则有 jw e z jw z H e H ==|)()(,在MATLAB 中可以利用freqz 函数计算系统的频率响应。 (1)[h,w]=freqz(b,a,n) 可得到n 点频率响应,这n 个点均匀地分布在上半单位圆(即 ),并将这n 点频率记录在w 中,相应的频率响应记录在h 中。n 最好能取2的幂次方,如果缺省,则n=512。 (2)[h,w]=freqz(b,a,n,'whole') 在 之间均匀选取n 个点计算频率响应。 (3)[h,w]=freqz(b,a,n,Fs) Fs 为采样频率(以Hz 为单位),在0~Fs/2频率范围内选取n 个频率点,计算相应的频率响应。 (4)[h,w]=freqz(b,a,n,'whole',Fs) 在0~Fs 之间均匀选取n 个点计算频率响应。 (5)freqz(b,a) 可以直接得到系统的幅频和相频特性曲线。其中幅频特性以分贝的形式给出,频率特性曲线的横轴采用的是归一化频率,即Fs/2=1。 3.系统的因果性和稳定性 3.1因果性 因果系统其单位脉冲响应序列h(n)一定是一个因果序列,其z 域的条件是其系统函数H(z)的收敛域一定包含∞,即∞点不是极点,极点 分布在某个圆内,收敛域在某个圆外。 3.2稳定性 系统稳定就要求∞<∑∞ ∞-|h(n)|,由序列的)(jw e H 存在条件和jw e z jw z H e H ==|)()(可以知道 系统稳定的z 域条件就是H(z)的收敛域包含单位圆,即极点全部分布在单位圆内部。 由上3.1和3.2可知,利用系统的零极点分布图可以判断系统的因果性和稳定性。 若在零极点分布图中,若系统的极点都分布在单位圆内,则此系统是因果系统,若有极点分布在单位圆 外,则此系统是非因果系统。在MATLAB 中可以利用zplane 函数画出系统的零极点分布图。系统函数的零极点图的绘制:zplane(b,a)。其中b 为系统函数的分子,a 为系统函数的分母。 4.系统的单位脉冲响应 设系统的初始状态为零,系统对输入为单位脉冲序列)(n δ的响应输出称为系统的单位脉冲响应h (n )。对于离散系统可以利用差分方程,单位脉冲响应,以及系统函数对系统进行描述。单位脉冲响应是系统的一种描述方法,若已知了系统的系统函数,可以利用系统得出系统的单位脉冲响应。在MATLAB 中利用impz 由函数函数求出单位脉冲响应h(n)。

第五章 频域分析法

第五章 频域分析法 时域分析法具有直观、准确的优点。如果描述系统的微分方程是一阶或二阶的,求解后可利用时域指标直接评估系统的性能。然而实际系统往往都是高阶的,要建立和求解高阶系统的微分方程比较困难。而且,按照给定的时域指标设计高阶系统也不是一件容易的事。 本章介绍的频域分析法,可以弥补时域分析法的不足。因为频域法是基于频率特性或频率响应对系统进行分析和设计的一种图解方法,故其与时域分析法相比有较多的优点。首先,只要求出系统的开环频率特性,就可以判断闭环系统是否稳定。其次,由系统的频率特性所确定的频域指标与系统的时域指标之间存在着一定的对应关系,而系统的频率特性又很容易和它的结构、参数联系起来。因而可以根据频率特性曲线的形状去选择系统的结构和参数,使之满足时域指标的要求。此外,频率特性不但可由微分方程或传递函数求得,而且还可以用实验方法求得。对于某些难以用机理分析方法建立微分方程或传递函数的元件(或系统)来说,具有重要的意义。因此,频率法得到了广泛的应用,它也是经典控制理论中的重点内容。 5.1 频率特性 对于线性定常系统,若输入端作用一个正弦信号 t U t u ωsin )(= (5—1) 则系统的稳态输出y(t)也为正弦信号,且频率与输人信号的频率相同,即 ) t Y t y ?ω+=sin()( (5—2) u(t)和y(t)虽然频率相同,但幅值和相位不同,并且随着输入信号的角频率ω的改变,两者之间的振幅与相位关系也随之改变。这种基于频率ω的系统输入和输出之间的关系称之为系统的频率特性。 不失一般性,设线性定常系统的传递函数G(s)可以写成如下形式 ) () () () () ())(() ()()()(1 21s A s B p s s B p s p s p s s B s U s Y s G n j j n = +=+++== ∏=Λ (5—3) 式中B(s)——传递函数G(s)的m 阶分子多项式,s 为复变量; A(s)——传递函数G(s)的n 阶分母多项式 (n ≥m); n p p p ---,,,21Λ—传递函数G(s)的极点,这些极点可能是实数,也可能是复数,对稳定的系统采说,它们都应该有负的实部。 由式(5—1),正弦输入信号u(t)的拉氏变换为(查拉氏变换表) ) )(()(22ωωω ωωj s j s U s U s U -+=+= (5—4)

信号的频域分析及MATLAB实现.doc

《M A T L A B电子信息应用》 课程设计 设计五 信号的频域分析及MATLAB实现 学院: 专业: 班级: 姓名: 学号:

信号的频域分析及MATLAB实现 一、设计目的 通过该设计,理解傅里叶变换的定义及含义,掌握对信号进行频域分析的方法。 二、课程设计环境 计算机 MATLAB软件 三、设计内容及主要使用函数 快速傅里叶变换的应用 1)滤波器频率响应 对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器。其功能就是得到一个特定频率或消除一个特定频率,滤波器是一种对信号有处理作用的器件或电路。主要作用是:让有用信号尽可能无衰减的通过,对无用信号尽可能大的。 滤波器的类型:巴特沃斯响应(最平坦响应),贝赛尔响应,切贝雪夫响应。 滤波器冲激响应的傅里叶变换就是该滤波器的频率响应。

2)快速卷积 卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。其中表示f 的傅里叶变换。 这一定理对拉普拉斯变换、双边拉普拉斯变换等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n 的序列,按照卷积的定义进行计算,需要做2n - 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。 1. 信号的离散傅里叶变换 有限长序列的离散傅里叶变换公式为: kn N j N n e n x k X )/2(10)()(π--=∑= ∑==1_0)/2()(1)(N n kn N j e k X N n x π MATLAB 函数:fft 功能是实现快速傅里叶变换,fft 函数的格式为: ),(x fft y =返回向量x 的不连续fourier 变换。 若)6 cos()(πn n x =是一个N=12的有限序列,利用MATLAB 计算

用Matlab进行信号与系统的时、频域分析

课程实验报告 题目:用Matlab进行 信号与系统的时、频域分析 学院 学生姓名 班级学号 指导教师 开课学院 日期 用Matlab进行信号与系统的时、频域分析 一、实验目的 进一步了解并掌握Matlab软件的程序编写及运行; 掌握一些信号与系统的时、频域分析实例; 了解不同的实例分析方法,如:数值计算法、符号计算法; 通过使用不同的分析方法编写相应的Matlab程序; 通过上机,加深对信号与系统中的基本概念、基本理论和基本分析方法的理解。 二、实验任务 了解数值计算法编写程序,解决实例; 在Matlab上输入三道例题的程序代码,观察波形图; 通过上机实验,完成思考题; 完成实验报告。 三、主要仪器设备

硬件:微型计算机 软件:Matlab 四、 实验内容 (1) 连续时间信号的卷积 已知两个信号)2()1()(1---=t t t x εε和)1()()(2--=t t t x εε,试分别画出)(),(21t x t x 和卷积)()()(21t x t x t y *=的波形。 程序代码: T=0.01; t1=1;t2=2; t3=0;t4=1; t=0:T:t2+t4; x1=ones(size(t)).*((t>t1)-(t>t2)); x2=ones(size(t)).*((t>t3)-(t>t4)); y=conv(x1,x2)*T; subplot(3,1,1),plot(t,x1); ylabel('x1(t)'); subplot(3,1,2),plot(t,x2); ylabel('x2(t)'); subplot(3,1,3),plot(t,y(1:(t2+t4)/T+1)); ylabel('y(t)=x1*x2'); xlabel('----t/s'); (2)已知两个信号)()(t e t x t ε-=和)()(2/t te t h t ε-=,试用数值计算法求卷积,并分别画出)(),(t h t x 和卷积)()()(t h t x t y *=的波形。 程序代码: t2=3;t4=11; T=0.01; t=0:T:t2+t4; x=exp(-t).*((t>0)-(t>t2)); h=t.*exp(-t/2).*((t>0)-(t>t4)); y=conv(x,h)*T; yt=4*exp(-t)+2*t.*exp(-1/2*t)-4*exp(-1/2*t); subplot(3,1,1),plot(t,x); ylabel('x(t)'); subplot(3,1,2),plot(t,h); ylabel('h(t)'); subplot(3,1,3),plot(t,y(1:(t2+t4)/T+1),t,yt,'--r'); legend('by numberical','Theoretical'); ylabel('y=x*h'); xlabel('----t/s'); (3)求周期矩形脉冲信号的频谱图,已知s T s A 5.0,1.0,1===τ

第5章频域分析法习题解答

第5章频域分析法 5.1 学习要点 1 频率特性的概念,常用数学描述与图形表示方法; 2 典型环节的幅相频率特性与对数频率特性表示及特点; 3 系统开环幅相频率特性与对数频率特性的图示要点; 4 应用乃奎斯特判据判断控制系统的稳定性方法; 5 对数频率特性三频段与系统性能的关系; 6 计算频域参数与性能指标; 5.2 思考与习题祥解 题5.1 判断下列概念的正确性 ω的正弦信号加入线性系统,这个系统的稳态输出也将是同 (1) 将频率为 一频率的。 M仅与阻尼比ξ有关。 (2) 对于典型二阶系统,谐振峰值 p (3) 在开环传递函数中增加零点总是增加闭环系统的带宽。 (4) 在开环传递函数中增加极点通常将减少闭环系统的带宽并同时降低稳定性。 (5) 对于最小相位系统,如果相位裕量是负值,闭环系统总是不稳定的。 (6) 对于最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (7) 对于最小相位系统,如果幅值裕量是负分贝值,闭环系统总是不稳定的。 (8) 对于非最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (9) 对于非最小相位系统,须幅值裕量大于1且相位裕量大于0,闭环系统才是稳定的。 (10) 相位穿越频率是在这一频率处的相位为0。 (11) 幅值穿越频率是在这一频率处的幅值为0dB。 (12) 幅值裕量在相位穿越频率处测量。 (13) 相位裕量在幅值穿越频率处测量。 (14) 某系统稳定的开环放大系数25 K<,这是一个条件稳定系统。 (15) 对于(-2/ -1/ -2)特性的对称最佳系统,具有最大相位裕量。 (16) 对于(-2/ -1/ -3)特性的系统,存在一个对应最大相位裕量的开环放大系数值。 (17) 开环中具有纯时滞的闭环系统通常比没有时滞的系统稳定性低些。 (18) 开环对数幅频特性过0分贝线的渐近线斜率通常表明了闭环系统的相对稳定性。 M和频带宽BW (19) Nichols图可以用于找到一个闭环系统的谐振峰值 p 的信息。

Matlab对采样数据进行频谱分析

使用Matlab对采样数据进行频谱分析 1、采样数据导入Matlab 采样数据的导入至少有三种方法。 第一就是手动将数据整理成Matlab支持的格式,这种方法仅适用于数据量比较小的采样。 第二种方法是使用Matlab的可视化交互操作,具体操作步骤为:File --> Import Data,然后在弹出的对话框中找到保存采样数据的文件,根据提示一步一步即可将数据导入。这种方法适合于数据量较大,但又不是太大的数据。据本人经验,当数据大于15万对之后,读入速度就会显著变慢,出现假死而失败。 第三种方法,使用文件读入命令。数据文件读入命令有textread、fscanf、load 等,如果采样数据保存在txt文件中,则推荐使用 textread命令。如 [a,b]=textread('data.txt','%f%*f%f'); 这条命令将data.txt中保存的数据三个三个分组,将每组的第一个数据送给列向量a,第三个数送给列向量b,第二个数据丢弃。命令类似于C语言,详细可查看其帮助文件。文件读入命令录入采样数据可以处理任意大小的数据量,且录入速度相当快,一百多万的数据不到20秒即可录入。强烈推荐! 2、对采样数据进行频谱分析 频谱分析自然要使用快速傅里叶变换FFT了,对应的命令即 fft ,简单使用方法为:Y=fft(b,N),其中b即是采样数据,N为fft数据采样个数。一般不指定N,即简化为Y=fft(b)。Y即为FFT变换后得到的结果,与b的元素数相等,为复数。以频率为横坐标,Y数组每个元素的幅值为纵坐标,画图即得数据b的幅频特性;以频率为横坐标,Y数组每个元素的角度为纵坐标,画图即得数据b的相频特性。典型频谱分析M程序举例如下: clc fs=100; t=[0:1/fs:100]; N=length(t)-1;%减1使N为偶数 %频率分辨率F=1/t=fs/N p=1.3*sin(0.48*2*pi*t)+2.1*sin(0.52*2*pi*t)+1.1*sin(0.53*2*pi*t)... +0.5*sin(1.8*2*pi*t)+0.9*sin(2.2*2*pi*t); %上面模拟对信号进行采样,得到采样数据p,下面对p进行频谱分析 figure(1) plot(t,p); grid on title('信号 p(t)'); xlabel('t') ylabel('p')

Matlab频谱分析程序

Matlab 信号处理工具箱 谱估计专题 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()() 2 xx S X ωω=,其中( )/2 /2 lim N j n n N n N X x e ωω=-=∑ πωπ-<≤。其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ = ∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωπ π ωωπ--= =? ? 序列n x 在整个Nyquist 间隔上的平均功率可以表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f π π ωωπ--= =? ?

利用matlab怎样进行频谱分析、、

利用matlab怎样进行频谱分析 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。 这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰。另外我还想说明以下几点: 1、图像经过二维傅立叶变换后,其变换系数矩阵表明: 若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。 2、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。 从计算机处理精度上就不难理解,一个长度为N的信号,最多只能有N/2+1个不同频率,再多的频率就超过了计算机所能所处理的精度范围)X[]数组又分两种,一种是表示余弦波的不同频率幅度值:Re X[],另一种是表示正弦波的不同频率幅度值:Im X[],Re是实数(Real)的意思,Im是虚数(Imagine)的意思,采用复数的表示方法把正余弦波组合起来进行表示,但这里我们不考虑复数的其它作用,只记住是一种组合方法而已,目的是为了便于表达(在后面我们会知道,复数形式的傅立叶变换长度是N,而不是N/2+1)。

实验二:连续时间信号的频域分析

一、实验目的 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因; 3、掌握连续时间傅里叶变换的分析方法及其物理意义; 4、学习利用MATLAB 语言编写计算CTFS 和CTFT 的仿真程序。 基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用MATLAB 编程完成相关的傅里叶变换的计算。 二、实验原理及方法 1、连续时间周期信号的傅里叶级数CTFS 分析 任何一个周期为T 1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。 其中三角傅里叶级数为: ∑∞ =++=1000)]sin()cos([)(k k k t k b t k a a t x ωω 9.1 或: ∑∞ =++ =1 00)cos()(k k k t k c a t x ?ω 9.2 其中1 02T π ω= ,称为信号的基本频率,k k b a a ,和,0分别是信号)(t x 的直流分量、余弦分量幅度和正弦分量幅度,k k c ?、为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率0ωk 的函数,绘制出它们与0ωk 之间的图像,称为信号的频谱图(简称“频谱”), k c -0ωk 图像为幅度谱,k ?-0ωk 图像为相位谱。 指数形式的傅里叶级数为: ∑∞ -∞ == k t jk k e a t x 0)(ω 9.3 其中,k a 为指数形式的傅里叶级数的系数,按如下公式计算:

? --= 2 /2 /1 110)(1 T T t jk k dt e t x T a ω 9.4 假设谐波项数为N ,则上面的和成式为: ∑-== N N k t jk k e a t x 0)(ω 9.5 显然,N 越大,所选项数越多,有限项级数合成的结果越逼近原信号x(t)。 2、连续时间信号傅里叶变换----CTFT 傅里叶变换在信号分析中具有非常重要的意义,它主要是用来进行信号的频谱分析的。傅里叶变换和其逆变换定义如下: ?∞ ∞ --= dt e t x j X t j ωω)()( 9.6 ? ∞ ∞ -= ωωπ ωd e j X t x t j )(21 )( 9.7 连续时间傅里叶变换主要用来描述连续时间非周期信号的频谱。任意非周期信号,如果满足狄里克利条件,那么,它可以被看作是由无穷多个不同频率(这些频率都是非常的接近)的周期复指数信号e j ωt 的线性组合构成的,每个频率所对应的周期复指数信号e j ωt 称为频率分量其相对幅度为对应频率的|X(j ω)|之值,其相位为对应频率的X(j ω)的相位。 给定一个连续时间非周期信号x(t),它的频谱也是连续且非周期的。对于连续时间周期信号,也可以用傅里变换来表示其频谱,其特点是,连续时间周期信号的傅里叶变换时有冲激序列构成的,是离散的——这是连续时间周期信号的傅里叶变换的基本特征。 3、连续周期信号的傅里叶级数CTFS 的MATLAB 实现 3.1 傅里叶级数的MATLAB 计算 设周期信号x(t)的基本周期为T 1,且满足狄里克利条件,则其傅里叶级数的系数可由式9.4计算得到。式9.4重写如下: ?--= 2 /2 /1 110)(1T T t jk k dt e t x T a ω 基本频率为: 1 02T πω= 对周期信号进行分析时,我们往往只需对其在一个周期内进行分析即可,通常选择主周期。假定x 1(t)是x(t)中的主周期,则

信号的频谱分析及MATLAB实现

第23卷第3期湖南理工学院学报(自然科学版)Vol.23 No.3 2010年9月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Sep. 2010信号的频谱分析及MATLAB实现 张登奇, 杨慧银 (湖南理工学院信息与通信工程学院, 湖南岳阳 414006) 摘 要: DFT是在时域和频域上都已离散的傅里叶变换, 适于数值计算且有快速算法, 是利用计算机实现信号频谱分析的常用数学工具. 文章介绍了利用DFT分析信号频谱的基本流程, 重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施, 实例列举了MATLAB环境下频谱分析的实现程序. 通过与理论分析的对比, 解释了利用DFT分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应, 并提出了相应的改进方法. 关键词: MA TLAB; 频谱分析; 离散傅里叶变换; 频谱混叠; 频谱泄漏; 栅栏效应 中图分类号: TN911.6 文献标识码: A 文章编号: 1672-5298(2010)03-0029-05 Analysis of Signal Spectrum and Realization Based on MATLAB ZHANG Deng-qi, YANG Hui-yin (College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract:DFT is a Fourier Transform which is discrete both in time-domain and frequency-domain, it fits numerical calculation and has fast algorithm, so it is a common mathematical tool which can realize signal spectrum analysis with computer. This paper introduces the basic process of signal spectrum analysis with DFT, emphasizes the causes of error producing in spectrum analysis process and the main ways to decrease the analysis error, and lists the programs of spectrum analysis based on MATLAB. Through the comparison with the theory analysis, the problems of spectrum aliasing, spectrum leakage and picket fence effect are explained when using DFT to analyze signal spectrum, and the corresponding solution is presented. Key words:MATLAB; spectrum analysis; DFT; spectrum aliasing; spectrum leakage; picket fence effect 引言 信号的频谱分析就是利用傅里叶分析的方法, 求出与时域描述相对应的频域描述, 从中找出信号频谱的变化规律, 以达到特征提取的目的[1]. 不同信号的傅里叶分析理论与方法, 在有关专业书中都有介绍, 但实际的待分析信号一般没有解析式, 直接利用公式进行傅里叶分析非常困难. DFT是一种时域和频域均离散化的傅里叶变换, 适合数值计算且有快速算法, 是分析信号的有力工具. 本文以连续时间信号为例, 介绍利用DFT分析信号频谱的基本流程, 重点阐述频谱分析过程中可能存在的误差, 实例列出MATLAB 环境下频谱分析的实现程序. 1 分析流程 实际信号一般没有解析表达式, 不能直接利用傅里叶分析公式计算频谱, 虽然可以采用数值积分方法进行频谱分析, 但因数据量大、速度慢而无应用价值. DFT在时域和频域均实现了离散化, 适合数值计算且有快速算法, 是利用计算机分析信号频谱的首选工具. 由于DFT要求信号时域离散且数量有限, 如果是时域连续信号则必须先进行时域采样, 即使是离散信号, 如果序列很长或采样点数太多, 计算机存储和DFT计算都很困难, 通常采用加窗方法截取部分数据进行DFT运算. 对于有限长序列, 因其频谱是连续的, DFT只能描述其有限个频点数据, 故存在所谓栅栏效应. 总之, 用DFT分析实际信号的频谱, 其结果必然是近似的. 即使是对所有离散信号进行DFT变换, 也只能用有限个频谱数据近似表示连续频 收稿日期: 2010-06-09 作者简介: 张登奇(1968? ), 男, 湖南临湘人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 信号与信息处理

MATLAB关于FFT频谱分析的程序

MATLAB关于FFT频谱分析的程序 %***************1.正弦波****************% fs=100;%设定采样频率 N=128; n=0:N-1; t=n/fs; f0=10;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f0*t); figure(1); subplot(231); plot(t,x);%作正弦信号的时域波形 xlabel('t'); ylabel('y'); title('正弦信号y=2*pi*10t时域波形'); grid; %进行FFT变换并做频谱图 y=fft(x,N);%进行fft变换 mag=abs(y);%求幅值 f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换 figure(1); subplot(232); plot(f,mag);%做频谱图 axis([0,100,0,80]); xlabel('频率(Hz)'); ylabel('幅值');

title('正弦信号y=2*pi*10t幅频谱图N=128'); grid; %求均方根谱 sq=abs(y); figure(1); subplot(233); plot(f,sq); xlabel('频率(Hz)'); ylabel('均方根谱'); title('正弦信号y=2*pi*10t均方根谱'); grid; %求功率谱 power=sq.^2; figure(1); subplot(234); plot(f,power); xlabel('频率(Hz)'); ylabel('功率谱'); title('正弦信号y=2*pi*10t功率谱'); grid; %求对数谱 ln=log(sq); figure(1); subplot(235); plot(f,ln);

相关主题
文本预览
相关文档 最新文档