当前位置:文档之家› C_N对沼气产气量的影响

C_N对沼气产气量的影响

C_N对沼气产气量的影响
C_N对沼气产气量的影响

C/N 对沼气产气量的影响

高礼安1,邓功成13,赵洪1,李静1,马媛1,李永波1,黎娇凌1,俸才军2,张林2,杨世凯2

 (1.黔南民族师范学院生命科学系,贵州都匀555800;2.黔南州农村能源与环境保护办公室,贵州都匀555800)

摘要 以鲜猪粪和风干稻草为原料,采用批量发酵法研究不同C/N (18/1、23/1、28/1、33/1、38/1、43/1)对厌氧发酵产气量和产气特性的影响。结果表明,在常温条件下,各处理沼气发酵均能迅速启动,但C/N 为23/1的处理发酵启动最快;C/N 为33/1的处理60d 发酵平均日产气量、总产气量和T S 产气率最高。关键词 C/N ;沼气;产气量中图分类号 S216.4 文献标识码 A 文章编号 0517-6611(2009)15-06879-02E ffect of C/N on G as P roduction of Biogas

G AO Li 2an et al (Life Science Departm ent of Qiannan N orm al C ollege for Nationalities ,Duyun ,G uizh ou 555800)

Abstract W ith fresh pig m anure and air dry straw as the m aterials ,the effects of different C/N (18/1,23/1,28/1,33/1,38/1,43/1)on gas produc 2tion and gas characteristics in anaerobic ferm entation process were studied w ith batch ferm entation m eth od.T he results sh owed that all treatm ents could be rapidly starting biogas ferm entation under ambient tem perature ,but the starting of biogas ferm entation in treatm ent w ith C/N of 23/1was the m ost rapidly.T he average daily gas production ,total gas production and T S gas production rate in treatm ent w ith C/N of 33/1were the highest in 60d.K ey w ords C/N ;Biogas ;G as production

基金项目 贵州省科技攻关项目[黔科合NY 字(2007)3042];贵州省黔

南州科技特派员专项(黔南科特合2007字107)。

作者简介 高礼安(1974-),男,布依族,贵州贵定人,讲师,从事环境

生态学教学及研究工作。3通讯作者。

收稿日期 2009202219

沼气是利用粪便、农作物秸秆等有机物在特定(厌氧)条件下,经过微生物的生理代谢产生的主要成分为CH 4的可燃性气体,属生物能源[1]。农村户用沼气的发酵方式为常温半连续式发酵[2]。在冬春季节,受温度的影响,原料分解慢,沼气产气率较低,影响沼气的持续利用[3]。提高农村沼气产量,除采取必要的工程措施外,还需改善发酵环境等。提高发酵原料的产气率是提高沼气产量的重要途径,而发酵原料的C/N 是影响产气率的主要因子之一。笔者探索发酵物不同C/N 对沼气产量的影响,以期为解决农村沼气冬季产气量低、产气不均匀等问题以及沼气池的运行管理提供指导。

1 材料与方法

1.1 材料及接种物 发酵材料为新鲜猪粪和干稻草粉,新

鲜猪粪取自贵州省都匀黔隆果菜基地开发有限公司优质猪养殖场,TS 含量为29%~32%。干稻草粉取自贵州省都匀市杨柳街镇。接种物(发酵微生物种子)取自农村多口沼气池,富集培养后的混合微生物菌群送中国农业科学院沼气科学研究所厌氧微生物重点开放实验室测定。经测定,各微生物菌群的数量为:发酵细菌3×108/m l ,纤维素分解菌5.5×

104/m l ,硫酸盐还原菌5×106/m l ,产甲烷菌1.9×107/m l 。1.2 试验方法 采用批量发酵。用鲜猪粪和风干稻草配制

不同比例的C/N ,共设18/1、23/1、28/1、33/1、38/1、43/16个处理,每处理重复3次,用5000m l 蒸馏水瓶做发酵容器,每瓶装TS 313g ,发酵种子250m l ,加自来水搅拌充分混合定容至2500m l 。实验室常温下连续发酵60d ,采用排水集气法测定日产气量,统计总产气量;每5d 用吸收法测定沼气中CH 4含量[4],用pHS 225A 型数字酸度计测量发酵液的pH 值。

2 结果与分析

2.1 C/N 对沼气发酵启动的影响 沼气池从进料开始,到

能够正常而稳定的产气过程称为沼气发酵的启动。由于试

验在8月份进行,气温较高(室温24~30℃

),装料当天即开始产气。装料后第2天测定产气量和CH 4含量,结果显示

(表1),不同C/N 的发酵物在常温下均能迅速启动发酵,出

现明显的产气高峰。不同C/N 发酵物产气量不同,C/N 为

23/1的处理产气量最高,为1.250L/2500m l 发酵液,C/N 为18/1的处理次之,产气量为1.087L/2500m l 发酵液,C/N 为28/1的处理产气量最低,为0.850L/2500m l 发酵液,方差分

析结果表明,各处理产气量均无显著差异;但发酵启动时,C/

N 在33/1以上的处理发酵气体中CH 4含量与其他处理存在

显著差异。C/N 为33/1、38/1、43/13个处理发酵气体中CH 4含量均在40%以上,其余处理发酵气体中CH 4含量在40%以下;C/N 为43/1的处理发酵气体中CH 4含量最高,为43%。常温条件下,启动阶段沼气池中水解酶类活性较高,纤维素等分解菌活跃,发酵体系产生的C O 2量大,挥发性有机酸等中间产物多,沼气中CH 4含量偏低,反映了沼气发酵启动阶段的特征[5]。试验结果表明,C/N 对沼气发酵启动阶段产气量的影响不大,但对气体中CH 4含量影响较大,生产中可采用较高的发酵物C/N 和增加CH 4菌群的数量来提高启动阶段发酵气体中CH 4

含量。

图1 沼气发酵试验装置

Fig.1 T ester for the biogas ferm entation test

2.2 C/N 对沼气产量的影响 由沼气的日产气量变化曲

线(图2)可知,C/N 对沼气发酵产气量的影响较明显。发酵

启动第2天,各处理平均产气量均在0.8L 以上,随后产气量迅速降低。C/N 在28/1以上的处理发酵启动后第20天左右

安徽农业科学,Journal of Anhui Agri.Sci.2009,37(15):6879-6880,6908 责任编辑 常俊香 责任校对 张士敏

出现第1个产气高峰,C/N为43/1的处理在发酵启动后第30天出现第2个产气高峰;C/N为28/1、33/1、38/13个处理均在发酵启动后第40天左右出现第2个产气高峰;C/N在23/1以下的处理,几乎未出现产气高峰,产气量较小。

表1 不同C/N对沼气发酵启动的影响

T ab le1 E ffects o f di fferent C/N on the start2up o f biogas ferm entation

C/N

产气量∥L/2

500m l发酵液

Biogas production

F C/N

CH4

%

LSR0.05LSR0.01

23/1 1.250 1.57

18/1 1.08733/142a A

43/1 1.01738/140a A

33/10.95328/133b B

38/10.91023/133b B

28/10.85018/131b B

发酵60d后,C/N为33/1处理的总产量(图3)和日平均产气量(图2)最高,分别为45.72和0.762L/2500m l发酵液, C/N为38/1的处理次之,总产气量和日平均产气量分别为44.744和0.746L/2500m l发酵液,C/N为18/1的处理总产气量和日平均产气量最低,分别为6.057和0.101L/2500m l 发酵液。方差分析结果(表2)显示,C/N在28/1~43/1的处理60d日均产气量、TS产气量和总产气量差异均不显著,C/ N在28/1以上各处理与C/N在23/1以下各处理60d日均产气量、TS产气量和总产气量差异极显著。C/N主要通过影响微生物的生长繁殖及代谢产物的形成和积累而影响产气量,适宜的C/N使沼气发酵物中各营养物质快速分解,有足够的原料用于合成CH4的前提物但又不过多积累而导致发酵液酸化影响甲烷菌的代谢。试验表明,常温(25℃左右)条件下,C/N在28/1~38/1的原料产气率较高,且产气量较均匀,其中C/N为33/1的处理60d总产气量、日均产气量和TS 产气率最高,分别为45.72、0.762L/2500m l发酵液和148.6 m3/t?TS。生产中可用农作物秸秆与粪便调节C/N在28/1~38/1

之间。

图2 沼气发酵日产气量变化曲线

Fig.2 Ch ange curve o f d aily gas production for biogas ferm entation

表2 不同C/N对产气量的影响

T ab le2 E ffects o f di fferent C/N volum e on the gas production

C/N

日平均产气量∥L/2

500m l发酵液

Daily average gas production

LSR0.05LSR0.01

T S产气量∥m3/t

T S gas production

LSR0.05LSR0.01

总产气量∥L/2

500m l发酵液

T otal gas production

LSR0.05LSR0.01

33/10.762a A 148.6a A 45.720a A 38/10.746a A145.0a A44.744a A 28/10.717a A139.6a A42.999a A 43/10.716a A138.5a A42.959a A 23/10.421b B81.0b B24.96b B

18/10.101c C19.6c C 6.057c

C

图3 沼气发酵总产气量变化

Fig.3 Ch anges o f total gas production for biogas ferm entation

2.3 C/N对发酵气体中CH4含量的影响 由图4可知,C/ N对发酵气体中CH4含量的影响在发酵启动阶段较明显,各处理间存在显著差异(表1),C/N在33/1以上的处理发酵气体中CH4含量均在40%以上,与C/N在28/1以下的处理发酵气体中CH4含量差异极显著(CH4含量在33%以下)。28%以上的处理发酵20d左右时发酵气体中CH4含量达到50%左右,基本达到了正常水平,发酵20~30d时发酵气体中CH4含量出现峰值,与产气量的第1个峰值出现时间基本

一致。

图4 发酵气体中CH4含量随发酵时间变化曲线Fig.4 Ch ange curve o f CH4content in the ferm entation gas w ith the ferm entation tim e

3 结论与讨论

C/N对沼气发酵启动、产气量、产气均匀性、CH4含量均

(下转第6908页)

增数据为一组,单独用每组数据聚类或用少数几组数据累加聚类,得到的聚类结果有差异。但随着用于聚类统计的AF LP标记数据随机组合数量的增加,26个竹子种类的聚类关系趋向一致。这提示我们在系统学研究中,足够数量的引物组合(足够的多态信息量)是获得供试材料间准确聚类关系的基础,应采用对各AF LP引物组合数据随机累加后进行聚类分析的方法,且数据越多聚类结果越可靠。同时,不同方法之间得到的信息也可叠加,如马朝芝用RAPD和AF LP 分析甘蓝型油菜后认为,可以将两种不同标记方法得到的信息合并,能更精确地估计亲本间遗传关系[27]。

许多研究结果均一致认为,多态位点数达到或超过70个时[28-30],就可以得到较为可靠的信息用以估计样本间的遗传相似性。但笔者认为,如果研究材料遗传组成比较复杂或者遗传关系很接近时,70个多态性位点就显得不足。多态性位点选取数应根据不同的研究对象有不同的大小。从理论上说,多态性位点数越多,得到的结论越可靠。但成本也越大,而且当多态性位点数增加到一定程度时,其增加的位点对准确性的贡献已有限,所以应该根据研究对象和群体的大小,在保证研究结果真实可靠的基础上,选择合理的分析位点数进行遗传关系的研究和评价。

参考

[1]徐汝梅.昆虫种群生态学[M].北京:北京师范大学出版社,1987:1-

409.

[2]Lee.H ow to protect a endem ic species[E].IPG RI,2006.

[3]闰路娜,张德兴.种群微卫星D N A分析中样本量对各种遗传多样性度

量指标的影响[J].动物学报,2004,50(2):279-290.

[4]周延清,杨清香,张改娜,等.生物遗传标记与应用[M].北京:化学工业

出版社,2008.

[5]陈忠斌.生物芯片技术[M].北京:化学工业出版社,2005.

[6]D iversity Arrays T echn ology P/L.D iversity Arrays T echn ology A pplication[R].

2005.

[7]张德全,杨永平.几种常用分子标记遗传多样性参数的统计分析[J].

云南植物研究,2008,30(2):159-167.

[8]NY BO M H.C om paris on o f different nuclear D N A m arkers for estim ating in2

traspecific genetic diversity in plants[J].M ol E col,2004,13:l143-l155. [9]安泽伟,孙爱花,程汉,等.用R AP D和ISSR检测的橡胶树野生种质和

栽培品种的遗传多样性[J].热带亚热带植物学报,2005,3(3):246-

252.

[10]周延清,景建洲,李振勇,等.利用R AP D和ISSR分子标记分析地黄种

质遗传多样性[J].遗传,2004,26(6):922-928.

[11]钱韦,葛颂,洪德元.采用R AP D和ISSR标记探讨中国疣粒野生稻的

遗传多样性[J].植物学报,2000,42(7):741-750.

[12]刘万勃,宋明,刘富中,等.R AP D和ISSR标记对甜瓜种质遗传多样性

的研究[J].农业生物技术学报,2002,10(3):231-236.

[13]王玲玲,宋林生,李红蕾,等.AF LP和R AP D标记技术在栉孑L扇贝遗

传多样性研究中的应用[J].比较动物学杂志,2003,38(4):35-39. [14]李永祥,李斯深,李立会,等.披碱草属12个物种遗传多样性的ISSR

和SSR比较分析[J].中国农业科学,2005,38(8):1522-1527.

[15]侯永翠,颜泽洪,兰秀锦,等.利用R A M P和I SSR标记分析大麦种质

资源的遗传多样性[J].中国农业科学,2005,38(12):255-256.

[16]刘勇,孙中海,刘德春,等.柚类种质资源AF LP与SSR遗传多样性分

析[J].中国农业科学,2005,38(11):2308-2311.

[17]袁力行,傅骏骅,张世煌,等.利用RF LP和SSR标记划分玉米自交系

杂种优势群的研究[J].作物学报,2001(2):149-156.

[18]李明云,张海琪,薛良义,等.网箱养殖大黄鱼遗传多样性的同工酶和

R AP D分析[J].中国水产科学,2003,110(6):523-525.

[19]陈劲枫,庄飞云,逯明辉,等.采用SSR和R AP D标记研究黄瓜属(葫芦

科)的系统发育关系[J].植物分类学报,2003,41(5):427-435.

[20]刘万勃,宋明,刘富中,等.R AP D和ISSR标记对甜瓜种质遗传多样性

的研究[J].农业生物技术学报,2002,10(3):231-236

[21]侯永翠,颜泽洪,兰秀锦,等.利用R A M P和I SSR标记分析大麦种质

资源的遗传多样性[J].中国农业科学,2005,38(12):255-256.

[22]R USSE L L J R,F U L LERJ D,M AC A U LAYM,et al.D irect com paris on o f levels

o f genetic variation am ong barley accessions detected by RF LPs,AF LPs,SSRs and R AP Ds[J].T heoretical and A pplied G enetics,1997,95:714-722. [23]PE J IC I,A JM O NE2M ARS A N P,M ORG A NTE M,et al.C om parative analysis o f

genetic sim ilarity am ong m aize inbred lines detected by RF LPs,R AP Ds,SSRs and AF LPs[J].T heoretical and A pplied G enetics,1998,97:1248-1255. [24]D A VI LA J A,LO ACRCE R A M S AYL,W A UG H R,et al.C om paris on o f R A M P

an d SSR m arkers for the study o f w ild barley genetic diversity[J].H ereditas, 1999,13l:5-13.

[25]贺学勤,刘庆昌,翟红,等.用R AP D、ISSR和AF LP标记分析系谱关系

明确的甘薯品种的亲缘关系[J].作物学报,2005,31(10):1300-1304.

[26]李潞滨,郭晓军,彭镇华,等.AF LP引物组合数量对准确研究竹子系

统关系的影响[J].植物学通报,2008,25(4):449-454.

[27]马朝芝,S AK AI T AK AK O,傅廷栋,等.R AP Ds和RF LPs分析甘蓝型杂交

油菜亲本的遗传多样性[J].作物学报,2003(5):701-707.

[28]施永泰,边红武,韩凝,等.中国江、浙地区栽培大麦遗传资源的R AP D

研究[J].作物学报,2004,30(3):258-265.

[29]宏棋斌,侯磊,罗小英,等.应用R AP D标记分析川西北高原青稞的遗

传背景[J].中国农业科学,2001,34:133-138.

[30]周泽扬,夏庆友,鲁成,等.分子系统学研究中分子位点数与遗传差异

信息可靠性的关系[J].遗传,1998,20(5):12-15.

(上接第6880页)

有明显影响。多数资料认为,常温下C/N在30/1以下沼气发酵才容易启动,而该试验发现,C/N达43/1时发酵启动依然很迅速,启动第2天日平均产气量可达1.0167L/2500m l 发酵液。C/N为33/1的处理60d日平均产气量和TS产气率最高,分别为0.762/2500m l发酵液和148.6m3/t?TS。C/N 为28/1、33/1、38/1、43/1的处理在发酵20~40d时仍维持较高的产气水平,日均产气量均在1L/2500m l发酵液左右。C/N在28/1以上的处理发酵气体中CH4含量均达到50%以上。该试验结果表明,在常温下,适当提高沼气发酵物的C/N,不影响沼气发酵的启动,有利于提高产气量并维持较高的产气均匀性,建议结合每年沼气池大换料,将农作物秸秆粉碎或铡成2~3cm,调节预处理后的农作物秸秆与粪便的C/N在28/1~38/1之间,以提高产气量和CH4含量。

参考文献

[1]沈萍,陈向东.微生物学[M].2版.北京:高等教育出版社,2006:462-

464.

[2]姚永福,徐洁泉.中国沼气技术[M].北京:农业出版社,1989.

[3]李泉临,童有怀,吴德林,等.提高沼气池冬季产气率的新方法[J].中

国沼气,1991(1):27-28.

[4]赵洪,邓功成,高礼安,等.农村沼气主要成分简易快速测定方法[J].

安徽农业科学,2008(20):8766-8767.

[5]赵洪,邓功成,高礼安,等.pH值对农村沼气产量的影响[J].安徽农业

科学,2008(19):8216-8217.

沼气池不产气的原因

沼气池不产气的原因 沼气池不产气的原因 随着新型沼气池技术的推广,沼气建设在广大农村得到了快速发展。但是,一些农户由于缺乏沼气技术知识、管理使用不当,致使新建的沼气池在既不漏水、又不漏气的情况下,产气缓慢或产气点不着火,甚至不产气。下面,将在实际生产中引起沼气池不产气的原因介绍如下: 1、发酵原料没有进行预处理而直接入池。这种现象比较普遍。由于池内发酵较池外堆沤发酵温度低,产甲烷菌繁殖缓慢、数量少,造成沼气池长期不能正常产气。 2、加水过凉或封盖启动温度低。沼气细菌在8℃-60℃范围内都能进行发酵,但料液温度在12℃以下时产气很少。当加水过凉或在寒冷的季节投料封盖时,池内料液温度低,发酵缓慢,即使经过较长时间的运行能够产气,所产生的气体也主要是原料经酸化作用产生的二氧化碳,不能点燃。 3、发酵原料过多或过少。料液在发酵过程中要保持一定的浓度才能正常产气,通常发酵料液的浓度在6%-10%较为适宜。由于在发酵过程中产酸细菌繁殖快,产甲烷细菌繁殖慢,原料的分解消化速度超过产气速度,所以当发酵原料过多、发酵液的浓度过大时,就容易造成有机酸的大量积累,使发酵受阻。相反,如果发酵液的浓度过稀,有机物含量少,产气量就少。 4、发酵原料碳氮比不合适。正常的沼气发酵要求一定的碳氮比。在实际应用中,原料的碳氮比以20-30:1较为适宜。当单独用猪粪、鸡粪、人粪等碳氮比低的原料发酵时,由于这类原料在沼气细菌少的情况下料液容易酸化,使发酵不能正常进行。 5、投入池中的发酵原料营养已耗尽。有的农户在启动沼气池时使用的是堆了很长时间的粪便,由于粪便在长期堆放过程中已自然发酵,耗尽了营养,因此不能产气。 6、发酵原料含有饲料添加剂和抗生药物的成分或喷洒了农药。在现代养殖业中,养殖户为控制畜禽的疾病和促进畜禽的生长,使用了大量的饲料添加剂和各种抗生药物。这些成分残留在猪粪中,使猪粪里含有杀菌和强烈抑制甲烷菌生长繁殖的元素,致使不能产气。而有的沼气用户使用的是喷洒了农药的粪便,造成产沼气细菌中毒,停止繁殖,不能产气。 7、沼气池中投入了有害物质。如各种剧毒农药;重金属化合物;含有毒性物质的工业废水、盐类;喷洒了农药的作物茎叶;能做土农药的各种植物;辛辣物如葱、蒜等的秸秆;电石、洗衣粉、洗衣服水等。池内的沼气细菌接触到这些有害物质时就会中毒,轻者停止繁殖,重者死亡,造成沼气池不能产气。

沼气池的构造原理

2 沼气池的建造技术 沼气的基本知识 2.1.1 沼气及其产生过程 沼气是有机物质在厌氧环境中,在一定的温度、湿度、酸碱度的条件下,通过微生物发酵作用,产生的一种可燃气体。由于这种气体最初是在沼泽、湖泊、池塘中发现的,所以人们叫它沼气。沼气含有多种气体,主要成分是甲烷(CH4)。沼气细菌分解有机物,产生沼气的过程,叫沼气发酵。根据沼气发酵过程中各类细菌的作用,沼气细菌可以分为两大类。第一类细菌叫做分解菌,它的作用是将复杂的有机物分解成简单的有机物和二氧化碳(CO2)等。它们当中有专门分解纤维素的,叫纤维分解菌;有专门分解蛋白质的,叫蛋白分解菌;有专门分解脂肪的,叫脂肪分解菌;第二类细菌叫含甲烷细菌,通常叫甲烷菌,它的作用是把简单的有机物及二氧化碳氧化或还原成甲烷。因此,有机物变成沼气的过程,就好比工厂里生产一种产品的两道工序:首先是分解细菌将粪便、秸秆、杂草等复杂的有机物加工成半成品——结构简单的化合物;再就是在甲烷细菌的作用下,将简单的化合物加工成产品——即生成甲烷。 ? 2.1.2 沼气的成分 沼气是一种混合气体,它的主要成分是甲烷,其次有二氧化碳、硫化氢(H2S)、氮及其他一些成分。沼气的组成中,可燃成分包括甲烷、硫化氢、一氧化碳和重烃等气体;不可燃成分包括二氧化碳、氮和氨等气体。在沼气成分中甲烷含量为55%~70%、二氧化碳含量为28%~44%、硫化氢平均含量为%。 ? 2.1.3 沼气的理化性质 沼气是一种无色、有味、有毒、有臭的气体,它的主要成分甲烷在常温下是一种无色、无味、无臭、无毒的气体。甲烷分子式是CH4,是一个碳原子与四个氢原子所结合的简单碳氢化合物。甲烷对空气的重量比是,比空气约轻一半。甲烷溶解度很少,在20℃、千帕时,100单位体积的水,只能溶解3个单位体积的甲烷。 甲烷是简单的有机化合物,是优质的气体燃料。燃烧时呈蓝色火焰,最高温度可达1400 ℃左右。纯甲烷每立方米发热量为千焦。沼气每立方米的发热量约千焦,相当于千克柴油或千克煤炭充分燃烧后放出的热量。从热效率分析,每立方米沼气所能利用的热量,相当于燃烧千克煤所能利用的热量。 ? 家用沼气池的类型 随着我国沼气科学技术的发展和农村家用沼气的推广,根据当地使用要求和气温、地质等条件,家用沼气池有固定拱盖的水压式池、大揭盖水压式池、吊管式水压式池、曲流布料水压式池、顶返水水压式池、分离浮罩式池、半塑式池、全塑式池和罐式池。形式虽然多种多样,但是归总起来大体由水压式沼气池、浮罩式沼气池、半塑式沼气池和罐式沼气池四种基本类型变化形成的。与四位一体生态型大棚模式配套的沼气池一般为水压式沼气池,它又有几种不同形式。 ? 2.2.1 固定拱盖水压式沼气池 固定拱盖水压式沼气池有圆筒形(见图、球形(见图和椭球形(见图三种池型。这种池型的池体上部气室完全封闭,随着沼气的不断产生,沼气压力相应提高。这个不断增高的气压,迫使沼气池内的一部分料液进到与池体相通的水压间内,使得水压间内的液面升高。这样一来,水压间的液面跟沼气池体内的液面就产生了一个水位差,这个水位差就叫做“水压”(也就是U形管沼气压力表显示的数值)。用气时,沼气开关打开,沼气在水压下排出;当沼气减少时,水压间的料液又返回池体内,使得水位差不断下降,导致沼气压力也随之相应降低。这种利用部分料液来回串动,引起水压反复变化来贮存和排放沼气的池型,就称之为水压式沼气池。

发展新能源的意义

发展新能源材料的迫切需求 摘要:我国经济的迅速发展使得对能源的需求增加,常规的化石能源供应不足的矛盾日益突出。能源安全成为我国必须解决的战略问题。发展新能源和可再生能源十分紧迫,也是世界各发达国家竞相研究的热点课题之一。新能源与可再生能源不仅有利于解决和补充我国化石能源供应不足的问题,而且有利于我国改善能源结构,保障能源安全,保护环境,走可持续发展之路。开发利用新能源与可再生能源也是构建资源节约型与环境友好型社。 关键字:化石能源新能源能源结构可持续发展资源节约型环境友好型 一、新能源定义 新能源又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。 二、新能源的发展趋势及国内外新能源最新进展 部分可再生能源利用技术已经取得长足的发展,并在世界各地形成了一定规模。表1-34为可再生能源转换技术的分类。目前生物质能,太阳能,风能以及水力发电,地热能等的利用技术已经得到利用。 表1-34 可再生能源转换技术的分类

2001世界一次能源消费总量为Mtoe,其中石油占35%,煤炭占23.4%,天然气占21.2%,可再生能源占13.5%(其中生物质能占10.4%,水力占 2.214%,太阳能等占0.0886%),核能占6.9%,2000年世界电力生产中可再生能源的贡献率占19%,仅次于煤炭,其中水力发电占17%,生物质占5%,太阳能等不到3%。 在表1-35为2001年世界主要地区可再生能源的消费情况。可以看出,在发达国家,生物质能占总的一次性能源的3%左右,而发展中国家生物质能占总的一次能源大约35%,而且主要是用于炊事。这反映出不同国家和地区的科技水平的差别。1971~2000年30年间可再生能源的平均增长率和总的一次能源平均增长率相当。其中地热能,太阳能,风能和海洋能的发展速度最快,年均增长率达到9.4%,风能和太阳的增长率高达52.1%、32.6%,表明他们在快速发展。 在表1-35的数据表明,在2001年我国的可再生能源站总的一次能源的20.8%,然而其中大部分是燃烧型的生物质能,小部分是水电,而太阳能、地热能、风能等能源的利用率几乎为零。我国的能源统计年鉴等都没有对可再生能源的生产、消费等情况进行统计,表明这些有较高技术含量的可再生能源在我国正处于研究开发之中的起步阶段,利用率还比较低,利用规模和水平与国际相比差距很大。 表1-35 2001年世界主要各地区可再生能源的消费情况 国际能源署(IEA)对2000~2030年国际电力的需求进行了研究,如表1-36所示。其中来自可再生能源的发电量平均增长最快。IEA的研究认为,在未来30年内非水力的可再生能源发电将比其他任何燃料的发电都要增长得快,年增长速度接近6%,在2000~2030年间其总量发电将增加5倍,到2030年买它将提供世界总电力的4.4%,其中风能和生物质能将占其中的80%。 表1-36 2000~2030年世界电力供需平衡

废水厌氧处理沼气产气量计算

废水厌氧处理沼气产气量计算原理 一、理论产气量的计算 1.根据废水有机物化学组成计算产气量 当废水中有机组分一定时,可以利用第一节中所介绍的化学经验方程式(15-1)计算产气量,对不含氮的有机物也可用以下巴斯维尔(Buswell和Mueller)通式计算: 【公式见下图】 2.根据COD与产气量关系计算 在标准状态下,1mol甲烷,相当于2mol(或64g)COD,则还原1gCOD相当于生成22.4/64=0.35L甲烷。 一般在厌氧条件下,每降解1kgCOD约产生2%~8%的厌氧污泥(即微生物对营养物质进行同化后残留的物质),而能量的传递效率是能量在沿食物链流动的过程中,逐级递减。若以营养级为单位,能量在相邻的两个营养级之间传递效率为10%~20%。微生物由于其生物形态结构简约,传递效率要稍高于多细胞生物为20%~30%,若以其传递效率25%计,则每1kgCOD产生2%~8%的厌氧污泥,则需要总物质的8%~32%物质用于其自身的同化作用,故1kgCOD中只有0.68~0.92kg的物质转化为甲烷,理论上在标准状态下,1mol甲烷,相当于2mol(或64g)COD,则还原1kgCOD相当于生成22.4/64=0.35m3甲烷。 沼气中甲烷的含量一般占总体积的50~70%,则理论上初步计算1kgCOD产生0.34~0.644Nm3的沼气。但在厌氧消化工艺中,实际产气率受物料的性质、工艺条件以及管理技术水平等多种因素的影响,在不同的场合,实际产气率与理论值会有不同程度的差异。 ①物料的性质:就厌氧分解等当量COD的不同有机物而言,脂类(类脂物)的 产气量最多,而且其中的甲烷含量也高;蛋白质所产生的沼气数量虽少,但甲烷含量高; 碳水化合物所产生的沼气量少,且甲烷含量也较低;从脂肪酸厌氧消化产气情况表明,随着碳键的增加,去除单位重量有机物的产气量增加,而去除单位重量COD的产气量则下降; ②②废水COD浓度:废水的COD浓度越低,单位有机物的甲烷产率越低,主要 原因是甲烷溶解于水中的量不同所致。因此,在实际工程中,高浓度有机废水的产气率

沼气池设计规范

/m /m 农村家用沼气池设计规范 1、范围 本标准规定了农村家用沼气池 (以下简称沼气池 ) 设计原则要求几何尺寸的确 定和结构设计。 本标准适用于砖、水泥为建筑材料,人畜粪便为主要发酵原料的半连续 发酵的家用小型 (发酵间 10m 3 以内 )水压式沼气池设计。 2、引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。 在 标准出版时, 所示版本均为有效。 所有标准都会被修订, 使用本标准的各方应探讨使用下 列标准最新版本的可能性。 GB/T4750---1984 农村家用水压式沼气池标准图集 GBJ 3---88 砌体结构设计规范 GBJ9---87 建筑结构荷载规范 GBJ10---89 混凝土结构设计规范 3 、设计原则 3.1 沼气池宜建在畜圈或厕所地表以下,进料间与人、畜粪入口相连通。 3.2 坚持适用、卫生、平面布局合理,外型美观。 3.3 池盖顶端复土厚度不小于 200mm 。 3.4 强度安全系数 K ≥ 2.65。 3.5 正常使用寿命 20 年以上。 4、设计要求 4.1 设计技术参数。 4.1.1 沼气压力。 4.1.1.2 最大工作压力 13KPa 。 3 4.1.2 产气率: 0.15m /m 4.1.3 投料量 3· d ; 0.2m 3 3 · d ; 0.25m 3 3· d ; 0.3m 3 /m 3 ·d 。 4.1.3.1 最小投料量按发酵间总容积的 50% 。 4.1.3.2 最大投料量按发酵间总容积的 90%。 4.1.4 贮气量 正常贮气量为日产气量的 50%。 4.2 工艺流程 人畜粪便 (青草及农业废物 ) →进料间 →厌氧发酵间 → 水压 (出料 )间 → 农田。在有条件的地 方,可将人粪便和牲畜粪便分两处进料口进入厌氧发酵间。 4.3 形状及平面布局 形状及平面布局按 GB/T4750 选用。 4.3.1 发酵间的形状以圆形为主,受占地面积限制或地下水位较高的,可将发酵间设计 成椭球形或单跨拱长方形。 4.3.2 平面布局 4.3.2.1 沼气池应有平面布局设计,在征得用户同意后,方可进行施工设计。 4.3.2.2 平面布局应符合下列要求: a)充分利用土地资源, 平面布局紧凑; b)厕所与畜圈分设; c) 进、出料方便; d) 导气管和输气管不被损害; e)进、出料间中线夹角应大于 90°,进料间蹲位板面应高于发

沼气池建造原理与好处

一、人工制取沼气必须具有三个基本条件 1、沼气池:是与空气隔绝的厌氧装置,保证沼气微生物生活在严格的厌氧环境中,同时便于收集和贮存沼气。 2、沼气微生物:它们是沼气的生产者。沼气微生物是一些种类繁多、习性各异的专性和兼性的细菌,存在于沼气池、粪坑、池塘的料液残渣、粪便、污泥和牛粪中。对这类物质,我们称之为接种物,是沼气池首次投料的必备原料。 3、发酵原料:能够被沼气微生物分解利用的有机物。农村的沼气发酵原料主要是人、畜、禽粪便,农作物的秸秆、青饲料、杂草等。 二、沼气池选址规划 1、沼气池的建设应与房屋及周围环境相协调,以利于保持环境的优美与卫生; 2、为缩短沼气的输送距离,沼气池应尽量靠近厨房,距离不宜超过30米。 3、沼气池应远离公路与铁路,并避开竹林与树林,以免对沼气池造成震动与损害。 4、尽量选择地基好、地下水位较低和背风向阳的地方建池。 5、沼气池应当与猪栏、厕所连通修建,做到“三结合”,便于粪便自流入池。 6、建池技工应经过沼气技术培训,须持有沼气行政部门颁发的上岗证,并要按国家标准进行施工与验收。 三、建造“模式”中的沼气池,首先要做好设计工作。总结多年来科学实验和生产实践的经验,设计与模式配套的沼气池必须坚持下列原则: (1)必须坚持“四结合”原则“四结合”是指沼气池与畜圈、厕所、日光温室相连,使人畜粪便不断进入沼气池内,保证正常产气、持续产气,并有利于粪便管理,改善环境卫生,沼液可方便地运送到日光温室蔬菜地里作肥料使用。 (2)坚持“圆、小、浅”的原则“圆、小、浅”是指池型以圆柱形为主,池容6~12立方米,池深2米左右,圆形沼气池具有以下优点:第一,根据几何学原理,相同容积的沼气池,圆形比方形或长方形的表面积小,比较省料。第二,密闭性好,且较牢固。圆形池内部结构合理,池壁没有直角,容易解决密闭问题,而且四周受力均匀,池体较牢固。第三,我国北方气温较低,圆形池置于地下,有利于冬季保温和安全越冬。第四,适于推广。无论南方、北方,建造圆形沼气池都有利于保证建池质量,做到建造一个,成功一个,使用一个,巩固一个,积极稳步地普及推广。小,是指主池容积不宜过大。浅,是为了减少挖土深度,也便于避开地下水,同时发酵液的表面积相对扩大,有利于产气,也便于出料。 (3)坚持直管进料,进料口加箅子、出料口加盖的原则直管进料的目的是使进料流畅,也便于搅拌。进料口加箅子是防止猪陷入沼气池进料管中。出料口加盖是为了保持环境卫生,消灭蚊蝇孳生场所和防止人、畜牲掉进池中。 建造沼气池原理图:

沼气的利用与发展

沼气的利用和发展 The use and development of biogas 摘要沼气是可再生的清洁能源,既可替代秸秆、薪柴等传统生物质能源,也可替代煤炭等商品能源,而且能源效率明显高于秸秆、薪柴、煤炭等。 Abstract Biogas is a renewable and clean energy, can replace the straw, firewood and other traditional biomass energy sources, and can also replace coal and commodities such as energy and energy efficiency is significantly higher than the straw, firewood, coal. 关键词沼气新能源利用发展 Keywords biogas, new energy, energy use, development 1.沼气的简介 1.1沼气的概念 沼气是有机物质在厌氧条件下,经过微生物的发酵作用而生成的一种可燃气体。由于这种气体最先是在沼 泽中发现的,所以称为沼气。人畜粪便、秸秆、污水等各种有机物在密闭的沼气池内,在厌氧(没有氧气)条件下发酵,即被种类繁多的沼气发酵微生物分解转化,从而产生沼气。沼气是一种混合气体,可以燃烧。沼气是有机物经微生物厌氧消化而产生的可燃性气体。 沼气是多种气体的混合物,一般含甲烷50~70%,其余为二氧化碳和少量的氮、氢和硫化氢等。其特性与天然气相似。空气中如含有8.6~20.8%(按体积计)的沼气时,就会形成爆炸性的混合气体。沼气除直接燃烧用于炊事、烘干农副产品、供暖、照明和气焊等外,还可作内燃机的燃料以及生产甲醇、福尔马林、四氯化碳等化工原料。经沼气装置发酵后排出的料液和沉渣,含有较丰富的营养物质,可用作肥料和饲料。 沼气是一些有机物质,在一定的温度、湿度、酸度条件下,隔绝空气(如用沼气池),经微生物作用(发酵)而产生的可燃性气体。它含有少量硫化氢,所以略带臭味。发酵是复杂的生物化学变化,有许多微生物参与。反应大致分两个阶段:(1)微生物把复杂的有机物质中的糖类、脂肪、蛋白质降解成简单的物质,如低级脂肪酸、醇、醛、二氧化碳、氨、氢气和硫化氢等。(2)由甲烷菌种的作用,使一些简单的

沼气发展现状报告

沼气发展现状 能源是向自然界提供能量转化的物质,是人类活动的物质基础。在某种意义上讲,人类社会的发展离不开优质能源的出现和先进能源技术的使用。在当今世界,能源的发展,能源和环境,是全世界、全人类共同关心的问题,也是我国社会经济发展的重要问题。当今世界,人类社会发展日益加速,无论是在工业,农业,还是第三产业服务业,高新技术产业,都是处于人类历史上空前发展最快的一个阶段。社会的发展提高了人类的生活水平,大大加强了社会生产力,同时对能源(如煤,石油)的需求和使用也大幅提高,从汽车内燃机到家用电器,无不需要能源去运作。 人类对能源的利用主要有三大转换:第一次是煤炭取代木材等成为主要能源;第二次是石油取代煤炭而居主导地位;而当今世界是在石油逐渐枯竭的状况下向多能源结构的过渡转换。世界能源利用现状主要表现为3个特点:1. 受经济发展和人口增长的影响,世界一次能源消费量不断增加; 2. 世界能源消费呈现不同的增长模式,发达国家增长速率明显低于发展中国家;3. 世界能源消费结构趋向优质化。纵观当今世界能源利用状况,我们仍然以化石燃料作为主要能源,对环境的破坏极大,并且面临着枯竭。从目前新能源发展状况来看,发展力度仍不够大,对多能源结构的转换仅处于过渡或者说是只是开始的阶段。所以加大力度发展新能源是人类目前一项重要并且紧迫的工作。正因如此,整个世界都十分关注新能源的开发。目前人们主要关注的新能源有以下几类:太阳能,风能,生物质能,核能,氢能,地热能,海洋能,小水电。相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资

源(特别是化石能源)枯竭问题具有重要意义。同时,由于很多新能源分布均匀,对于解决由能源引发的战争也有着重要意义。 沼气,正是新能源之一——生物质能中的一份子。 一.沼气定义: 有机物质在一定温度、湿度、酸碱度和厌氧条件下,经各种微生物发酵及分解作用而产生的一种以甲烷为主要成分的混合可燃气体。 二.沼气发展简史: 沼气发酵是一种古老的有机物发酵方法,广泛存在于自然界。它是各种有机物在兼性厌氧菌和专性厌氧菌等微生物的联合作用下,进行生物降解并生成有机酸、醇、二氧化碳和氢气等物质,并经产甲烷细菌等微生物进一步厌氧消化转化为以甲烷为主要成分的生物气的过程。厌氧发酵主要原料是农林废弃物、工业有机废水、畜禽粪便和城市垃圾等“废弃”资源。厌氧发酵的两个基本功能——降解有机物和产生可燃气体,是生态农业发展的基本推动力。早在1630 年,Vam Helmeuy 就发现生物质厌氧发酵能产生可燃气体。1776 年,意大利无力学家Volta 发现沼泽中有可燃气体产生,他认为这种气体的产生与有机质分解有关。1806 年,Herry 确定这种气体是甲烷。1868 年Becbamp 首次提出甲烷形成过程是一种微生物学过程,1875 年,俄国学者Popoff 也得到了相同的结论。1901~1902 年,巴斯德研究所的Maze 获得了一种产甲烷的微球菌,并将其命名为马氏甲烷球菌(Methanococcus mazei)。1936 年,Barker 发现了能在合成培养基上发酵产乙醇、丙醇和丁醇的有机体,并指出发酵分为产酸和分解酸形成甲烷的两个阶段,同时获得了几个产甲烷细菌的纯培养物,分别命名为甲

沼气池产气少、慢的原因及解决方法

一、沼气池产气少、产气慢的原因分析: 1.温度低:甲烷菌生命活动弱;沼气池中,起到主要转化作用的菌类是甲烷菌,温度低于15摄氏度,甲烷的生活活动会受到抑制,逐渐变弱,常见的表现就是池中填入新料后,迟迟不产气或者产出的气比较少。通常北方的冬天会让沼气池产气受到一定程度的影响。 2.沼气池环境的酸碱度:PH6.5-7.5是最适宜的环境;旧沼气池容易出现这种现象,一般是因为沼气池使用时间比较长,累积的料与发酵残渣使沼气池环境偏酸性,也可能是沼气池存在漏气,使其中的好氧细菌大量滋生,代谢产物导致环境偏酸性。还有可能就是每次加料的量不适宜,没有能起到调节浓度的作用。 3.投料中含有有毒物质:农药、杀菌剂影响甲烷菌生命活动;有些地区的农民朋友,为了夏季消灭动物粪便中的蝇虫,向粪便喷洒农药或杀菌剂来,这些残留下来的药物随着料投入到沼气池中,严重的影响甲烷菌的生命活动,严重的情况可能导致沼气池彻底停止产气。 4.甲烷菌规模太小:新池中接种菌种规模不够;通常新沼气池产气少产气慢的另一原因就是甲烷菌的接种,不同的地区不同的动物粪便或植物体要接种的菌种量也不同,但是多接种通常是有益无害的。老池中可能由于填入新料不及时,导致甲烷菌死亡,也会导致产气少。 5.其他物体的影响:辛辣物、电石、洗衣粉等的影响;辛辣物,如葱蒜、辣椒及韭菜、萝卜等会影响沼气产出量。电石洗衣粉也会影响产气,有些地区的农民朋友认为投入电石可以增加产气,其实是恰恰相反的。 6.草食动物粪便以及酸性农产品残渣的影响;草食动物,如牛,由于草食动物主要食物是草,所以其粪便中的碳氮比不利于甲烷菌的生长,会导致产气少问题。某些农产品,如红薯,红薯渣会使沼液偏酸性,导致产气少。 二、沼气池产气少;、产气慢的解决方法: 1.冬季沼气池要做好保温工作,填入的新料要待到温度适宜再填入; 2.要隔一段时间测定沼气池内的酸碱度,偏酸情况下要使用草木灰或石灰水调节PH至6.5-7.5左右。 3.避免引入有毒物质; 4.新旧沼气池在接入菌种时或使用一段时间产气量下降时,要配合使用发酵剂沼气发酵剂、发酵剂沼气速腐剂。帮助甲烷菌迅速生长繁殖,帮助难以被菌类腐蚀的物料快速腐烂,增大与甲烷菌的接触,来提高产气量,达到快速产气的目的。

根据人口数量计算沼气池容积

根据人口数量计算沼气池容积:满足一个农户全家人口生活用能的沼气池池容,可用下列公式计算: V=V1+V2=V1+0.15V=V1/0.85=n?k?r /0.85 式中:V—沼气池总容积(立方米); V1—发酵间容积(立方米),V1=0.85V; V2—贮气间容积(立方米),V2=0.15V; n—气温影响系数,一般南方地区取0.8~1.0,中部地区取1.0~1.2,北方地区取1.2~1.5; k—人口影响系数,2~3口之家取1.8~1.4,4~7口之家取1.4~1.1; r—每户人口数。 沼气池容积与人口的关系见表3-1。 表3-1 沼气池容积与人口的关系 池容(立方米) 6 8 10 每天可产沼气量(立方米) 1.2 1.6 2.0 可满足全家人口数(个) 3 4~5 5~6 (2)根据养殖规模计算沼气池容积:对于中小型养殖场和较大规模的庭院养殖户,沼气池容积应根据发酵原料的数量、一定温度下发酵原料在池内停留的时间和投料浓度计算,其计算公式如下: V=(G?Ts?HRT)/(r?m) 式中:G—每天可供发酵的原料湿重(千克); Ts—原料中干物质含量的百分比(%); HRT—原料在池中的滞留天数(水力滞留期); r—发酵原料浓度换算成的容重(千克/立方米),r=原料浓度×发酵液容重,发酵液容重一般取水的容重,即1000千克/立方米; m—池内装料有效容积(%)。 例题:一养猪场,养猪250头,每天可产鲜猪粪1000千克,其干物质含量为20%,发酵原料容重为6%×1000千克/立方米,在35℃条件下发酵滞留期为15天,要求池内只装料85%,求需建多大的沼气池? 解:V=(G?Ts?HRT)/(r?m) =(1000×0.2×15)/(60×0.85) =58.82 (立方米) 经过计算,修建60方米的沼气池,即可满足要求。

养殖场沼气池设计参数(方案).doc

一、工艺设计 发酵料液经前处理池沉淀、除杂后,从进料口进入装置,经各发酵单元逐级发酵,使养殖粪污得到无害化和减量化处理。通过设置在各发酵单元的回流搅拌器,进行强制回流搅拌,以提高菌料均匀度和产气率。在最后一级发酵单元设置储气浮罩,使最后一级发酵单元与整个装置产生的沼气经脱水、脱硫净化处理后,汇集与储气浮罩,供生产和生活使用。从出料间溢出的沼液和抽出的沼渣储存与贮肥池,用作农作物有机肥料,或淡水养殖营养饵料。 二、设计参数 (一)气压 沼气发酵工艺及沼气沼气灯炉具都要求沼气气压相对稳定,且宜小不宜大。对于水压是沼气池,,如果气压过大,容易破坏池体,造成泄漏;气压过小势必水压间面积过大,占地多。因此,我国农村家用水压池常用设计气压为8千帕;浮罩池设计气压可采用2千帕。 (二)产气率 根据我国养殖专业户沼气池发酵产气水平,其设计产气率采用0.2~0.5米3/(米3·天)(三)贮气量 水压式沼气池靠池内带有压力的沼气将发酵料液压到出料间(大部分)、进料管(小部分)而贮存沼气。浮罩池由浮罩的升降来贮存沼气。 贮气容积的确定和用户用气的情况有关。养殖专业户沼气池的设计贮气量考虑能贮存12小时所产的沼气,即昼夜产气量的一半。 (四)池容 沼气池容积指发酵池净空容积。沼气池的容积应根据用户所拥有的发酵原料(数量和种类)、滞留时间、用气要求等因素合理确定。 (五)投料率 投料率指的是最大限度投入的料液所占发酵间容积的百分率。设计最大投料量一般水压式为沼气池容积的90%,料液上部留适当空间,以免导气管堵塞和便于收集沼气;浮罩式为沼气容积的98%。最小设计投料量以不使沼气从进、出料管跑掉为原则。 三、建池规模计算 (一)参数确定 根据小型畜禽养殖场的特点,经过优化设计和工程实践所选定的发酵工艺为无动力自由进料、多旋流布料、回流搅拌、固菌成膜、浮罩储气、常温发酵工艺。发酵料液温度变化范围为10~28℃,原料在发酵装置内的滞留天数(HRT)为30~90天,南方取低限,北方取高限,一般取60天;适宜于小型畜禽养殖场沼气工程的发酵料液平均浓度(Ts)为6%~10%,一般取8%;发酵装置的有效料液容积(m),浮罩式取98%,水压式取90%;常温条件下的容积产气率(平均)一般为0.20~0.40米3/(米3·天),取平均值 0.30米3/(米3·天);浮罩储气压力取2~3千帕。 (二)池容计算 小型畜禽养殖场一般采用干清粪养殖工艺,每天可收集的粪便及含水量见表17-1 表17-1 成年畜禽日排粪量及含水率 根据发酵原料的数量、一定温度下发酵原料在装置内停留的时间和投料浓度等工艺条件,沼气发酵装置的容积计算公式为:

城镇生活污水净化沼气池设计规范

城镇生活污水净化沼气池设计规范 1、范围 本标准规定了城镇生活污水净化沼气池(以下简称城镇沼气池)设计的要求和方法。 本标准适用于处理城镇生活污水所修建的城镇沼气池设计。 2、引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。在标准出版时,所示版本均为有效,所有标准都会被修订,使用本标准的各方应探讨、使用下列标准最新版本的可能性。 GBJ3 —88砌体结构设计规范 GB7636 —87农村家用沼气管路设计规范 GBJ15 —88建筑给排水设计规范 GBJ68 —84建筑结构设计统一标准 DB51/190 —93四川省污染物排放标准 DB51/136 —92城镇净化沼气池生活污水排放卫生标准 3、设计要求 3.1技术指标 设计沼气压力8KPa ± 1KPa ; 出水水质达到DB51/190中3.1.2及DB51/136中3.1的有关规定; 3.2工艺流程 3.2.1合流生活污水(或水冲式公厕污水)7前处理T后处理T下水道 分流水冲式公厕污水T前处理(1)T前处理(2)7后处理T下水道 厨房和其它污水一t 注:医院污水在进入下水道前应加消毒池处理。 3.3在不改变工艺流程的前提下,城镇沼气池的平布置可因地制宜,其形状可以采用矩形、椭圆形或其它形状,但应考虑到结构受力明确、方便施工和清运建筑垃圾并不得影响其它建筑或构筑物. 3.4城镇沼气池容积计算。 3.4.1城镇沼气池总容积设计公式: V=(V1+V2+V3)K1 ----------------------------- (1) V-------- 总容积m3 VI------- 污水容积m3 V2 -------- 污泥容积m3 V3 -------- 气室容积m3 K1 -------- 容积保护系数取 1.0?1.05 3.4.1.1污水不容积计算公式: V1 = natg -------------------------------- (2) n――使用城镇沼气池的总人数;

发展沼气工程对改善农业生态环境的意义

2013年第30期资源与环境科技创新与应用 发展沼气工程对改善农业生态环境的意义 李新伟 (黑龙江农垦玖阳生物质能源开发有限公司,黑龙江哈尔滨150090) 沼气工程是一项建设新农村、发展循环经济的有效途径。它不但能够开发新能源,合理利用各种肥料,而且能够改善土壤结构,改善农村的环境卫生,最主要的是能够发展循环经济,倡导绿色节约的生活理念,明显的提高了农村人民的生活水平。 1我国农业生态环境的现状 1.1水资源短缺并且污染严重 水是生命之源,是农业生产的命脉,一切生产生活都离不开水,农业用水更是直接关系到农业生产的可持续发展,关系到一个国家的粮食储备,进而影响着社会的稳定。尽管我国江河湖海众多,但是可饮用的淡水资源十分有限,并且近年来污染加重,淡水资源更是受到了十分严重的破坏。据有关资料显示,我国农业用水量占整个用水总量的70%左右,而我国人均水资源拥有量仅仅约为2200m3,是世界平均水平的1/4,排名更是到了第110位,被列为人均水资源贫乏的国家之一。而且我国水资源分布极不合理,耕地面积少的地区却拥有着多大部分的水资源,造成华北等耕地面积大的地区严重干旱。与此同时,随着我国经济的发展,各种污染接踵而至,水污染也越来越严重,直接威胁着人们的生命健康。据监测数据显示,我国水质符合和优于Ⅲ类水的河长才占了50%左右,地下水更是连40%都不到。总的来说,我国农业生态环境面临着严峻的挑战。 1.2土地荒漠化严重 一直以来我国都以地大物博,人口众多来描述基本国情,但是我国虽然“地大”,但是能够适合耕种的土地面积却十分贫乏,而且由于人们的乱砍滥伐,我国土地荒漠化十分的严重。我国现在是耕地面积不足、土地荒漠化最严重的国家之一。我国总共有23个省、4个直辖市,但是荒漠化地区却涉及到了其中的18个省、直辖市,包括:内蒙古、辽宁、吉林、北京、天津、河北、陕西、宁夏、山西、甘肃、青海、新疆、西藏,以及山东、河南、四川、云南和海南。尽管有些地区一直在治沙,但是治沙的速度永远赶不上沙漠化的速度,我国每年沙化的土地面积已经超过了2460平方千米,沙尘暴发生的次数也从每10年8次增加到23次,其中,仅2000年一年之内就发生了10次。由于人们的毁林开荒,片面追求粮食生产,很多地区把原本茂盛的天然森林改成了单一的农田,不但毁坏了珍惜的物种,掠夺了野生动物的栖息地,而且严重影响了当地的生态平衡,时间一长就造成了土地沙漠化。造成现在我国的森林覆盖率连世界平均覆盖率的一半儿都不到,并且大片的天然森林在我国已经很难寻觅到了。作为发展中国家,我国要用这极少的耕地养活13亿的人口,其间的困难可想而知,所以说,我国农业生态环境十分恶劣。 1.3生物多样性锐减 生物多样性是指生物及其环境形成的生态复合体以及与此相关的各种生态过程的总和,其中包括动物、植物、微生物所拥有的基因以及它们与其生存环境形成的复杂的生态系统。生物多样性简单的分为物种多样性、基因多样性和生态系统多样性三个部分,不同的地方有不同的划分。生物多样性不但具有利用价值,而且其潜在价值也是十分重要的,它是大自然赠与人类的天然宝贵的资源和财富。生物多样性对于维持和保护自然资源永续利用和发展具有重要意义。但是随着森林的不断砍伐,尤其是热带森林,生物多样性遭到严重破坏。随着原始森林的砍伐,野生动植物的栖息地遭到严重破坏,对于不能适应恶劣的“新”环境的野生动植物都不断地走向灭绝之路,自然基因库受到了严重的挑战。尽管各国政府都在大力保护野生动植物,但由于自然条件的恶化和不法分子的恶劣行径,珍稀物种仍然以每年100~200种的速度急剧减少。据专家估计,在今后的20~30年中,将有1/4的物种消失。生物多样性减少对于农业生态环境的直接危害表现在系统的自我恢复能力和自我稳定能力下降,农作物对于最适宜的生活条件的要求将增高,对于农民来说,农业生产将变得越来越严苛。 2发展沼气工程对于农业生态环境的益处 2.1有利于降低污染,改善环境 用于沼气工程的原材料大多数是人和家禽家畜的粪便以及农作物的秸秆。农村每年产生这些废弃物的量是十分巨大的,据统计,一个小县城一年生产的禽畜粪便就达几百万吨之多。这么多的废料如果不用于沼气生产只会四处堆积,不但影响环境卫生,而且很有可能造成地下水和江河水污染,对于人们的生活有害无利。但是如果用于沼气生产,不但解决了环境问题,降低了污染,而且还能够产生足够的沼气,给农民家庭提供足够的电和热。 2.2有利于经济、社会效益显著 我国目前根据各地的具体情况,分别建立起了不同的沼气工程,包括“厕-沼-菜”模式,“猪厕-沼-菜”模式,“草-羊厕-沼-果”等三种循环生态模式。利用动植物残骸粪便做沼气池的原料,为人们提供生活所需的电和热,最后用沼渣做绿肥,供果蔬生长利用。整个生产过程不但产生的废物垃圾很少,而且利用一定的原料产生了最大的生产效益,既达到了绿色环保,又带来了经济效益。人们不但省去了电费和取暖费用,而且用沼渣做的绿肥对果蔬的生长非常有利,这无疑又是一笔收入。 3我国发展沼气的有利条件 3.1丰富的发酵原料 我国农村人口众多,畜禽粪便、废弃物和秸秆资源数量很大,一般的县年出栏生猪可达60万头、羊可达70万只,家禽也可达上千万羽,一年下来粪便便可达到几百万吨,而且农作物的秸秆一年也能达到100万吨左右,这些原料与其堆肥或者是焚烧,倒不如用来做沼气生产的原料,这样一来不但环保而且能够带来更大的收益。据统计,用30万吨左右的秸秆和废弃物便可以生产80亿立方米的沼气和2000多万吨的沼渣,这些沼气供人们一年的用电和取暖还绰绰有余,沼渣更是上好的绿肥,这样一来便实现了循环利用,而且得到的是清洁能源,普遍提高了农村人民的生活质量。 3.2政府的大力支持 近年来,国家领导一直关注农村建设,一直把农村建设作为重点来抓。当沼气工程的优势显现出来之后,党中央一直高度重视,把农村沼气建设作为全面建设小康社会、改善农村生产生活条件的“六小工程”之一,先后安排了农村小型公益设施建设补助资金、农村能源项目、生态家园富民计划和农村沼气建设国债项目。当社会主义新农村建设在全国各地普遍开展起来之后,沼气工程建设更是遇到了良好的机遇,社会主义新农村建设一定会推动沼气事业向前发展。因为在农村发展沼气有助于农村尽快实现“生产发展、生活宽裕、村容整洁”,为社会主义新农村建设提供了有力的技术手段。在农村发展沼气工程符合社会主义新农村建设的一系列政策措施和要求,如增加对农村和农业的投入、发展循环农业、加快乡村基础设施建设、加快村庄规划等,它终将推动新农村建设的有序进行,为我国社会主义新农村建设贡献一份力量。 4结束语 作为一项惠农政策,在农村建设沼气工程已经推出很快便得到响应,因为就目前来看,很难找到比建设沼气池更适合农村生产生活的发展模式,所以说,在农村建设沼气工程是新农村建设的一项重要举措,它所带来的实效有目共睹,但是真正做到循环经济,真正做到效益最大化,还需要相关领导的高度重视以及正确决策。 参考文献 [1]卞有生.生态农业中废弃物的处理与再生利用[M].北京:化学工业出版社,2001. [2]万晓红,等.太湖流域规模畜禽养殖场污染特性的解析[J].农业环境与发展,2000,17(2):35-38. [3]周莆华,等.集约化猪场废弃物系统处理研究[J].农业环境与发展,2001,18(1):46-47. 摘要:近年来,新农村建设的步伐不断推进,各种科技成果不断进入新农村的建设当中。其中沼气工程作为一项惠农工程,更是不断走进百姓的生活。本文就沼气工程对于改善农业生态环境的意义进行了一定的分析,总结出了发展沼气工程的现实意义。关键词:沼气工程;生态环境;粪便污水 144 --

收藏!各大领域沼气发酵原料产气特性及原料产气率汇总整表

收藏!各大领域沼气发酵原料产气特性及原料产气率汇总 理论上,绝大部分有机物都可以作为沼气发酵原料,沼气发酵原料一般可分为四大类:农业类发酵原料、工业类发酵原料、市政废弃物类发酵原料和水生植物废弃物发酵原料。本期对这四大类沼气发酵原料产气特性及原料产气率进行了整表汇总,方便大家随时对照查看,欢迎收藏! 一、畜禽粪污 表1、畜禽粪污原料特性及原料产气率 注:FM:鲜重;TS:总固体;VS:挥发性固体 畜禽粪便作为沼气发酵的原料有许多优势: 1 碳氮比一般在15:1~30:1,十分适合厌氧微生物的生长。 2 具有较高的缓冲能力,能应对不严重的酸化现象。 3 一些畜禽粪便(如牛粪、鹿粪)中含有瘤胃微生物,可以为沼气发酵体系补充沼气发酵菌种。 然而,畜禽粪污作为沼气发酵原料也有一些限制因素: 1 畜禽粪污体积大、干物质含量比较低,鲜粪一般小于30%,冲洗污水低于3%,所以单位体积原料的沼气产量比较低,原料或沼液的运输成本较高。 2 饲料中重金属和抗生素的添加量日趋加大,重金属和抗生素会影响沼气发酵过程以及沼渣、沼液的处理和还田利用。 3 畜禽粪污中氮的含量较高,容易造成沼气发酵体系氨抑制。 为解决上述问题,通常将畜禽粪污和易降解种植业废弃物混合发酵,畜禽冲洗污水可以用于稀释其他发酵原料,相对于畜禽粪污原料单一发酵,混合发酵体系更加稳定。 不同种类的畜禽粪便,具有不同的理化特性,会影响沼气工程的效率和稳定性。在沼气工程设计时,需要特别注意: 1 牛粪中草较多,沉淀物较少,浮渣量多于沉渣量。奶牛粪含砂量还比较高,要注意除砂。 2 猪粪中草和沉淀物都比较多,沉渣量多于浮渣量,由于冲洗污水量较大,所以猪场粪污水量大,浓度低,升温困难,冬季产气少。 3 鸡粪中含有羽毛、砂石,发酵过程中沉渣较为结实。另外,不同于奶牛粪中的砂,鸡粪中的砂石包裹于有机物中,所以对砂的去除更为困难。 4 羊粪和兔粪中含草较多,呈颗粒状,需要在预处理阶段设置泡粪池,使其中的有机物尽可能溶于料液中。 二、农作物秸秆 表2、农作物秸秆原料特性及原料产气率

水压式沼气池设计

水压式沼气池设计(八立方米农村家用水压式沼气池设计) 院系:生化工程系 学生姓名:陈佩佩程南 专业:环境监测与治理技术 班级:07教院环监(1)班 学号:0705210101 0705210102 指导老师:于卫东

目录 一、前言 二、课程设计的题目 三、课程设计的目的 四、设计参数 五、工艺流程 六、发酵料液的计算 七、发酵间的设计 八、进料口(管)的设计 九、水压间(管)的设计 十、沼气发酵的投料计算十一、发酵原料的预处理十二、安全注意事项 十三、设计小结 十四、文献资料

水压式沼气池课程设计说明书一、前言 沼气是有机物在厌氧条件下经微生物的发酵作用生成的一种以甲烷为主体的可燃性混合气体,其主要成分是甲烷和二氧化碳。 沼气发酵有很多有点。沼气发酵可产生甲烷,它是清洁方便的燃料;发酵过程中N、P、K等肥料成分几乎得到全部保留,一部分有机氮被水解成氨太氮,速效性养分增加;发酵残渣可以作为饲料肥料;沼气发酵处理有机物课大量地节省曝气消化所消耗的能量等等。 沼气发酵非常适合在农村地区推广使用。 二、课程设计的题目 水压式沼气池设计 三、课程设计的目的 通过课程设计进一步笑话和巩固本课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行沼气池设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养确定厌氧系统的设计方案、进行设计计算、绘制工程图、使用技术资料、编写设计说明书的能力。 四、设计参数 1、气压:7840Pa(即80 cm水柱) 2、池容产气率:池容产气率系指每立方米发酵池1昼夜的产

气量,单位为m3沼气/(m3池容. d)。常温下我国常用的池容产气率为0.2 m3/(m3. d) 3、贮气量:指气箱内的最大沼气贮存量。农村家用水压式沼 气池的最大贮存气量以12H产气量为宜,其值与有效水压间的容积相等。 4、池容:指发酵间的容积。本次设计的农村家用水压式沼气 池的池容积为8 m3。 5、投料率:指最大投入的料液所占发酵间容积的百分比。 五、工艺流程 沼气发酵工艺类型较多,我国农村普遍采用的是下面两种工艺。 1.自然温度半批量投料发酵工艺 这种工艺的发酵温度随自然温度变化而变化投料,基本流程图如图所示 这种工艺的发酵期因季节和农用情况而定,一般为五个月左右,运行

沼气规模分类标准

沼气工程规模分类标准 1.范围 本标准规定了沼气工程规模分类指标和分类方法。 本标准适用于新建、扩建与改建的沼气工程,不适用于农村户用沼气池的分类。 2.术语和定义 下列术语和定义适用于本标准。 2.1厌氧消化装置 anaerobic installation 在厌氧状态下,利用微生物分解有机物并产生沼气的装置。 2.2沼气工程 biogas engineering 采用厌氧消化技术处理各类有机废弃物(水),并制取沼气的系统工程设施。 2.3单体装置容积 individual installation volume 一个厌氧消化装置的容积。 2.4总体装置容积 total installation volume 两个或两个以上的厌氧消化装置容积的总和。 2.5配套系统 counter-part systems 发酵原料的预处理(沉淀、调节、计量、进出料、搅拌等)系统;沼渣、沼液综合利用或进一步处理系统;沼气的净化、储存、输配和利用系统。 3.规模分类指标 3.1 沼气工程规模分为大型、中型和小型沼气工程。 3.2 沼气工程规模分类宜按沼气工程的厌氧消化装置容积、日产沼气量、以及配套系统的配置等综合评定。 3.3 沼气工程规模分类指标和配套系统见表1。

4.规模分类方法 4.1 表1沼气工程规模分类指标中的单体装置容积指标和配套系统的配置定为必要指标,总体装置容积指标与日产沼气量指标定为择用指标。 4.2 沼气工程规模划分时,应同时采用两项必要指标和两项择用指标中的任意一项指标加以界定。 表A.1 日产沼气量,厌氧消化装置总体容积与日原料处理量的对应关系参照表

相关主题
文本预览
相关文档 最新文档