当前位置:文档之家› 实变函数选择题

实变函数选择题

实变函数选择题
实变函数选择题

1、下列各式正确的是( )

(A )1lim n k n n k n A A ∞∞→∞===??; (B )1lim n k n k n n A A ∞∞==→∞=??; (C )1lim n k n n k n A A ∞∞→∞===??; (D )1lim n k n k n n A A ∞∞

==→∞=??; 2、设P 为Cantor 集,则下列各式不成立的是( )

(A )=P c (B) 0mP = (C) P P =' (D) P P =

3、下列说法不正确的是( )

(A)凡外侧度为零的集合都可测B 可测集的任何子集都可测 (C)开集和闭集都是波雷耳集(D 波雷耳集都可测

4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )

(A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数

(C ){}inf ()n n

f x 是可测函数;(D )若()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )

(A) )(x f 在],[b a 上有界(B) )(x f 在],[b a 上几乎处处存在导数

(C ))('x f 在],[b a 上L 可积 (D) ?-=b

a a f

b f dx x f )()()('

1. C 2 D 3. B 4. A 5. D

1.设,M N 是两集合,则 ()M M N --=( )

(A) M (B) N (C) M N ? (D) ?

2. 下列说法不正确的是( )

(A) 0P 的任一领域内都有E 中无穷多个点,则0P 是

E 的聚点 (B) 0P 的任一领域内至少有一个E 中异于0P 的点,则0P 是

E 的聚点 (C) 存在E 中点列{}n P ,使0n P

P →,则0P 是E 的聚点 (D) 内点必是聚点

3. 下列断言( )是正确的。

(A )任意个开集的交是开集;(B)任意个闭集的交是闭集;(C)任意个闭集的并是闭集(D)以上都不对;

4. 下列断言中( )是错误的。

(A )零测集是可测集(B )可数个零测集的并是零测集;

(C )任意个零测集的并是零测集;(D )零测集的任意子集是可测集;

5. 若()f x 是可测函数,则下列断言( )是正确的

(A) ()f x 在[],a b L -可积|()|f x ?在[],a b L -可积;

(B) [][](),|()|,f x a b R f x a b R -?-在可积在可积

(C) [][](),|()|,f x a b L f x a b R -?-在可积在可积;

(D) ()()(),()f x a R f x L +∞-?∞-在广义可积在a,+可积

1,C 2, C 3, B 4, C 5, A

1、设1[,2(1)],1,2,n

n A n n

=+-= ,则( B )

(A) lim [0,1]n n A →∞= (B )=∞→n n A lim (0,1] (C) lim (0,3]n n A →∞= (D )lim (0,3)n n A →∞

= 2、设E 是[]0,1上有理点全体,则下列各式不成立的是( D )

(A )'[0,1]E = (B) o

E =? (C) E =[0,1] (D) 1mE =

3、下列说法不正确的是( C )

(A) 若B A ?,则B m A m **≤ (B ) 有限个或可数个零测度集之和集仍为零测度集

(C) 可测集的任何子集都可测 (D )凡开集、闭集皆可测

4、设}{n E 是一列可测集, ????n E E E 21,且+∞<1mE ,则有( A ) (A )n n n n mE E m ∞→∞==??? ???lim 1 (B) n n n n mE E m ∞→∞=≤??? ???lim 1 (C )n n n n mE E m ∞

→∞=

(A) )(x f 在],[b a 上的一致连续函数 (B) )(x f 在],[b a 上处处可导

(C ))(x f 在],[b a 上L 可积 (D) )(x f 是有界变差函数

1.设P 为Cantor 集,则 C

(A )=P ?0 (B) 1=mP (C) P P =' (D) P P =

2. 下列说法不正确的是( C )

(A) 0P 的任一领域内都有E 中无穷多个点,则0P 是E 的聚点 (B) 0P 的任一领域内至少有一个E 中异于0P 的点,则0P 是

E 的聚点 (C) 存在E 中点列{}n P ,使0n P

P →,则0P 是E 的聚点 (D) 内点必是聚点

3.设)(x f 在E 上L 可积,则下面不成立的是( C )

(A))(x f 在E 上可测 (B))(x f 在E 上a.e.有限 (C))(x f 在E 上有界 (D))(x f 在E 上L 可积

4. 设}{n E 是一列可测集,12n E E E ???? ,则有(B )。

(A )1lim n n n n m E mE ∞=→∞???> ??? (B) 1lim n n n n m E mE ∞=→∞???= ??? (C )1lim n n n n m E mE ∞=→∞

???= ???;(D )以上都不对 5.设)(x f 为],[b a 上的有界变差函数,则下面不成立的是( D )

(A))(x f 在],[b a 上L 可积 (B))(x f 在],[b a 上R 可积

(C))('x f 在],[b a 上L 可积 (D))(x f 在],[b a 上绝对连续

( D )1、()()\\\A B C A B C = 成立的充分必要条件是( )

A 、A

B ? B 、B A ?

C 、A C ?

D 、C A ?

( A )2、设E 是闭区间[]0,1中的无理点集,则( )

.A 1mE = .B 0mE = .C E 是不可测集 .D E 是闭集

( C )3、设E 是可测集,A 是不可测集,0mE =,则E A 是( )

.A 可测集且测度为零.B 可测集但测度未必为零.C 不可测集.D 以上都不对

( B )4、设mE <+∞,(){}n f x 是E 上几乎处处有限的可测函数列,()f x 是E 上几乎处处有限的可测函数,则(){}n f x 几乎处处收敛于()f x 是(){}

n f x 依测度收敛于()f x 的( ) .A 必要条件 .B 充分条件 .C 充分必要条件 .D 无关条件

( D )5、设()f x 是E 上的可测函数,则( )

.A ()f x 是E 上的连续函数

.B ()f x 是E 上的勒贝格可积函数

.C ()f x 是E 上的简单函数

.D ()f x 可表示为一列简单函数的极限

1、设E 是)1,0(中的有理点集,则E '是( );

A 、)1,0(中的无理点集

B 、)1,0(;

C 、]1,0[

D 、)1,0(中的有理点集;

2、设A 是闭集,B 是开集,则B A \是( );

A 、开集

B 、闭集

C 、完备集

D 、以上都不是

3、可测集是无穷集合中基数( );

A 、最小者

B 、最大者

C 、基数是无穷

D 、无法确定

4、设?

??∈∈=020\]1,0[)(P x x P x x x f ,其中0P 是康托集,则 []=?1

,0)(dx x f _________( ) A 、0 B 、21 C 、3

1 D 、1

1.设E 为点集,E P ?,则P 是E 的外点.( × )

2.不可数个闭集的交集仍是闭集. ( × )

3.设{}n E 是一列可测集,且1,1,2,,n n E E n +?= 则1()lim ().n n n n m E m E ∞

→∞

== (× ) 4.单调集列一定收敛. (√ )

5.若()f x 在E 上可测,则存在F σ型集,()0F E m E F ?-=,()f x 在F 上连续.( × )

一.判别题(每题2分,共20分)

1. 设()f x 在(,)-∞+∞上单调增,则()f x 的不连续点是可数的.( 正确 )

2. 不可数个闭集的交集仍是闭集. (错误 )

3. 设{}n E 是一列可测集,且1,1,2,,n n E E n +?= 则1()lim ().n

n n n m E m E ∞

→∞== (错误 ) 4. 任意多个可测集的交集是可测集. (错误 )

5. 若()f x 在E 上可测,则存在F σ型集,()0F E m E F ?-=,()f x 在F 上连续. ( 错误 )

6. 若,

mE <∞{}()n f x 在E 上几乎处处有限,几乎处处收敛于几乎处处有限的(),f x 则0,δ?>存在闭集,()F E m E F δ

δδ?-<,{}()n f x 在F δ上一致收敛于()f x .(正确) 7. cos x x

是[1,)+∞上勒贝格可积函数. (错误 ) 8. 若()f x 是[,]a b 上单调增连续函数,且()0f x '=几乎处处成立,则()f x 为常值函数. ( 错误 )

9. 若()f x 是[0,1]上单调严格增绝对连续函数,()g x 在([0,1])f 满足李普西茨条件,则(())g f x 是[0,1]上绝对连

续函数. (正确 )

10. 设(,)f x y 在{}(,):,()()D x y a x b g x y h x =≤≤≤≤上可积,其中(),()g x h x 是[,]a b 上连续函数,则

()

()()(,).b h x a g x D f P dP dx f x y dy =???( 正确 )

(完整版)实变函数证明题大全(期末复习)

1、设',()..E R f x E a e ?是上有限的可测函数,证明:存在定义在'R 上的一列连续函数 {}n g ,使得lim ()()..n n g x f x a e →∞ =于E 。 证明:因为()f x 在E 上可测,由鲁津定理是,对任何正整数n ,存在E 的可测子集n E , 使得1 ()n m E E n -< , 同时存在定义在1R 上的连续函数()n g x ,使得当n x E ∈时,有()()n g x f x =所以对任意的0η>,成立[||]n n E f g E E η-≥?-由此可得 1[||]()n n mE f g n m E E n -≥≤-< ,因此lim [||]0n n mE f g n →∞-≥=即()()n g x f x ?, 由黎斯定理存在{}n g 的子列{}k n g ,使得lim ()()k n k g x f x →∞ =,..a e 于E 2、设()(,)f x -∞∞是上的连续函数,()g x 为[,]a b 上的可测函数,则(())f g x 是可测函数。 证明:记12(,),[,]E E a b =-∞+∞=,由于()f x 在1E 上连续,故对任意实数1,[]c E f c >是 直线上的开集,设11 [](,)n n n E f c α β∞ =>=U ,其中(,)n n αβ是其构成区间(可能是有限 个 , n α可 能为 -∞ n β可有为 +∞ )因此 22221 1 [()][]([][])n n n n n n E f g c E g E g E g αβαβ∞ ∞ ==>=<<=><都可测。故[()]E f g c >可测。 3、设()f x 是(,)-∞+∞上的实值连续函数,则对于任意常数a ,{|()}E x f x a =>是一开集,而{|()}E x f x a =≥总是一闭集。 证明:若00,()x E f x a ∈>则,因为()f x 是连续的,所以存在0δ>,使任意(,)x ∈-∞∞, 0||()x x f x a δ-<>就有, 即任意00U(,),,U(,),x x x E x E E δδ∈∈?就有所以是 开集若,n x E ∈且0(),()n n x x n f x a →→∞≥则,由于()f x 连续,0()lim ()n n f x f x a →∞ =≥, 即0x E ∈,因此E 是闭集。 4、(1)设2121 (0,),(0,),1,2,,n n A A n n n -==L 求出集列{}n A 的上限集和下限集 证明:lim (0,)n n A →∞ =∞设(0,)x ∈∞,则存在N ,使x N <,因此n N >时,0x n <<,即

实变函数试题库(5)及参考答案

实变函数试题库及参考答案(5) 本科 一、填空题 1.设,A B 为集合,则___(\)A B B A A 2.设n E R ?,如果E 满足0 E E =(其中0 E 表示E 的内部),则E 是 3.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ?且,a G b G ??,则(,)a b 必为G 的 4.设{|2,}A x x n n ==为自然数,则A 的基数a (其中a 表示自然数集N 的基数) 5.设,A B 为可测集,B A ?且mB <+∞,则__(\)mA mB m A B - 6.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是 7.若()E R ?是可数集,则__0mE 8.设 {}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果 .()() ()a e n f x f x x E →∈,则()()n f x f x ?x E ∈(是否成立) 二、选择题 1、设E 是1 R 中的可测集,()x ?是E 上的简单函数,则 ( ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 2.下列集合关系成立的是( ) (A )()()()A B C A B A C = (B )(\)A B A =? (C )(\)B A A =? (D )A B A B ? 3. 若() n E R ?是闭集,则 ( ) (A )0 E E = (B )E E = (C )E E '? (D )E E '= 三、多项选择题(每题至少有两个以上的正确答案) 1.设{[0,1]}E =中的有理点 ,则( ) (A )E 是可数集 (B )E 是闭集 (C )0mE = (D )E 中的每一点均为E 的内点

实变函数期末考试卷A卷完整版

实变函数期末考试卷A 卷 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实变 函数 一、 判断题(每题2分,共20分) 1.若A 是B 的真子集,则必有B A <。 (×) 2.必有比a 小的基数。 (√) 3.一个点不是E 的聚点必不是E 的内点。 (√) 4.无限个开集的交必是开集。 (×) 5.若φ≠E ,则0*>E m 。 (×) 6.任何集n R E ?都有外测度。 (√) 7.两集合的基数相等,则它们的外测度相等。 (×) 8.可测集的所有子集都可测。 (×) 9.若)(x f 在可测集E 上可测,则)(x f 在E 的任意子集上也可测。(×) 10.)(x f 在E 上可积必积分存在。 (×) 1.设E 为点集,E P ?,则P 是E 的外点.( × ) 2.不可数个闭集的交集仍是闭集. ( × ) 3.设{}n E 是一列可测集,且1,1,2,,n n E E n +?=则 1( )lim ().n n n n m E m E ∞ →∞ ==(× ) 4.单调集列一定收敛. (√ ) 5.若()f x 在E 上可测,则存在F σ型集,()0F E m E F ?-=,()f x 在F 上连续.( × ) 二、填空题(每空2分,共20分) 1.设B 是1R 中无理数集,则=B c 。 2.设1,1,,3 1,21,1R n A ???????= ,则=0A φ ,='A }0{ 。 3.设 ,2,1,0),1 1,11(=++-=n n n A n ,则=?∞=n n A 0 )1,1(- ,=?∞=n n A 1 }0{ 。 4.有界变差函数的不连续点构成的点集是 至多可列 集。

实变函数复习资料,带答案

《实变函数》试卷一 一、单项选择题(3分×5=15分) 1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数(C ){}inf ()n n f x 是可测函数;(D )若 ()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))(' x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则 ' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都 _________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”) 5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为 [],a b 上的有界变差函数。 三、下列命题是否成立?若成立,则证明之;若不成立,则举反例

实变函数积分理论部分复习试题[附的答案解析版]

2011级实变函数积分理论复习题 一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例) 1、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可积函数。(×) 2、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可测函数。(√) 3、设{}()n f x 是[0,1]上的一列非负可测函数,则 [0,1][0,1] lim ()d lim ()d n n n n f x x f x x →∞ →∞ =? ? 。 (×) 4、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{} ()k n f x ,使得, [0,1][0,1] lim ()d lim ()d k k n n k k f x x f x x →∞ →∞ ,()f x 在[0,]n 上 黎曼可积,从而()f x 是[0,]n 上的可测函数,进而()f x 是1 [0,)[0,]n n ∞ =+∞= 上的可测函数) 10、设{}()n f x 是[0,1]上的一列单调递增非负可测函数,()[0,1],n G f 表示()n f x 在

实变函数期末考试卷A及参考答卷

2011—2012学年第1学期 数计学院09级数学与应用数学专业(1、2班) 《实变函数》期末考试卷(A)

试卷共8 页第 1 页

实变函数期末考试卷(A) 2009级本科1、2班用 考试时间2012年01月 04日 一 填空题(每小题3分,满分24分) 1 我们将定义在可测集q E ??上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数: 试卷 共 8 页 第 2 页

()()()(),0, 0,0.f x x E f f x x E f + ∈>?=? ∈≤? 当时当时 和()()()()0, 0, ,0. x E f f x f x x E f - ∈>?=?-∈≤? 当时当时 分别称为f 的正部和负部。请你写出()()(),,f x f x f x + -和()f x 之间的关系: ()f x = , ()f x = 。 2 上题()M E 中有些元素?被称为非负简单函数,指的是: 12k E E E E =U UL U 是有限个互不相交的可测集的并集,在i E 上()i x c ?≡ (非负常数)(1,2,,i k =L ).?在E 上的L 积分定义为: ()E x dx ?= ?, 这个积分值可能落在区间 中,但只有当 时才能说?是 L 可积的。 3 若()f M E ∈是非负函数,则它的L 积分定义为: ()E f x dx = ?, 这个积分值可能落在区间 中,但只有当 时才能说f 是 L 可积的。 4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f - , 即()E f x dx + ?和()E f x dx -?的值 ;但只有当 时 才能说f 是L 可积的,这时将它的积分定义为: ()E f x dx = ?。 5 从()M E 中取出一个非负函数列(){}n f x ,则法图引理的结论是不等式: ; 如果再添上条件和 就 得到列维定理的结论: 。 6 设f 和()1,2,n f n =L 都是()M E 中的可测函数,满足 ()()lim n n f x f x a e →∞ =g g 于E 或n f f ?两个条件之一。 或 的结论:

实变函数试题库(4)及参考答案

实变函数试题库及参考答案(4) 本科 一、填空题 1.设,A B 为两个集合,则__c A B A B - . 2.设n E R ?,如果E 满足E E '?(其中E '表示E 的导集),则E 是 3.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i) )(b a ,G (ii),a G b G ?? 4.设A 为无限集.则A 的基数__A a (其中a 表示自然数集N 的基数) 5.设12,E E 为可测集,2mE <+∞,则1212(\)__m E E mE mE -. 6.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ?∈,则由______定理可知得,存在{}()n f x 的子列{}()k n f x ,使得.()() ()k a e n f x f x x E →∈. 7.设()f x 为可测集E (n R ?)上的可测函数,则()f x 在E 上的L 积分值存在且|()|f x 在E 上L 可积.(填“一定”“不一定”) 8.若()f x 是[,]a b 上的绝对连续函数,则()f x 是[,]a b 上的有 二、选择题 1.设(){},001E x x =≤≤,则( ) A 1mE = B 0mE = C E 是2R 中闭集 D E 是2R 中完备集 2.设()f x ,()g x 是E 上的可测函数,则( ) A 、()()E x f x g x ??≥??不一定是可测集 B 、()()E x f x g x ??≠??是可测集 C 、()()E x f x g x ??≤??是不可测集 D 、()() E x f x g x ??=??不一定是可测集 3.下列集合关系成立的是() A 、(\)A B B A B = B 、(\)A B B A = C 、(\)B A A A ? D 、\B A A ? 4. 若() n E R ?是开集,则 ( ) A 、E 的导集E ? B 、E 的开核E =C 、E E =D 、E 的导集E =

实变函数测试题1-参考答案

本试题参考答案由08统计班15号 李维提供 有问题联系 1、设 212(0,1/),(0,),0,1,2...,n n A n A n n -===n 求出集列{A }的上限集和下限集合。 2、证明:()f x 为[,]a b 上连续函数的充分必要条件是对任意实数c ,集{} ()E x f x c =≥和 {}1()E x f x c =≤都是闭集。 3、设n R E ?是任意可测集,则一定存在可测集 δ G 型集 G ,使得 E G ?,且 ()0=-E G m 4、设,n A B R ?,A B ?可测,且()m A B ?<+∞,若()**m A B m A m B ?=+, 则,A B 皆可测。 5、写出鲁津定理及其逆定理。并证明鲁津定理的逆定理。 6、设)(x f 是E 上的可测函数,G 为开集,F 为闭集,试问])(|[G x f x E ∈与 ])(|[F x f x E ∈是否是可测集,为什么? 7、设在Cantor 集0P 上定义函数()f x =0,而在0P 的余集中长为1 3n 的构成区间上定义为n (1,2,3,=L n ),试证()f x 可积分,并求出积分值。 8、设{}n f 为E 上非负可积函数列,若lim ()0,n E n f x dx →∞=? 则()0n f x ?。 9、设)(x f 是E 上. 有限的可测函数,+∞?ε,存在E 上. 有界的 可测函数)(x g ,使得 ε<>-]0|[|g f mE 。 10、求证 1 2 01 11 ln 1()∞ ==-+∑?p n x dx x x p n , (1)p >-。 解答: 1. 解:()∞=∞ →,0lim n n A ;设()∞∈,0x ,则存在N ,使x N <,因此n N >时,0x n <<, 即n A x 2∈,所以x 属于下标比N 大的一切偶指标集,从而x 属于无限多n A ,得n n A x ∞ →∈lim 又显然()∞?∞ →,0lim n n A ,所以()∞=∞ →,0lim n n A 。

(20080619)实变函数期末复习指导(文本)

(2008.06.19)实变函数期末复习指导(文本) 中央电大教育学院陈卫宏2008年07月01日 陈卫宏:大家好!这里是“实变函数”教学活动。 考试时间 实变函数期末考试时间:7月12日,8:30~10:00. 期末考试题型比例 单选题5(20分) 填空题5(20分) 证明题4(60分) 第1章考核要求 ⑴了解集合的表示,子集,理解集合的并、交、差、补等概念,特别是一列集合的并与交的概念; ⑵掌握集合的运算律,会求一列简单集合的并、交以及上极限和下极限; ⑶熟练掌握证明两个集合相等的方法(互为子集)并会具体应用; ⑷了解单射、满射、双射及对等的概念,知道基数相等与大小的定义,会用伯恩斯坦定理; ⑸理解可列集的定义及等价条件(可排成无穷序列的形式),了解可列集的运算性质,理解有理点集是可列集; ⑹了解常见的连续集和连续集的运算,知道基数无最大者。 第2章考核要求 ⑴了解距离、收敛、邻域、孤立点、边界点、内核、导集、闭包等概念,会求简单集合的内核、导集和闭包,理解聚点的定义及其等价条件; ⑵掌握波尔查诺——维尔斯特拉斯定理的条件和结论; ⑶了解开集、闭集、完备集的定义以及开集、闭集在并、交运算之下的性质,开集与闭集互为补集,掌握直线上开集的构造;

⑷了解波雷尔有限覆盖定理、距离可达定理和隔离性定理的条件和结论; ⑸理解康托集的构造及其性质。 第3章考核要求 ⑴理解勒贝格外测度的定义及其性质,知道可列集的测度为零,区间的测度等于其体积; ⑵理解可测集的(卡拉皆屋铎利)定义,了解可测集的充分必要条件以及可测集的运算性质; ⑶熟练掌握单调可测集列极限的测度; ⑷知道Gδ型集、Fσ型集以及波雷尔集的定义,了解常见的勒贝格可测集,掌握可测集同开集、闭集和可测集同Gδ型集、Fσ型集之间的关系。 第4章考核要求 ⑴知道点集上连续函数的定义和点集上连续函数列一致收敛的极限函数的连续性,了解函数列上、下极限的概念,理解“几乎处处”的概念; ⑵熟练掌握可测函数的定义及其等价条件,掌握可测函数的判定方法,理解可测函数关于四则运算和极限运算的封闭性、连续函数和简单函数皆可测以及可测函数可表示为简单函数列的极限; ⑶了解叶果洛夫定理,理解依测度收敛的定义,知道依测度收敛与几乎处处收敛二者互不包含,理解刻划依测度收敛和几乎处处收敛之间关系的勒贝格定理和黎斯定理,知道依测度收敛的极限函数是惟一的(把几乎处处相等的函数视为同一函数); ⑷理解刻划可测函数同连续函数之间关系的鲁金定理(两种形式)。 第5章考核要求 ⑴知道测度有限集合上有界函数勒贝格积分的定义,理解测度有限集合上有界函数勒贝格可积的充分必要条件是有界可测; ⑵了解测度有限集合上有界函数勒贝格积分的简单性质,理解闭区间上有界函数黎曼可积必勒贝格可积且二者积分相等; ⑶了解一般集合上非负函数勒贝格积分存在和勒贝格可积的定义,非负函数积分存在的充分必要条件是非负可测; ⑷理解一般集合上一般函数勒贝格积分存在和勒贝格可积的定义,熟练掌握一般可测集上一般函数勒贝格积分的性质; ⑸理解积分极限定理,特别是勒贝格控制收敛定理及其应用;

实变函数综合练习题

实变函数综合练习题 《实变函数》综合训练题(一) (含解答) 一、选择题(单选题) 1、下列集合关系成立的是( A ) (A )(\)A B B A B ?=? (B )(\)A B B A ?= (C )(\)B A A A ?? (D )(\)B A A ? 2、若n E R ?是开集,则( B ) (A )E E '? (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C ) (A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP = 4、设E 是1R 中的可测集,()x ?是E 上的简单函数,则( D ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 5、设E 是n R 中的可测集,()f x 为E 上的可测函数,若()d 0E f x x =?,则( A ) (A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠ 二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D ) (A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE > 2、若1E R ?至少有一个内点,则( B 、D )

(A )*m E 可以等于零 (B )* 0m E > (C )E 可能是可数集 (D )E 是不可数集 3、设[,]E a b ?是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数 4、设()f x 在可测集E 上L 可积,则( B 、D ) (A )()f z +和()f z - 有且仅有一个在E 上L 可积 (B )()f z + 和()f z - 都在E 上L 可积 (C )()f z 在E 上不一定L 可积 (D )()f z 在E 上一定L 可积 5、设()f z 是[,]a b 的单调函数,则( A 、C 、D ) (A )()f z 是[,]a b 的有界变差函数 (B )()f z 是[,]a b 的绝对连续函数 (C )()f z 在[,]a b 上几乎处处连续 (D )()f z 在[,]a b 上几乎处处可导 三、填空题(将正确的答案填在横线上) 1、设X 为全集,A ,B 为X 的两个子集,则\A B =C A B ? 。 2、设n E R ?,如果E 满足E E '?,则E 是 闭 集。 3、若开区间(,)αβ是直线上开集G 的一个构成区间,则(,)αβ满足(,)G αβ?、 ,G G αβ??。 4、设A 是无限集,则A 的基数A ≥ a (其中a 表示可数基数) 。 5、设1E ,2E 为可测集,2mE <+∞,则12(\) m E E ≥ 12mE mE -。 6、设()f x 是定义在可测集E 上的实函数,若对任意实数a ,都有[()]E x f x a > 是 可测集 ,则称()f x 是可测集E 上的可测函数。

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

实变函数试题库及参考答案

实变函数试题库及参考答案(1) 本科 一、填空题 1.设,A B 为集合,则()\A B B U A B U (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E U 12mE mE +(用描述集合间关系的符号填写) 6.设n E ??是可数集,则*m E 0 7.设()f x 是定义在可测集E 上的实函数,如果1a ?∈?,()E x f x a ??≥??是 ,则称()f x 在E 上可测 8.可测函数列的上极限也是 函数 9.设()()n f x f x ?,()()n g x g x ?,则()()n n f x g x +? 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题 1.下列集合关系成立的是( ) 2.若n R E ?是开集,则( ) 3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( ) A E 是不可数集 B E 是闭集 C E 中没有内点 D 1m E = 2.设n E ??是无限集,则( ) A E 可以和自身的某个真子集对等 B E a ≥(a 为自然数集的基数) 3.设()f x 是E 上的可测函数,则( ) A 函数()f x 在E 上可测 B ()f x 在E 的可测子集上可测 C ()f x 是有界的 D ()f x 是简单函数的极限

4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( ) A ()f x 在[],a b 上可测 B ()f x 在[],a b 上L 可积 C ()f x 在[],a b 上几乎处处连续 D ()f x 在[],a b 上几乎处处等于某个连续函数 四、判断题 1. 可数个闭集的并是闭集. ( ) 2. 可数个可测集的并是可测集. ( ) 3. 相等的集合是对等的. ( ) 4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题 1. 简述无限集中有基数最小的集合,但没有最大的集合. 2. 简述点集的边界点,聚点和内点的关系. 3. 简单函数、可测函数与连续函数有什么关系? 4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题 1. 设()[]23 0,1\x x E f x x x E ?∈?=?∈??,其中E 为[]0,1中有理数集,求 ()[] 0,1f x dx ?. 2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121 ,,00,1\,,n n n x r r r f x x r r r ∈??=?∈??L L ,求()[] 0,1lim n n f x dx →∞?. 七、证明题 1.证明集合等式:(\)A B B A B =U U 2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1 [|()|]|()|E mE x f x a f x dx a ≥≤ ? 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞ =,则 实变函数试题库及参考答案(1) 本科 一、填空题

实变函数期末复习指导

实变函数期末复习指导(文本) 实变函数题型比例 单选题:5题,每题4分,共20分。 填空题:5题,每题4分,共20分。 计算与证明题:4题,每题15分,共60分。 第1章主要内容 本章所讨论的集合的基本知识是集合论的基础,包括集合的运算和集合的基数两部分. 主要内容有: 一、集合的包含关系和并、交、差、补等概念,以及集合的运算律. 关于概念的学习,应该注意概念中的条件是充分必要的,比如,B A ?当且仅当A x ∈时必有B x ∈.有时也利用它的等价形式:B A ?当且仅当B x ∈时必有A x ∈.在证明两个集合包含关系时,这两种证明方式可视具体问题而选择其一. 还要注意对一列集合并与交的概念的理解和掌握.n n A x ∞ =∈1 当且仅当x 属于这一列集 合中的“某一个”(即存在某个n A ,使n A x ∈),而n n A x ∞ =∈1 当且仅当x 属于这一列集合中 的“每一个”(即对每个n A ,都有n A x ∈).要熟练地进行集合间的各种运算,这是学习本章必备的基本技能. 读者要多做些这方面的练习. 二、映射是数学中一个基本概念,要弄清单射、满射和双射之间的区别与联系. 对集合基数部分的学习,应注意论证两个集合对等技能的训练,其方法主要有下面三种:一是依对等的定义直接构造两集间的双射;二是利用对等的传递性,如欲证C A ~,已知B A ~,此时只须证C B ~;三是应用有关定理,特别是伯恩斯坦定理,它是判断两个集合对等的常用的有效方法. 三、可列集是无限集中最重要的一类集合,它是无限集中基数最小者. 要掌握可列集的定义和运算性质,有理数集是可列的并且在直线上处处稠密,这是有理数集在应用中的两条重要性质. 四、连续集及其运算性质.要掌握长见的连续集的例子,知道基数无最大者. 第2章主要内容 本章讨论的点集理论,不仅是以后学习测度理论和新积分理论的基础,也为一般的抽象空间的研究提供了具体的模型.

实变函数复习题

1.若E有界,则m*E<正无穷 2.可数点集的外测度为零 3.设E是直线上一有界集合,m*E>0,则对任意小于m*E的正数c,恒有E的子集E1,使m*E=c 4.设S1,S2,…,Sn是一些互不相交的可测集合,Ei包含于Si,i=1,2,3...n,求证m*(E1并E2并E3...并En)=m*E1+m*E2+…+m*En 5.若m*E=0,则E可测。

6.证明康托尔(Cantor)集合的测度为0 7.设A,B包含于Rp,且m*B<正无穷,若A是可测集,证明m*(A并B)=mA+m*B-m*(A 交B) 8.证明:若E可测,则对于任意e〉0,恒有开集G及闭集F,使F包含于E包含于G,而m (G-E)〈e,m(E-F)〈e

9.设E包含于Rq,存在两列可测集{An},{Bn},使得An包含于E包含于Bn且m(Bn-An)--> 0(n-->无穷),则E可测。 10.设是一列可测集,证明和都是可测集且

11.设{En}是一列可测集,若求和m(En)<正无穷,证明m(En上极限)=0 12.设E是[0,1]中可测集,若m(E)=1,证明对任意可测集A包含于[0,1],m(E交A)=m(A) 13.设{En}是[0,1]中可测集列,若m(En)=1,n=1,2,...,则 定理5.6设E是任一可测集,则一定存在型集G,使G包含E,且m(G-E)=0。 设E是任一可测集,则一定存在型集F,使F包含于E,且m(E-F)=0。 次可数可加性证明

卡拉泰奥多里条件:m*T=m*(T交E)+m*(T交Ec)极限的测度等于测度的极限

1.证明:f(x)在E上为可测函数的充要条件是对任一有理数r,E[f〉r]可测,如果集E[f=r]可测,问f(x)是否可测?

实变函数历年考试真题汇总

第 1 页 共 6 页 陇东学院2011—2012学年第一学期实变函数(A) 一.填空.(每空2分,共20分) 1给出自然数集+N 与整数集Z 之间的一一对应关系 . 2设B A ,是两集合,B A <是指 . 3?? ?????????????=≠==0,00,1sin ),(x x x y y x E ,在2 R 内求= E ,='E , 4.设, ,(),[0,1]\. x x x P f x e x P ∈?=? ∈?其中P 是Cantor 集,则[] =?1,0)(dx x f ________. 5.设n E R ?,则称E 是L 可测的是指: . 6.设()sin f x x =,[0,2]x π∈,则()f x + = ; ()f x -= . 7.称)(x f 为可测集E 上的简单函数是指 8.设⑴mE <∞;⑵ {}()n f x 是 E 上一列几乎处处有限的可测函数;⑶ lim ()()n n f x f x →∞ =..a e 于E ,且()f x <∞..a e 于E .则0δ?>,E E δ??,使得 mE δδ<,而{}()n f x 在 上一致收敛于()f x . 二.选择(每题2分,共10分) 1.若A 是有限集或可数集,B 是不可数集,则以下不对的是( ). A .A B 是可数; B .A B 是不可数; C .A B c =; D .A B B = 2.设E 是任一可测集,则( ). A .E 是开集; B .0ε?>,存在开集G E ?,使得(\)m G E ε<; C .E 是闭集; D . E 是 F σ型集或 G δ型集. 3.下列关系式中成立的是( ) ①()A B B A =\ ,②()A B B A = \,③()B A B A ''=' , ④() B A B A =,⑤()B A B A =,其中B A ,是二集合. A .①② B .③④⑤ C .③⑤ D .①②③④⑤ 4. 设n E R ?,mE <+∞,{}()n f x 在E 上几乎处处收敛于()f x .则( ). A .{}()n f x 在E 上处处收敛于()f x ; B .存在{}()n f x 的子列{}()i n f x ,使得{} ()i n f x 在E 上一致收敛于()f x . C . {}()n f x 在E 上一致收敛于()f x ; D . {}()n f x 在 E 上依测度收敛于()f x ; 5.设q R E ?为可测集,{}()n f x 是E 上的一列非负可测函数,则( ) A ??∞→∞ →≤E n n n E n dx x f dx x f )(lim )(lim B ??∞→∞ →≥E n n n E n dx x f dx x f )(lim )(lim C ??∞→∞ →=E n n n E n dx x f dx x f )(lim )(lim D ??∞→∞ →=E n n n E n dx x f dx x f )(lim )(lim 三.判断题(每题2分,共10分) 1. 0mE =E ?是有限集或可数集. ( ) 2. 若开集1G 是开集2G 的真子集,则12mG mG < ( ) 3. 直线上的开集至多是可数多个互不相交的开区间的并 ( ) 4. 设()f x ,()g x 是可测集E 上的可测函数,则()()f x g x 也是E 上的可测函数 ( ) 5.可测函数)(x f 在E 上L 可积?)(x f 在E 上L 可积 ( ) 四.证明题(每题8分,共40分) 1.证明: 设()f x 是(,)-∞+∞上的实值连续函数,则a R ?∈,{} ()E x f x a =>是 试 卷 密 封 装 订 线 院 系 班 级 姓 名 学 号

《实变函数》复习题

《实变函数》复习题 黔南民族师范学院数学系 2006年7月

第一章 集 合 论 基 础 一、填空题 1.设?? ????≤≤+?=i x i x A i 1111,,则U =_________________. N i ∈∞ =1i i A 2.设??? ? ??+<≤=i x x A i 110,,则_________________. N i ∈=∞ =I 1i i A 3.??????+?=+1212,012m A m ,??? ???+=m A m 211,02,L ,2,1=m ,则 =n n A lim ____________,=n n A lim ______________. 4.,,2,1),,0(1 ,0(212L ===?m m A m A m m 则 =n n A lim ____________, =n n A lim _______________. 5.欲使{自然数全体}~{正奇数全体},只须令映照=)(n ?___________,为自然数. n 6.欲使~),0(+∞),(+∞?∞,只须令映照=)(x ?_____________,x 为正实数. 7.设M ={代数数全体},则M =___________,=M R \1 ___________________. 8.设{实数列全体},则的势为___________. E ∞=E ∞ 9.设[0,1]中无理数全体所成集为E ,则=E _________. 10.设集合A 、B 、满足:,若C A B C ??A ~,则___________________. C 二、证明题

实变函数测试题与答案

实变函数测试题 一,填空题 1. 设1,2n A n ??=????, 1,2n =L , 则lim n n A →∞ = 、 2. ()(),,a b -∞+∞:,因为存在两个集合之间的一一映射为 、 3. 设E 就是2R 中函数1cos ,00,0 x y x x ?≠?=?? =?的图形上的点所组成的 集合,则E '= , E ?= 、 4. 若集合n E R ?满足E E '?, 则E 为 集、 5. 若(),αβ就是直线上开集G 的一个构成区间, 则(),αβ满足: , 、 6. 设E 使闭区间[],a b 中的全体无理数集, 则mE = 、 7. 若()n mE f x →()0f x ??=?? , 则说{}()n f x 在E 上 、 8. 设n E R ?, 0n x R ∈,若 ,则称0x 就 是E 的聚点、 9. 设{}()n f x 就是E 上几乎处处有限的可测函数列, ()f x 就是E 上 几乎处处有限的可测函数, 若0σ?>, 有 , 则称{}()n f x 在E 上依测度收敛于()f x 、

10. 设()()n f x f x ?,x E ∈, 则?{}()n f x 的子列{} ()j n f x , 使得 、 二, 判断题、 正确的证明, 错误的举反例、 1. 若,A B 可测, A B ?且A B ≠,则mA mB <、 2. 设E 为点集, P E ?, 则P 就是E 的外点、 3. 点集11,2,,E n ??=???? L L 的闭集、 4. 任意多个闭集的并集就是闭集、 5. 若n E R ?,满足*m E =+∞, 则E 为无限集合、 三, 计算证明题 1、 证明:()()()A B C A B A C --=-U I 2、 设M 就是3R 空间中以有理点(即坐标都就是有理数)为中心, 有理数为半径的球的全体, 证明M 为可数集、 3、 设n E R ?,i E B ?且i B 为可测集, 1,2i =L 、根据题意, 若有 ()()*0,i m B E i -→ →∞, 证明E 就是可测集、 4. 设P 就是Cantor 集, ()[]32ln 1,(),0,1x x P f x x x P ?+ ∈? =? ∈-?? 、 求1 0(L)()f x dx ?、 5. 设函数()f x 在Cantor 集0P 中点x 上取值为3x , 而在0P 的余

实变函数复习题.docx

《实变函数》 一、单项或多项选择题 1、下列正确的是(234 (3) (?1UB )\C = ?1U (B C UC )C 2、下列正确的是(24 ) (1) 无理数集是可数集; (2) 超越数构成的集合是不可数集; (3) 若/?屮两个Lebesgue 可测集A 和B 的基数相等,则它们的测度也相等; (4) 0表示全体有理数集,则Q?。也是可数集. 3、在R 中令A = {1,丄丄…丄,…},则( 2 3 n 6、设几九 wM(X),则(12 3 4 (3) /2 G M(X) 7、若/在[0,1]上乙可积,则下列成立的是 8、设= 1,2,3,…)是X 上儿乎处处有限的可测函数,则下列结论正确的是(1 (1) 若人 则£—/,心.; (1) A\(B\C) = (A\B)\C (2) AU(BAC) =(AUB )n (AUC ) (4)⑷B)\C = A\(BUC ) (1) A 为闭集 (2) A 为开集 (3) 几{0} (4) A 为疏集 4、设 AuR 满足 mA = 0 ,贝 ij ( 1 3 (1) A 为Lebesgue 可测集 ) (2) (3)任意可测函数/在A 上可积 (4) 4为疏集 5、在/?上定义/(%),当兀为有理数时, f(x) = 1 ,当x 为无理数时,/(x) = 0,贝ij( 3 (1) /儿乎处处连续 (2) /不是可测函数 (3) /在上处处不连续 (4) /在/?上为可测函数 ⑴\f <+oo 在[0,1 ]上儿乎处处成立 (2) |.f|在[0,1]上厶可积 (3) /在[0,1]±几乎处处连续 (4)兀在[of 上非厶可积

相关主题
文本预览