当前位置:文档之家› 指数对数运算经典基础题目题目

指数对数运算经典基础题目题目

指数对数运算经典基础题目题目
指数对数运算经典基础题目题目

指数与对数运算

指数运算

教学目标:

1.掌握根式与分数指数幂的互化;

2.熟练运用有理指数幂运算性质进行化简、求值;

3.培养学生的数学应用意识。 教学重点:有理指数幂运算性质运用。 教学难点:化简、求值的技巧

知识梳理

指数幂

1、根式:如果x n =a,,则x 叫做__________其中n>1, 且n ∈N*. 式子n a 叫做______,这

里n 叫做______,a 叫做_______.

2、根式性质:①当n 为奇数时,正数的n 次方根是一个_____, 负数的n 次方根是一个______.

这时n 次方根用符号n a 表示; ②当n 为偶数时,正数的n 次方根有两个,它们互为_____数,

分别用____________表示. ③当n 为奇数时 (n a)n =____; ④当n 为偶数时, n a n =_______________.⑤负数没有____次方根; 零的任何次方根都是零.

3、分数指数幂的意义:a m n =________; a -m n =_______ (a>0,m,n ∈N*,且n>1).

4、有理数指数幂运算性质:a r a s =______; (a r )s =_______;

(ab)r =___________;(a>0,b>0,r,s ∈Q).

5、无理数指数幂:a α (a>0,α是无理数) 是一个确定的实数.适合有理数指数幂运算性质。

例1:计算或化简 (1) 3(-6)3+ 4(5-4)4+3(5-4)3; (2) ()[]2

1

75.0343031

01.016222364++-+???? ??-----; 解:(1) 3(-6)3+ 4(5-4)4+3(5-4)3

=6446-++=-

(2) ()[]21

75.034303101.016222364

++-+???? ??----- =1

3434134(110(2))()42----+++

-=3780- 例2计算已知(1),321

21

=+-a a 求221,--++a a a a 的值

(2)若32121

=+-x x ,求2

3222323-+-+--x x x x 的值. 解:(1)2111222()

a a x x --+=-+=7 2221247()a a a

a --+=-=+ (2)33

1112222()(1)18x x

x x x x ---+=+-+= 由(1)的解答可知2247x x -+= 所以2

32223

23

-+-+--x x x x =18314723-=-

对数运算

目标

(一) 教学知识点

1. 对数的概念;

2.对数式与指数式的互化.

3.能够进行对数式与指数式的互化

4灵活运用对数的运算性质及换底公式进行运算

(二) 能力训练要求

1.理解对数的概念;;3.培养学生数学应用意识.

(三)德育渗透目标

1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题;

3.了解对数在生产、生活实际中的应用.

教学重点

对数的定义理解以及对数的运算性质的理解及应用..

教学难点

对数概念的理解、对数运算性质的证明方法与对数定义的联系.

知识梳理

对数

1、对数概念:如果a b =N,(a>0,a ≠1),那么b 叫做________________记作____,其中a 叫做

对数的________,b 叫做对数的________.以10为底的对数叫___________,记作________以无理数e 为底的对数叫____________,记作____________.

2、对数性质:①零和负数没有对数;②log a 1=________;③log a a=_______;④a log a N =______.

3、对数运算性质:如果a>0,a ≠1,M>0,N>0,那么①log a (MN)=__________;log a M N

=____________;③log a M n

=______________.

4、对数换底公式:log a b=_____________(a>0,a ≠1;c>0,c ≠1;b>0)

例1(1)21log 8

(2)271log 81

解:(1)21log 8

=32log 32-=- (2)342714log log 381

33-==- 例 2(1)2525411(log 5log )(log 2log )52+?+235

111(2)log log log 2589 解:(1)

2525411(log 5log )(log 2log )52+?+=42525411(log 25log )(log 4log )52+?+

=425log 5log 2=lg 5lg 212lg 22lg 54

= (2) 235111log log log 2589=2351112lg53lg 22lg3log log log 122589

lg 2lg3lg5---==- 例 3(1) 2lg 20lg5(lg 2)+ (2) 22lg 4lg 258lg2lg5++

解:(1) 2lg 20lg5(lg 2)+=2(1lg 2)(1lg 2)1(lg2)++-=

(2)22

22lg 4lg 258lg2lg5=((8lg2lg52lg 2)2lg5)++++ =24

4(lg 2lg5)=+ 例49935 (1)log 5,log 7log 9

a b ==求 2242(2)log 3,log 7log 56a b ==求

解:5656(1)log 81loglog 71a =-=-

(2)5656565656115log 98log (492)2log 7log 22log 2233

a a a a -+=?=+=+=+

= 例5、若a, b , c 是不为1的正数,a x =b y =c z 且 1x +1y +1z

=0. 求证: abc=1. 解:令x y z a b c t ===,则log ,log ,log a b c x t y t z t ===

所以111111log ,log ,log ,log log log log t t t t t t t a b c a b c abc x y z x y z

===++=++= 而1x +1y +1z

=0所以 所以log 0,1t abc abc == 例6:已知732=0log log log x (),

轾犏臌,求x -13 解:因为

732=0log log log x (),轾犏臌所以32=1log log x (),2=3log x ,x=8,x -13=12

100道指数和对数运算

指数和对数运算 一、选择题 1.log ( ). A .-12 D .12 2.已知 3log 2 a =,那么 33log 82log 6 -用a 表示是( ) A .52a - B .2a - C .2 3(1)a a -+ D . 2 31a a -- 3.1 2lg 2lg 25 -的值为 A .1 B .2 C .3 D .4 4.已知4213 5 3 2,4,25a b c ===,则( ) A. c a b << B. a b c << C.b a c << D. b c a << 5.设3 .02.03.03.0,3.0,2.0===z y x ,则z y x ,,的大小关系为( ) A.x z y << B. y x z << C. y z x << D. z y x << 6.设0.2 1.6 0.2 2,2,0.4a b c ===,则,,a b c 的大小关系是() A c a b <<. B .c b a << C .a b c << D .b a c << 二、填空题 7.7 33log 8lg 125lg ++= . 8.2 log 510+log 50.25=_________. 9.22log 12log 3-= . 10.若lg2 = a ,lg3 = b ,则lg 54=_____________. 11.若2log 31x =,则3x 的值为 。 12.化简2 log 2 lg5lg2lg2+-的结果为__________. 13.计算=÷--21 100)25lg 41 (lg _______. 三、解答题 14.(本小题满分12分)计算 (Ⅰ)2 221 log log 6log 282 -; (Ⅱ)213 4 270.00818-?? -+ ? ?? 15. lg(x 2 +1)-2lg(x+3)+lg2=0

对数运算练习题

一、自学指导:结合下列问题,请你用5分钟的时间独立阅读课本P-P 页例3完。 1、探究:根据对数的定义推导换底公式log log log c a c b b a =(0a >,且1a ≠;0 c >,且1c ≠;0b >). 2、运用换底公式推导下列结论:log log m n a a n b b m = ;1log log a b b a = 【小组讨论】请大家用4分钟的时间交流问题的答案。 二、自学检测:(分钟) 1、求值:(1)log 89log 2732 (2)lg 243 lg9 2、(1)设lg 2a =,lg3b =,试用a 、b 表示5log 12. (2)已知 2log 3 = a , 3log 7 = b, 用 a, b 表示42log 56 3、 (1)若2510a b ==,则11a b += .(2)设),0(,,+∞∈z y x 且z y x 643== ,求证:z y x 1211=+ . 三、当堂检测 1、计算: (1 )4912 log 3log 2log ?- (2) 9 1 log 81log 251log 532 ??

(3) 4839(log 3log 3)(log 2log 2)++ (4)2log 5log 4log 3log 5432??? (5) 0.21log 35-; (6)(log 2125+log 425+log 85)(log 52+log 254+log 1258). (7)log 43·log 92+log 24 64; (8) log 932·log 6427+log 92·log 427. 2、(1)化简:532111 log 7log 7log 7 ++ ;(2)设23420052006log 3log 4log 5log 2006log 4m ???=, 求实数m 的值. 3、已知:45log ,518,8log 3618求==b a (用含a , b 的式子表示)

对数与对数的运算练习题及答案

对数与对数运算练习题及答案 一.选择题 1.2-3=18化为对数式为( ) A .log 182=-3 B .log 18 (-3)=2 C .log 218=-3 D .log 2(-3)=18 2.log 63+log 62等于( ) A .6 B .5 C .1 D .log 65 3.如果lg x =lg a +2lg b -3lg c ,则x 等于( ) A .a +2b -3c B .a +b 2-c 3 C.ab 2 c 3 D.2ab 3c 4.已知a =log 32,那么log 38-2log 36用a 表示为( ) A .a -2 B .5a -2 C .3a -(1+a )2 D .3a -a 2-1 5. 的值等于( ) A .2+ 5 B .2 5 C .2+5 2 D .1+5 2 6.Log 22的值为( ) A .- 2 B. 2 C .-1 2 D.1 2 7.在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2<a <3或3<a <5 C .2

10.若102x =25,则x 等于( ) A .lg 15 B .lg5 C .2lg5 D .2lg 15 11.计算log 89·log 932的结果为( ) A .4 B.53 C.14 D.35 12.已知log a x =2,log b x =1,log c x =4(a ,b ,c ,x >0且≠1),则log x (abc )=( ) A.47 B.27 C.72 D.74 二.填空题 1. 2log 510+log 50.25=____. 2.方程log 3(2x -1)=1的解为x =_______. 3.若lg(ln x )=0,则x =_ ______. 4.方程9x -6·3x -7=0的解是_______ 5.若log 34·log 48·log 8m =log 416,则m =________. 6.已知log a 2=m ,log a 3=n ,则log a 18=_______.(用m ,n 表示) 7.log 6[log 4(log 381)]=_______. 8.使对数式log (x -1)(3-x )有意义的x 的取值范围是_______ 三.计算题 1.计算: (1)2log 210+log 20.04 (2)lg3+2lg2-1lg1.2 (3)log 6112-2log 63+13 log 627 (4)log 2(3+2)+log 2(2-3); 2.已知log 34·log 48·log 8m =log 416,求m 的值.

对数与对数的运算精典练习题

2.2.1 对数与对数的运算 练习一 一、选择题 1、 2 5) (log 5 a -(a ≠0)化简得结果是( ) A 、-a B 、a 2 C 、|a | D 、a 2、 log 7[log 3(log 2x )]=0,则2 1- x 等于( ) A 、3 1 B 、 3 21 C 、2 21 D 、 3 31 3、 n n + +1log (n n -+1)等于( ) A 、1 B 、-1 C 、2 D 、-2 4、 已知32a =,那么33log 82log 6-用表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 23a a - 5、 2log (2)log log a a a M N M N -=+,则N M 的值为( ) A 、4 1 B 、4 C 、1 D 、4或1 6、 若log m 9n>1 B 、n>m>1 C 、0

指数与对数运算练习题

1、用根式的形式表示下列各式)0(>a (1)51a = (2)34 a = (3)35 a - = (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4 y x = (2))0(2>=m m m (3 = (4 = ; (5)a a a = ; 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)31()4-= ;(4)3 416()81 - = (5)12 2 [(]- = (6)(12 2 1??-???? = (7)=3 264 4.化简 (1)=??12 74331a a a (2)=÷?654323 a a a (3)=÷-?a a a 9)(34 323 (4)322 a a a ?= (5)3 1 63)278(--b a = (7)()0,053542 15 65 8≠≠÷???? ? ? ?- -b a b a b a = 5.计算 (1) 43 512525÷ - (2) (3)21 0319)41 ()2(4)21(----+-?- ()5.02 1 20 01.04122432-?? ? ???+??? ??-- (5)48 37 3271021.097203 225 .0+ -? ? ? ??++? ?? ??- -π (6)241 30.75 3323(3)0.04[(2)]168 ----++-+ (7)( ) 3 263 425.00 3 1323228765 .1?? ? ??--?+?+?? ? ??-?- 6.解下列方程 (1)13 1 8 x - = (2)151243 =-x (3)1321(0.5)4x x --= 7.(1).已知112 2 3a a -+=,求下列各式的值(1)1a a -+= ;(2)22 a a -+= (2).若1 3a a -+=,求下列各式的值:(1)112 2 a a - += ; (2)22 a a -+= ; (3).使式子34 (12) x --有意义的x 的取值范围是 _. (4).若32a =,1 35b -=,则323 a b -的值= .

对数运算经典练习题

2.2 对数函数 一、选择题 1、 2 5)(log 5 a -(a ≠0)化简得结果是( ) A 、-a B 、a 2 C 、|a | D 、a 2、 log 7[log 3(log 2x )]=0,则2 1 -x 等于( ) A 、3 1 B 、3 21 C 、 2 21 D 、 3 31 3、 n n ++1log (n n -+1)等于( ) A 、1 B 、-1 C 、2 D 、-2 4、 已知32a =,那么33log 82log 6-用表示是( ) A 、2a - B 、52a - C 、23(1)a a -+ D 、 23a a - 5、 2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、4 1 B 、4 C 、1 D 、4或1 6、 若log m 9n>1 B 、n>m>1 C 、0

A 、a5或a <2 B 、 25<

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n ( N * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5)6323 1.512??= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为 O x y a d c b

对数计算练习题

对数计算练习题 一、选择题 1、以下四式中正确的是( ) A 、log 22=4 B 、log 21=1 C 、log 216=4 D 、log 2 21=41 2、下列各式值为0的是( ) A 、10 B 、log 33 C 、(2-3)° D 、log 2∣-1∣ 3、251log 2的值是( ) A 、-5 B 、5 C 、51 D 、-5 1 4、若m =lg5-lg2,则10m 的值是( ) A 、2 5 B 、3 C 、10 D 、1 5、设N =3log 12+3log 15,则( ) A 、N =2 B 、N =-2 C 、N <-2 D 、N >2 6、如果方程05lg 7lg lg )5lg 7(lg lg 2 =+++x x 的两个根是的值是则αββα,,( )、 A. 5lg 7lg B. 35lg C. 35 D.35 1 7.若234log [log (log )]0x =,则x 的四次方根是 ( ) (A )1(B )±2 (C )22(D )22± 8、已知732log [log (log )]0x =,那么12x -等于( ) A 、13 B 23 C 22 D 33 二、填空题 1、用对数形式表示下列各式中的x 10x =25:____; 2x =12:____;4x = 6 1:____

2、lg1++=_____________ 3、Log 155=m,则log 153=________________ 4、14lg 2lg 2+-+∣lg5-1∣=_________ 5有下列5个等式,其中a>0且a ≠1,x>0 , y>0 ①y log x log )y x (log a a a +=+,②y log x log )y x (log a a a ?=+, ③y log x log 2 1y x log a a a -=,④)y x (log y log x log a a a ?=?, ⑤)y log x (log 2)y x (log a a 22a -=-, 将其中正确等式的代号写在横线上_____________. 三、化简下列各式: (1)51lg 5lg 32lg 4-+; (2)536lg 27lg 321240lg 9lg 211+--+ ; (3)3lg 70lg 7 3lg -+; (4)120lg 5lg 2lg 2-+ 四 解答题 1、求下列各式的值 ⑴2log 28 ⑵3log 39 ⑶2 52log 1 ⑷373log 1 2、求下列各式的值 ⑴lg10-5 ⑵ ⑶log 2 81 ⑷log 27181

对数与对数的运算练习题

对数与对数运算练习题一.选择题 1.2-3=1 8 化为对数式为( ) A.log1 82=-3 B.log1 8 (-3)=2 C.log 21 8 =-3 D.log 2 (-3)= 1 8 2.log 63+log 6 2等于( ) A.6 B.5 C.1 D.log 6 5 3.如果lg x=lg a+2lg b-3lg c,则x等于( ) A.a+2b-3c B.a+b2-c3 4.已知a=log32,那么log38-2log36用a表示为( ) A.a-2 B.5a-2 C.3a-(1+a)2D.3a-a2-1 5.的值等于( ) A.2+ 5 B.25 C.2+ 5 2 D.1+ 5 2 6.Log 2 2的值为( ) A.- 2 C.-1 2 7.在b=log(a-2)(5-a)中,实数a的取值范围是( ) A.a>5或a<2 B.2<a<3或3<a<5 C.2

A.x=1 9 B.x= x 3 C.x= 3 D.x=9 9.若log 2(log 3 x)=log 3 (log 4 y)=log 4 (log 2 z)=0,则x+y+z的值为( ) A.9 B.8 C.7 D.6 10.若102x=25,则x等于( ) A.lg 1 5 B.lg5 C.2lg5 D.2lg 1 5 11.计算log 89·log 9 32的结果为( ) A.4 12.已知log a x=2,log b x=1,log c x=4(a,b,c,x>0且≠1),则log x(abc)=( ) 二.填空题 1. 2log 5 10+=____. 2.方程log 3 (2x-1)=1的解为x=_______. 3.若lg(ln x)=0,则x=_ ______. 4.方程9x-6·3x-7=0的解是_______ 5.若log 34·log 4 8·log 8 m=log 4 16,则m=________. 6.已知log a2=m,log a3=n,则log a18=_______.(用m,n表示) 7.log 6[log 4 (log 3 81)]=_______. 8.使对数式log (x-1) (3-x)有意义的x的取值范围是_______三.计算题 1.计算: (1)2log 2 10+ (2)错误!

指数对数基本运算

2016-2017学年度???学校9月月考卷 1.计算:________. 2.已知666log log log 6a b c ++=,其中*,,a b c N ∈,若,,a b c 是递增的等比数列,又b a -为一完全平方数,则a b c ++=___________. 3.已知3log 21x =,则42x x -=________. 4.lg83lg5+的值是 . 5.lg0.01+log 216=_____________. 6= . 7.已知,53m b a ==且,则m 的值为 . 8.已知y x y x y x lg lg 2lg )2lg()lg(++=++-,则 9,0a b c <<<,0)()()(;③c d <;④c d >.其中可能成立的是 (填序号) 10. 11 12.如果22log log 4,那么m n m n +=+的最小值是 . 13.若log 21a <,则a 的取值范围是 14的定义域为 . 15.32-,三个数中最大数的是 . 16.若log 4(3a +4b)=log a +b 的最小值是 .

参考答案 1.1 【解析】=lg10=1. 2.111 【解析】 试题分析:66666log log log log 6,6a b c abc abc ++===, 2b ac =,所以366,36b b ==.46ac =,因为b a -为一完全平方数,所以27,48,111a c a b c ==++=. 考点:1.对数运算;2.数列. 【思路点晴】本题涉及很多知识点,一个是对数加法运算,用的是公式 log log log a a a b c bc +=.然后,,a b c 是递增的等比数列,可得2b ac =,接下来因为b a -为一完全平方数,比36小的完全平方数只有25,16,9,故可以猜想27a =,通过计算可得27,48,111a c a b c ==++=.有关几个知识点结合起来的题目,只需要对每个知识点逐个击破即可. 3.6 【解析】 试题分析:由条件可知2log 3x =,故222log 3log 34222936x x -=-=-=. 考点:对数运算的基本性质. 4.3 【解析】 试题分析:3lg83lg5lg8lg5lg10003+=+==。 考点:对数运算法则的应用。 5.2 【解析】lg0.01+log 216=-2+4=2 考点:本题考查对数的概念、对数运算的基础知识,考查基本运算能力. 6【解析】 考点:指数和对数的运算法则。 7【解析】略 8.2 【解析】略

对数运算练习及答案

计算题 1、lg 5·lg 8000+06.0lg 6 1lg )2(lg 23++. 2、 lg 2(x +10)-lg(x +10)3=4. 3、23log 1log 66-=x . 4、9-x -2×31-x =27. 5、x )8 1(=128. 6、5x+1=12 3-x . 7、10log 5log )5(lg )2(lg 2233++·.10 log 18 8、 (1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92). 9、求121 log 8.0--=x x y 的定义域. 10、log 1227=a,求log 616. 11、已知f(x)=1322+-x x a ,g(x)=522 -+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x)>g(x). 12、已知函数f(x)=321121x x ?? ? ??+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0. 13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数. 14、求log 927的值. 15、设3a =4b =36,求a 2+b 1的值. 16、log 2(x -1)+log 2x=1 17、4x +4-x -2x+2-2-x+2+6=0 18、24x+1-17×4x +8=0 19、22)223()223(=-++-x x ±2

20、01433214111=+?------x x 21、042342222=-?--+-+x x x x 22、log 2(x -1)=log 2(2x+1) 23、log 2(x 2-5x -2)=2 24、log 16x+log 4x+log 2x=7 25、log 2[1+log 3(1+4log 3x)]=1 26、6x -3×2x -2×3x +6=0 27、lg(2x -1)2-lg(x -3)2=2 28、lg(y -1)-lgy=lg(2y -2)-lg(y+2) 29、lg(x 2+1)-2lg(x+3)+lg2=0 30、lg 2x+3lgx -4=0 部分答案 2、解:原方程为lg 2(x +10)-3lg(x +10)-4=0, ∴[lg(x +10)-4][lg(x +10)+1]=0. 由lg(x +10)=4,得x +10=10000,∴x=9990. 由lg(x +10)=-1,得x +10=0.1,∴x=-9.9. 检验知: x=9990和-9.9都是原方程的解. 3、解:原方程为3 6log log 626=x ,∴x 2=2,解得x=2或x=-2. 经检验,x=2是原方程的解, x=-2不合题意,舍去. 4、解:原方程为2)3(x --6×3-x -27=0,∴(3-x +3)(3-x -9)=0. ∵3-x +3≠0,∴由3-x -9=0得3-x =32.故x=-2是原方程的解. 5、 解:原方程为x 32-=27,∴-3x=7,故x=-3 7为原方程的解. 6、解:方程两边取常用对数,得:(x +1)lg5=(x 2-1)lg3,(x +1)[lg5-(x -1)lg3]=0. ∴x +1=0或lg5-(x -1)lg3=0.故原方程的解为x 1=-1或x 2=1+5log 3.

对数运算提高练习题(含答案)【强烈推荐!】

对 数 一、选择题 1、2 5)(log 5a -(a ≠0)化简得结果是( ) A 、-a B 、a 2 C 、|a | D 、a 2、 log 7[log 3(log 2x )]=0,则21 -x 等于( ) A 、31 B 、321 C 、221 D 、331 3、 n n ++1log (n n -+1)等于( ) A 、1 B 、-1 C 、2 D 、-2 4、 已知32a =,那么33log 82log 6-用表示是( ) A 、2a - B 、52a - C 、23(1)a a -+ D 、 23a a - 5、 2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、4 1 B 、4 C 、1 D 、4或1 6、 若log m 9n>1 B 、n>m>1 C 、05或a <2 B 、 25<

指数式与对数式的运算

指数式与对数式的运算 指数与指数幂的运算 教学目标:理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握根式与分数指数幂的互化,掌握有理数指数幂的运算. 知识点回顾: 1. 若n x a =,则x 叫做a 的n 次方根,记为n a ,其中n >1,且n N *∈.(n 叫做根指数,a 叫做被开方数)n 次方根具有如下性质: (1)在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数;正数的偶次方根是两个绝对值相等、符号相反的数,负数的偶次方根没有意义;零的任何次方根都是零. (2)n 次方根(*1,n n N >∈且)有如下恒等式: ()n n a a =;,||,n n a n a a n ?=?? 为奇数为偶数;np n mp m a a =,(a ≥0). 2.规定正数的分数指数幂:m n m n a a = (0,,,1a m n N n *>∈>且); 注意口诀:(根指 数化为分母,幂指数化为分子), 11 ()()(0,,,m m m n n n a a m n N a a -+==>∈且1)n >. 注意口诀:底数取倒数,指数取相反数.0的负分数指数幂没有意义。 3.指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ 范例解析 例1求下列各式的值: (1)3n n π-()(*1,n n N >∈且); (2)2()x y -. 解:(1)当n 为奇数时,33n n ππ-=-(); 当n 为偶数时,3|3|3n n πππ-=-=-(). (2)2()||x y x y -=-. 当x y ≥时,2()x y x y -=-;当x y <时,2()x y y x -=-. 例2已知221n a =+,求33n n n n a a a a --++的值. 解:332222()(1)1121122121 n n n n n n n n n n n n a a a a a a a a a a a a ------++-+==-+=+-+=-+++. 例3化简:(1)2 115113366 22(2)(6)(3)a b a b a b -÷-; (2)3322 114 4 23 ()a b ab b a b a ?(a >0,b >0); (3)24 3 819?.

对数及其运算的练习题(附答案)

精选 姓名_______ §2.2.1 对数与对数运算 一、课前准备 1,。对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,lo g a N 是对数式。) 由于N a b =>0故lo g a N 中N 必须大于0。 2.对数的运算性质及换底公式. 如果 a > 0,a ≠ 1,b>0,M > 0, N > 0 ,则:(1)log ()a MN = ; (2)n m m n b a = log (3)log a M N = ;(4) log n a M = . (5) b a b a =log 换底公式log a b = . (6) b a b a =log (7)b a b a n n log 1log = 考点一: 对数定义的应用 例1:求下列各式中的x 的值; (1)23log 27=x ; (2)32log 2-=x ; (3)91 27log =x (4)162 1log =x 例2:求下列各式中x 的取值范围; (1))10(2 log -x (2)22) x ) 1(log +-(x (3)2 1)-x ) 1(log (+x 例3:将下列对数式化为指数式(或把指数式化为对数式) (1)3log 3 =x (2)6log 64 -=x (3)9 132-= (4)1641=x )( 考点二 对数的运算性质 1.定义在R 上的函数f(x )满足f(x)=???>---≤-) 0(),2()1(log ) 0(),4(2x x f x f x x ,则f(3)的值为__________ 2.计算下列各式的值: (1)245lg 8lg 3 4 4932lg 21+- (2) 8.1lg 10lg 3lg 2lg -+ 3.已知)lg(y x ++)32lg(y x +-lg3=lg4+lgx+lgy,求x:y 的值 4.计算: (1))log log log 5 825 41252++()log log log 8 1254 252 5++( (2) 3 4 7 3 1 59725log log log log ??+) 5353( 2log --+

对数运算练习题(含答案)

对数运算练习题 1.将下列指数式改为对数式: (1)21164-??= ???_________________ (2)3 481x -=__________________ 2.将下列对数式改为指数式: (1 )43log 4= ___________________ (2)12log 5x =-______________ 3.33333713log log log 4log 242 -++=___________ 4.1log log 2log log 2 a a a a x m n p =--,则x =___________ 5. lg0.06=_____________ 6.下列指数式与对数式互化不正确的一组是 ( ) A 0101lg10==与 B 132711127 log 333-==-与 C 1 23log 9293==与 D 15log 5155==与 7.已知log 162x =,则x 的值为 ( ) A 4- B 4 C 4± D 14 8.下列各等式中,正确运用对数运算性质的是 ( ) A ( ()22lg lg lg x x y =+ B (()22lg lg lg 2lg x x y z =+ + C (2lg 2lg lg 2lg x x y z = +- D (21lg 2lg lg lg 2x x y z =++ 9.以下运算中结果正确的是 ( ) A 1010log 2log 51+= B 444log 61log 2log 32== C 351log 2lg lg 2lg 5x y z ??=+- ?? ? D 21log 83==10.已知3log 2a =,那么33log 82log 6-,用a 表示是 ( ) A 2a - B 52a - C ()2 31a a -+ D 231a a -- 11.计算:

指数对数运算经典习题及答案.doc

指数对数运算 一、选择题 1.3 log 9log 28的值是 ( ) A . 3 2 B .1 C . 2 3 D .2 2.设a,b,c 都是正数,且3a =4b =6,那么 ( ) A . b a c 1 11+= B . b a c 122+= C . b a c 2 21+= D . b a c 212+= 3.已知==)5(,)10(f x f x 则 ( ) A .5 10 B . 10 5 C. 10log 5 D. 5lg 4.若a>1,b>1,a a p b b b log )(log log =,则a p 等于 ( ) A .1 B .b C .log b a D .a b a log 5.设15 112 1)3 1 (log )3 1 (log --+=x ,则x 属于区间 ( ) A .(-2,-1) B .(1,2) C .(-3,-2) D .(2,3) 6.若32x +9=10·3x ,那么x 2 +1的值为 ( ) A .1 B .2 C .5 D .1或5 7.已知2lg(x -2y)=lgx+lgy ,则y x 的值为 ( ) A .1 B .4 C .1或4 D . 4 1 或4 8.方程log 2(x+4)=2x 的根的情况是 ( ) A .仅一个正根 B .有两正根 C .有两负根 D .有一正根和一负根 9.下列各式中成立的一项是 ( ) A .7177)(m n m n = B. 3124 3)3(-=- C. 43 433)(y x y x +=+ D. 33 39= 10. 化简??? ? ??÷???? ??-???? ??656131 21213231 3b a b a b a 的结果是 ( ) A .a 6 B. a - C. a 9- D. 2 9a 11.若x x 则,0)](log [log log 25.02=等于 ( ) A .2 B. 2 C. 2 1 D. 1

对数与对数的运算习题(经典)

2.1 对数与对数的运算 练习一 一、选择题 1、 2 5)(log 5a -(a ≠0)化简得结果是( ) A 、-a B 、a 2 C 、|a | D 、a 2、 log 7[log 3(log 2x )]=0,则21-x 等于( ) A 、 31 B 、321 C 、221 D 、331 3、 n n ++1log (n n -+1)等于( ) A 、1 B 、-1 C 、2 D 、-2 4、 已知32a =,那么33log 82log 6-用表示是( ) A 、2a - B 、52a - C 、23(1)a a -+ D 、 23a a - 5、 2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、 41 B 、4 C 、1 D 、4或1 6、 若log m 9n>1 B 、n>m>1 C 、0

11、 若2log 2,log 3,m n a a m n a +===___________________ 12、 lg25+lg2lg50+(lg2)2= 三、解答题 13、 222522122(lg )lg lg (lg )lg +?+-+ 14、 若lga 、lgb 是方程01422=+-x x 的两个实根,求2)(lg )lg(b a a b ?的值。 15、 若f(x)=1+log x 3, g(x)=2log x 2, 试比较f(x)与g(x)的大小. 答案: 一、选择题 1、C ; 2、C ; 3、B ; 4、A ; 5、B ; 6、C ; 7、D 二、填空题 8、 2 1 9、a b a -+1 2 10、a -2 11、12 12、2 二、解答题 13、解:原式2 )12(lg )5lg 2lg 2(2lg -++=

高中数学指数对数的运算

高中数学指数、对数的运算一.选择题(共28小题) 1.(2014?济南二模)log2+log2cos的值为() A.﹣2B.﹣1C.2D.1 2.(2014?成都一模)计算log5+所得的结果为() A.1B.C.D.4 3.若a>2,b>2,且log2(a+b)+log2=log2+log2,则log2(a﹣2)+log2(b﹣2)=()A.0B.C.1D.2 4.(2014?泸州二模)式子log2(log216)+8×()﹣5=() A.4B.6C.8D.10 5.(2014?泸州一模)的值为() A.1B.2C.3D.4 6.(2015?成都模拟)计算21og63+log64的结果是() A.l og 2B.2C.l og63D.3 6 7.(2014?浙江模拟)log212﹣log23=() A.2B.0C.D.﹣2 8.(2014?浙江模拟)下列算式正确的是() A.l g8+lg2=lg10B.l g8+lg2=lg6C.l g8+lg2=lg16D.l g8+lg2=lg4 9.(2014?和平区二模)已知3x=5y=a,且+=2,则a的值为() A.B.15C.±D.225 10.(2013?枣庄二模)已知函数,则的值是()A.9B.﹣9C.D.

11.(2013?婺城区模拟)已知函数f(x)=log2,若f(a)=,则f(﹣a)=() A.2B.﹣2C.D. ﹣ 12.(2013?泸州一模)log2100+的值是() A.0B.1C.2D.3 13.(2013?东莞一模)已知函数f(x)=,则f(2+log32)的值为()A. B.C.D.﹣54 ﹣ 14.(2013?东城区二模)f(x)=,则f(f(﹣1))等于()A.﹣2B.2C.﹣4D.4 15.(2012?安徽)(log29)?(log34)=() A.B.C.2D.4 16.(2012?北京模拟)函数y=是() B.区间(﹣∞,0)上的减函数 A.区间(﹣∞,0) 上的增函数 D.区间(0,+∞)上的减函数 C.区间(0,+∞) 上的增函数 17.(2012?杭州一模)已知函数则=()A.B.e C.D.﹣e 18.(2012?北京模拟)log225?log34?log59的值为() A.6B.8C.15D.30 19.(2012?北京模拟)实数﹣?+lg4+2lg5的值为()A.2B.5C.10D.20

相关主题
文本预览
相关文档 最新文档