当前位置:文档之家› 几种新型纤维的性质及染色

几种新型纤维的性质及染色

几种新型纤维的性质及染色
几种新型纤维的性质及染色

几种新型纤维的性质及染色

2011-07-07 来源: 张琳琳点击次数:1223

关键字:新型纤维;Tencel纤维;聚乳酸(PLA)纤维;竹纤维;空调纤维;染色性能

近些年来,服装面料的发展日新月异,新型面料不断推出。一方面归结于科技技术的不断发展,另一方面,市场的需要是推动面料发展的直接原因。保暖与美观已不再是消费者的唯一追求,绿色保健已成为人们选择服装面料的又一焦点。应此要求,一批批新型的绿色保健面料应运而生。

1.Tencel纤维

Tencel纤维是天然纤维素纤维,采用NMMO(环状叔胺氧化物:N--甲基吗啉氧化物N-methyl-morpholine-Oxide)纺丝工艺生产而成。 Tencel纤维在生产过程中无污染并且性能优良被誉为“21世纪最有希望的绿色环保型纤维”,从而成为国内外纺织企业竞相开发的热点产品。

Tencel纤维的化学结构与棉纤维、粘胶纤维基本相同,但其聚合度高于粘胶纤维。它具有良好的吸湿性,透气性,服用舒适性;其光泽性,抗静电性,染色性,成服的尺寸稳定性,废弃后的生物降解性都很好,其湿强仅比干强降低15%~17%,缩水率不高,Tencel纤维最大的优点是生产工序少而简单,不需使用剧毒化工品;所使用的溶剂可以全部回收利用,对环境没有污染。

1.1Tencel纤维的染色特点

据大量的资料介绍,Tencel纤维与棉、粘胶同属于纤维素纤维,可以用棉用染料染色,但实验表明多数染料对Tencel纤维上染率不高,上染速率慢,难以达到得色浓艳的效果。

Tencel纤维的染色性能与粘胶纤维之所以不同,主要是由于Tencel纤维内部结构不同所致。粘胶纤维有皮层和芯层,而Tencel纤维因皮层很薄,几乎接近全芯层结构;Tencel纤维结晶度和取向度都很高,结晶度比粘胶纤维高2倍,且结晶区较长,非晶区结构也有所不同。这样染料在纤维内部的渗透性和扩散性差,染色速率慢,其匀染性差上染率低浓艳程度不及粘胶纤维。

1.2B型活性染料对Tencel纤维的染色

B型活性染料以一氯均三嗪基团为连接基,在染料母体上引入乙烯砜硫酸酯,使之兼有两种活性基团的优点。其染色性能稳定,渗透性好,固色率高,匀染性好,对染色工艺条件的变化有相当强的适应性,染色后色光鲜艳纯正,充分体现了Tencel 纤维的光泽和亮度,且该染料属绿色环保染料。

分别采用活性大红BES,活性金黄B-3RD,活性艳蓝BES在某种染色工艺及条件下上染Tencel纤维,结果如下表所示:

由上表可知:B型活性染料用于Tencel纤维染色其得色浓艳,上染率高,有着较高的耐摩擦和皂洗牢度,并且保持了Tencel纤维光泽明亮手感柔软的特点;绿色环保B型活性染料的应用,特别是B型特深色活性染料的应用,能够满足Tencel 纤维的染色加工要求,使Tencel纤维在绿色环保纺织品的开发中更具有广阔的市场前景。

1.3Tencel纤维的原纤化.

Tencel纤维由取向度很高的纤维素分子的集合体:微原纤维以及这些集合体的原纤维构成,相邻的原纤维与原纤维之间是以氢键等微弱的结合状态相联结的。在润

湿状态下,原纤维与原纤维之间的结合被切断,纤维溶胀,与纤维轴相垂直的方向的强度变得非常小。在这种状态下,若加以机械性摩擦处理,容易发生原纤化现象。

由于Tencel纤维易原纤化,染色时纤维易溶胀,一般采用多活性基团活性染料缓解这一现象。多活性基团活性染料的抗原纤化作用与活性基团在染料分子上的位置、活性基团间距、发色基团的大小和数目、染料分子桥基的弹性、反应基团活性和染料扩散能等有关,并且上染的能力还直接受染色深浅的影响。

采用合理的化学和物理方法来控制原纤化程度,就可能表现出各种外观和风格;原纤化状态不良则会使染色受到很大影响。

虽然的原纤化控制是一个麻烦的问题,然而利用这种原纤维的性质却可以达到以下各种效果:

⑴可以最大限度地发挥出桃皮绒风格的触感。

⑵通过对原纤化进行巧妙的控制,可以获得天然卷曲形成的高蓬松感。

⑶可以表现出高回弹性和良好的悬垂性。

⑷可以获得适度的防皱性和优良的尺寸稳定性。

⑸因其具有优良的染色性,故可以得到较高的发色性。

2.聚乳酸(PLA)纤维

聚乳酸(PLA)纤维兼有天然纤维和合成纤维的特点,吸湿排汗均匀、快干、阻燃性低、烟尘小、热散发小、无毒性、熔点低、回弹性好、折射指数低、色彩鲜艳、不滋长细菌和气味保留指数低等。由聚乳酸纤维制成的织物具有良好的悬垂性和手感,所制成的成衣具有穿着舒适,并具耐穿性、抗皱性、抗紫外线和导湿作用,并能释放人体气味等特性,是极佳的高级休闲服饰和优质舒适的运动服面料。

合成纤维的玻璃化温度是决定染料上染的一个重要因素,当染色温度低于玻璃化温度时,纤维内部无定形区的链段尚未发生运动,供染料分子扩散的瞬间孔隙相对较少,所以染料不会有明显的上染。当染色温度超过玻璃化温度后,上染率则随链段运动的加剧明显提高。不同制备方法及工艺生产的聚乳酸纤维会拥有不同的内部微结构,因此具有不同的玻璃化转变温度。聚乳酸(PAL)纤维染色性能和染色机理的研究对其产品开发及实际染色加工具有重要的指导意义。国内外很多研究人员都研究过PLA纤维的染色性能,并试图获得其与分散染料结构的关系。LEScheyer和YQYang等人测定了多只不同结构分散染料对PLA纤维的上染率,研究表明,分

散染料对PLA 纤维只具有中等的亲和力,染料化学结构和能量类型与上染率之间没有明显的关系。钱红飞等人研究了12只分散染料对PLA纤维的染色性能,发现分散染料分子过小或分子中极性基团过多,均对PLA纤维染色不利,而乙酸醋基的存在,可能会提高分散染料对PLA纤维的亲和力,因而具有较高的上染率。由聚乳酸纤维的 DSC分析可知:PLA纤维的玻璃化温度为71.30℃,在161.21℃与168.68℃处分别存在较大的吸收峰,可以推断该纤维用分散染料染色时,当温度低于69℃,染料上染不明显,耐热性较差,在158℃时发生熔融,染色后加工时应避免高温处理,以防纤维的损伤。

通过对PAL纤维染色温度、染色色光、分散染料升温上染特性、移染性能和提升性能的试验,试图总结分散染料结构与PLA纤维染色性能的关系。结果表明:不论是高温型还是低温型染料,不管是偶氮苯还是蕙醒结构的分散染料,它们对PIA 纤维的上染率均随温度的升高而显著增大。这可能是由于分散染料在聚醋纤维内的扩散是按自由体积模型进行的,染色温度升高引起的染料动能和纤维内自由体积的增加,导致染料在PLA纤维内的扩散速率提高。另外,尽管PLA纤维的玻璃化温度较低,但其结晶度高,因此,提高染色温度对增加染料上染量特别有效。考虑到120℃和130℃高温染色对纤维降解程度较大,强力明显降低,故认为 PLA纤维染色时,淡中色宜选用100℃,中浓色宜选用110℃。同时应该注意:PLA纤维对温度的敏感性和PET纤维有所不同。PET纤维随温度的上升,上染百分率增加很快,而PLA纤维随着温度的提高,上染百分率增加较为缓慢,而且上染百分率的增加并不随染色时间的延长而上升,一旦出现色差现象,很难像涤纶纤维那样通过染色时间的延长来纠正,因此在实际的染色过程中必须严格控制染色温度。

通过移染达到匀染,是提高PAL纤维匀染性的重要途径。移染性受诸多因素影响,例如染料结构、染色助剂、染色温度和时间等。PLA纤维、聚对苯二甲酸丙二醇醋(PTT)纤维的染色温度是110℃,涤纶(PET)纤维的染色温度为130℃。为使分散染料在PLA、PTT、PET纤维的移染性试验更接近于实际染色,该试验三种纤维的移染温度均与它们相应的染色温度相

同.

由图可知,分散染料在PAL纤维上的移染性能优于在PTT和PET纤维的移染性能,对提高PLA纤维的匀染性十分有利。从染料来看,蓝56的移染性能好于紫

31。这是因为前者的分子尺寸小,容易从纤维中扩散出来,解吸到溶液中,并再次在纤维上发生吸附和扩散。

染料的提升力是指纤维或纺织品在染色时,纤维上染料浓度或表面颜色浓度随着染液中染料用量的增加而相应递增的性能。选用十余只不同结构的分散染料,对PLA纤维在不同染料浓度下染色,然后测定各试样的K/S值,比较不同染料提升性能的差别。实验表明:相同的分散染料在PAL和PET纤维上的提升性能差别较大,其在PLA纤维上的提升性能较差,这对PLA纤维深浓色染色是不利的。因此,PLA纤维在染深时浓色更应该注意染料的选用。分析分散染料在PLA 纤维上的提升性能较差的原因,应该与其结晶度高、自由体积少,以及与染料的亲和力不如PET纤维等原因有关。另外,值得注意的是,由于分散染料在PLA纤维上的上染量普遍低于在PET纤维上的上染量,因此,在染料用量高的情况下,由于上染率不高,势必会产生因染液中染料浓度高而引起可溶性欠佳或染料未充分增溶的问题,从而影响了染料的进一步上染。

分散染料对PLA纤维的染色,其上染率高低取决于染料上染速率和对纤维亲和力的高低。而染料分子大小、极性基团性质和数目多少、分子结构形状都会影响染料的上染率和亲和力,从而影响上染率的高低。分散染料的结构与PLA纤维的上染百分率有关。偶氮结构的染料,对纤维都有较高的上染百分率,其原因可能是与染料化学结构呈线型有关。如C.I.红54,分子的平面性好,分子中共轭体系较长,与PLA纤维的接触面大,因而有较高的直接性,所以能获得较高的上染百分率。上染百分率的高低还与染料分子中的极性基团有关。PLA分子中含有大量极性基团,因此当染料分子中也有较多极性基团如-OH、-NH2、 -NHNOR、-CN、-Cl、-Br、-NO2、-SO2NH3等基团时,染料的结构性质与纤维的结构性质相接近,两者容易相亲,染色亲和力较高,如 C.I.蓝79.

由于PLA纤维耐热性差,染色温度不宜太高,时间不宜太长;且由于PLA纤维不耐碱,故分散染料聚乳酸纤维染色的最佳工艺条件是pH=5,温度110℃,时间

30min~40min。严格控制染色温度,否则不能得到良好的染色重现性,即使延长染色时间也无济于事。

3.竹纤维

竹纤维原料来源广泛,生产制造中实施绿色生产,适应市场绿色环保的前景。竹纤维的横截面成不规则的椭圆形,有中腔,业内人士称其为“会呼吸的纤维”,可在瞬间吸收并蒸发水分,其吸湿性优于棉纤维。竹纤维最突出的独有的特点是具有天然抗菌性,且不会因为反复洗涤、日晒而失去抗菌性。其织物具有与其他纤维不同的独特风格,强力高,耐磨性、吸湿性、悬垂性俱佳,手感柔软,穿着舒适凉爽,染色性能优良,光泽亮丽,且有较好的天然抗菌效果,是夏季针织和贴身纺织品的首选原料。

竹纤维的水溶速率随酸的浓度(c≤4g/L)的增加而增大,这可能是因为酸对纤维素分子中甙键的水解起催化作用,使纤维聚合度降低。竹纤维在碱作用下剧烈膨胀以致溶解,使纤维机械性能下降。其在碱中的溶失率先随浓度增加而增大,其后出现降低。出现下降的原因可能是纤维素-OH·NaOH可能随着碱的浓度增大渗透压反而减小,氢氧化钠渗透纤维困难。

竹纤维的吸湿性与粘胶纤维相当,对染料、化学试剂的吸附量较大。在加碱固色后,上染出现突降点,,这说明加入碱时,产生的纤维羟基离解成阴离子状态的数量增多,对染料阴离子斥力增加,而且,PH值过高,水解染料增多。虽然PH值增加可提高染料和纤维素纤维的反应速率,但水解速率增加的更快。随固色的继续,上染率增加,且逐渐高于染色时的上染率,说明加入碱剂后染料与纤维发生键合反应,原染色平衡被破坏,染液中的染料继续上染。

在相同上染百分率下用活性染料上染竹纤维、粘胶纤维,通过对染色K/S值的比较得出:竹纤维、粘胶纤维用活性染料染色后,竹纤维染色的表观深度大于粘胶纤维的表观深度,即竹纤维得色深于粘胶纤维。这可能与竹纤维的多孔隙结构有关,其中空式的纤维结构有利于染料的进入。又通过在相同条件下活性染料对竹纤维、粘胶纤维固色率的比较得出:在相同条件下竹纤维的固色率高于粘胶纤维的固色率。耐洗牢度与粘胶纤维几乎相同。因此,在染色方面,适合棉型粘胶的同样适用于竹纤维,其与染料分子的亲和性好,有优良的可染性,吸色均匀透彻,色牢度强,多次洗涤后仍能保持鲜艳的色彩。

竹纤维取源于成本低廉的自然物质,减少了纺织品对原油的严重依赖,有利于资源的合理利用;竹纤维的生产过程清洁卫生,有利于环境保护;竹纤维集天然纤维与人造纤维的优点于一身,且具有独特服用性能和天然抗菌性能,是安全、舒适、健康、环保的纺织面料;竹纤维的产品开发种类繁多,市场前景广阔。

4.粘胶基空调纤维

近年来,随着智能材料的不断创新,智能纤维、智能纺织品以及智能服装以异乎寻常的速度发展为时尚产品。目前主要被应用在医疗保健、军事等各种领域,并逐步向着民用服装领域普及。空调纤维是一种新型智能纤维,它是一种将相变蓄热材料技术与纤维制造技术相结合开发出的功能性产品,具有良好的调温功能。当外界环境温度升高时,相变材料吸收热量,从固态变为液态,降低了体表温度。相反,当外界环境温度降低时,相变材料放出热量,从液态变为固态,减少了人体向周围放出的热量,保持住人体的正常体温,使人体处于一种舒适的状态。针织面料与人体密切接触,普遍用于制作冬季的内衣和夏季服装,用空调纤维纺制织成的高档针织面料非常适合制作贴身穿着的冬暖夏凉的服装。

粘胶纤维具有吸湿性好、透气性好、穿着舒适、染色性好等特点,与其他纤维混纺可以生产出各种服装面料。将粘胶纤维纺丝液中混入微胶囊包裹的相变材料制得的

粘胶基空调纤维不仅具有普通空调纤维的特点,而且兼具了智能纤维的调温性,是一种非常有发展潜力的新型纤维。

空调纤维具有较明显的光滑平整纵向结构,表面有平行于纤维轴向的条纹,纵向形态呈现不规则的沟槽,有利于纤维的吸湿、导湿和放湿;横截面外缘具有不规则的锯齿形,纤维内部有气泡,即皮芯结构,球状空泡的存在较为明显。空调纤维只是在粘胶纺丝液中加入微胶囊包裹的相变材料,工艺无变化,故其截面形状较普通粘胶无变化。其断裂强力和断裂延伸率均高于普通粘胶纤维。空调纤维的摩擦系数较小,在纺纱时表现为纤维之间的抱合力较差,需要对纤维加入一定量的抗滑油剂,以确保成网、成条、成纱的质量。并且在制造过程中注意张力,以防破坏微胶囊,相变材料溢出,造成纤维粘连。

空调纤维的回潮率比常规粘胶的要高,说明空调纤维的吸湿性比较好,比棉纤维的明显高许多,这是因为粘胶类纤维的结晶度比棉纤维的要低,而吸湿和放湿均发生在无结晶区,同时,纤维大分子中,亲水基团的数目和种类均能影响吸湿能力的大小,空调纤维与普通粘胶相同,均含有大量的羟基基团,羟基的亲水性很高,吸附大量的水分子,同时纤维表面的纵向沟槽也有利于吸湿和导湿,加入微胶囊后的空调纤维,孔隙增多,吸湿能力有所增强。空调纤维的质量比电阻比普通粘胶的低,说明空调纤维比普通粘胶的导电能力要好,服用性能优良。因此空调纤维织物在使用过程中不会产生静电干扰现象,尤其是湿度要求不需要像其他合成纤维,比如涤纶那样,要用其他方法使其具有耐久性抗静电性能,以免产生过多的静电影响纺纱的顺利进行。

空调纤维最大的特点是它的蓄热放热双向调温性能。而在染整加工过程中如何保证这种调温性,这就需要注意各项工艺条件的影响,尽可能采用缓和的工艺进行加工:采用生物复合酶对空调纤维进行前处理比用传统的碱处理作用条件要温和得多,并且效果不错;漂白工序双氧水、碱、高温都会对空调纤维性能产生影响,这时,我们必须采用低温低碱工艺,比如加入双氧水活化剂,如果漂白任务较重,可以进行复漂,不要一次双氧水用量太大;染色时采用低温型活性染料,并注意兼顾低碱和较高的上染率。

空调纤维较普通粘胶纤维上染率较高,由于加工过程除了添加相变材料外,与普通粘胶纤维并无区别,因此在染色时参考粘胶纤维即可。

现在纺织行业的竞争中,新型纤维是非常重要的一个方面。不断开发新型纤维、新型面料,必然会开启一个又一个崭新的时代。

纤维素的结构及性质

一.结构 纤维素是一种重要的多糖,它是植物细胞支撑物质的材料,是自然界最非丰富的生物质资源。在我们的提取对象-农作物秸秆中的含量达到450-460g/kg。纤维素的结构确定为β-D-葡萄糖单元经β-(1→4)苷键连接而成的直链多聚 体,其结构中没有分支。纤维素的化学式:C 6H 10 O 5 化学结构的实验分子式为 (C 6H 10 O 5 ) n 早在20世纪20年代,就证明了纤维素由纯的脱水D-葡萄糖的重复 单元所组成,也已证明重复单元是纤维二糖。纤维素中碳、氢、氧三种元素的比例是:碳含量为44.44%,氢含量为6.17%,氧含量为49.39%。一般认为纤维素分子约由8000~12000个左右的葡萄糖残基所构成。 O O O O O O O O O 1→4)苷键β-D-葡萄糖 纤维素分子的部分结构(碳上所连羟基和氢省略)二.天然纤维素的原料的特征 做为陆生植物的骨架材料,亿万年的长期历史进化使植物纤维具有非常强的自我保护功能。其三类主要成分-纤维素、半纤维素和木质素本身均为具有复杂空间结构的高分子化合物,它们相互结合形成复杂的超分子化合物,并进一步形成各种各样的植物细胞壁结构。纤维素分子规则排列、聚集成束,由此决定了细胞壁的构架,在纤丝构架之间充满了半纤维素和木质素。天然纤维素被有效利用的最大障碍是它被难以降解的木质素所包被。 纤维素和半纤维素或木质素分子之间的结合主要依赖于氢键,半纤维素和木质素之间除了氢键外还存在着化学健的结合,致使半纤维素和木质素之间的化学健结合主要在半纤维素分子支链上的半乳糖基和阿拉伯糖基与木质素之间。 表:植物细胞壁中纤维素、半纤维素、和木质素的结构和化学组成

新型纤维介绍之莱卡

新型纤维介绍之——莱卡 2005年7月11日中华纺织网 莱卡(LYCRA),是杜邦公司独家发明生产的一种人造弹力氨纶纤维的商品名称。它是用干法纺丝生产的聚酯型氨纶,其纤维是由柔性链段和刚性链段组成,正是这样的分子结构,赋予了莱卡优异的延伸性和弹性回复性能。莱卡可拉伸到原长的4-7倍,回复率100%,与橡胶相比,弹性更长更持久,而且重量轻1/3。它不可单独使用,能与任何其他人造或天然纤维交织使用。它不改变织物的外观,是一种看不见的纤维,能极大改善织物的性能。目前,莱卡已被广泛用于纺织产品生产的各个领域,其在服装行业的应用也十分宽广;从轻薄贴身内衣到厚重外衣、从运动装到时尚套装等。 莱卡的特点和应用 (1)、纤维及其应用 莱卡为消光白色、半透明或透明长丝形式,其细度为11 dtex-1880dtex。各种细度的莱卡丝主要应用于:透明丝袜;圆形针织品(内衣、运动衣);护腿袜;狭带腰带;女式内衣泳装的经编针织物;医用物品(起绒裁片、绷带等);鞋类等。 (2)、纱线形式 莱卡在织物中主要以包芯纱/包缠丝/包覆丝和裸丝的形式出现。 包芯纱/包缠纱/包覆纱具有包覆纤维(如棉、羊毛、真丝等)的外观手感,同时又具有优良的弹性,这类纱广泛应用于各类织物中。

莱卡裸丝具有良好的染色性能和服用性。莱卡裸丝常用于针织内衣、袜口、绷带、运动服等。莱卡在拉伸时会伸长变细当用于透明丝袜等产品时,更显服装诱人魅力。 (3)、在织物中的应用 莱卡有着出众的伸展性。对针织品而言,它的多向延展是由织物本身决定的,莱卡带来的只是拉伸而回复的弹性。机织品则仅在织入莱卡的方向上具有延展性,如经编(直线向)或纬编(横线向)。 1、在机织物中 莱卡用于经纱,织物在纵向具有延伸性;用于纬纱,织物将具有横向弹性;如在经纬纱中都用莱卡,则织物具有双向弹性。 2、在针织物中 纬编针织物中莱卡裸丝用于轻质平针织物;莱卡包覆纱用于袜品、针织套衫的袖口等;包芯纱常用于针织套衫和内衣用的轻质平针针织物;包缠纱常用于罗纹机。 经编针织物中用莱卡主要是增加织物的延伸性,使服装具有优异的适用性和舒适性。 3、在狭带织物中 狭带织物在内衣、衣带中应用广泛。莱卡提供狭带织物持久和舒适的高性能弹力。可用于生产细薄精致的现代超轻女内衣的装饰带,改善和保持其外形和体形。 (4)、莱卡在服装方面的优点

新型纺织材料

新型纺织材料 纺织材料分化纤纺织材料和天然纺织材料。 一、新型化纤纺织材料 1.天丝纤维:它是采用天然木浆,将木浆溶解在氧化铵溶剂中直接纺丝,完全在物理作用下完成的。氧化铵溶剂可循环使用,回收率达99%以上,无毒、无污染,是一种新型纤维素溶剂。天丝纤维除具有天然纤维和粘胶纤维的性能外,还具有强力高,悬垂性好等特点。通过纯纺、混纺、交织的产品具有质感高雅、透气透湿、光泽柔和的风格,被广泛用作高级时装面料。由于其在生产过程中无毒性物质排放,天丝产品使用后可生化溶解,不会对环境造成污染,故有“绿色”纤维之称。 2.海岛纤维:海岛纤维属超细旦家族一员。海岛型丝是利用复合纺丝技术生产出的超细或超极细纤维,用海岛型超细纤维和高收缩原丝复合成的纤维,由于其表面的超细纤维效应被最大化,可以更好地表现人造皮革的效果。用海岛丝生产的魔皮绒柔软度高、弹性好、抗菌防霉、透气性强,是一种抗皱性能优良的防真皮面料,适用于男女上衣、风衣、马夹、女裙等服装;同时可制作箱包、鞋、窗帘、沙发布、汽车套等;用麂皮绒做拭净布,可擦拭飞机、精密仪器、计算机、玻璃制品等。 3.莫代尔纤维:莫代尔纤维是由毛樟木浆粕制成。浆粕的产生和纤维的生产是在对环境无污染的情况下进行的,是一种高强力、高

湿系数的纤维素纤维。其优点是将天然纤维的质感与人造纤维的实用性合二为一,具有棉的柔软、丝的光泽、麻的滑爽,而且吸水透气性都优于棉,同时可在传统的染整设备上进行加工。具有较高的上染率。制成的布料悬垂性、尺寸稳定性好,经多次水洗后仍能保持鲜艳色彩,主要作为高档时装面料。莫代尔纤维取之于大自然,而后又可通过自然界的生物降解回归大自然,充分体现了它绿色环保再生的特性。 4.醋酸纤维:主要原料是天然木浆粕,经萃取净化后的纤维素制成的,是一种半合成纤维。其特性既体现天然纤维的风格,又具有合成纤维的功能,尺寸稳定性好,具有蚕丝般的光泽、凉爽感和悬垂性。同时它和其他纤维具有良好的柔和性,可与天然纤维、合成纤维进行混纺、交织,产生出变化多样的面料,如醋酸/涤、醋酸/粘、醋酸/棉、醋酸/绢丝的混纺织物。在女装市场上,醋酸纤维一向因其干爽、柔顺的触感,在流行成衣中占有一席之地,特别是在晚装设计上尤其出众。采用弹性纤维加上醋酸纤维制成的无缝胸罩,以简单的素面罩杯搭配外衣穿着成为一种时尚。醋酸纤维是属于一种符合消费者对纺织品严格要求的高级纤维。 5.大豆蛋白纤维:以往只能用作饲养和肥料的大豆豆粉,如今可以用来纺纱织布。被称为“人造羊绒”的大豆蛋白纤维,是目前唯一由我国自主开发并在国际上率先取得工业化试验成功的纤维材料。大豆蛋白纤维是从豆粕中提取植物蛋白质形成的纤维,属可再生性植物蛋白纤维。大豆蛋白纤维不仅具有单丝细度细、比重轻、强伸度高、耐酸耐碱性好等特点,而且具有羊绒般的手感和保暖性。大豆纤维纯

新型纤维的种类及特点

新型纤维的种类及特点 当今社会飞速发展和科学技术的进步,以及人们生活水平的提高和社会物质的不断丰富,人们从单纯的追求外观、审美要求向穿着舒适性转化,原来的普通合成纤维已经不适应人们穿着舒适的要求。因此,新型合成纤维应运而生并蓬勃发展。 目前处在信息纺织、新原料纺织时代,新原料从质量、品种、功能、性能等方面开发新品引导潮流。根据服装面料要求舒适、健康、安全的总体趋势,关注服装面料的创新开发,要从研究新纤维的应用开始。目前,服装面料的织物纤维品种已不局限于棉、麻、丝及人棉纤维,开发出很多纺织新材料,有高湿模量的莫代尔和丽赛纤维、天丝、竹纤维、大豆蛋白纤维、聚乳酸(玉米)纤维、超细纤维、PTT纤维、吸湿排汗纤维和保暖纤维等。 一、莫代尔纤维 莫代尔纤维是高湿模量的纤维素再生纤维,原料采用欧洲的榉木,先将其制成木浆,再纺丝加工成纤维。因该产品原料全部为天然材料,是100%的天然纤维,对人体无害,并能够自然分解,对环境无害。柔软、顺滑、有丝质感和真丝一般的光泽,穿着舒适,频繁水洗后依然柔顺,有极好的吸湿性和透气性,富有亮丽的色彩。由于其杰出的透气性和易打理的特性,在女士外套,内衣,运动服装和家用纺织品中的应用越来越广泛。 二、丽赛纤维 丽赛纤维被业界称之为“植物羊绒”,是具有优异综合性能的植物纤维素纤维。由日本东洋纺专有技术及原料体系生产,它的生产原料来源于日本进口的天然针叶树精制专用木浆。在纺丝过程中,因为纺丝溶液粘度高,含酸量低,牵伸速度、固化速度慢,所以纤维分子是从内向外固化,分子内部结构整齐,取向度、结晶度高。 该纤维从根本上克服了粘胶纤维的缺点,秉承了该系列纤维的所有优点,实现了其它高湿模量纤维素纤维所不能突破的优良性能;具有较强的耐碱性,与棉混纺时,可做丝光整理,使混纺织物更具有特色;该纤维具有很高的湿强度,其优越的高湿模量使生产与服用更理想;该纤维良好的千伸与湿伸性能,便所有的织物具有良好的尺寸稳定性;光滑的圆形横截面和全芯结构使纤维光泽好,极富弹性,悬垂性和滑爽感;高吸湿度和千燥度,使该纤维的织物具有良好的舒适感和身体亲和性,是一种全新的绿色亲肤纤维;该纤维属于天然植物纤维,其废弃物可自然降解,安全环保。 三、天丝 天丝是一种纤维素纤维,采用溶剂纺丝技术,干强略低于涤纶,但明显高于一般的粘胶纤维,湿强比粘胶有明显的改善,具有非常高的刚性,良好的水洗尺寸稳定性(缩水率仅为2%),具有较高的吸湿性,纤维横截面为圆形或椭圆形,光泽优美,手感柔软,悬垂性好,飘逸性好。 天丝兼具普通型粘胶纤维优良的吸湿性、柔滑飘逸性、舒适性等优点外,克服了普通粘胶纤维强力低,尤其是湿强低的缺陷,它的强力几乎与涤纶相近。天

纤维素结构

纤维素的结构 引言 纤维素是地球上存在的最丰富的可再生有机资源, 在高等植物、细菌、动物、 海藻等生物中广泛存在, 每年总量有几百亿吨, 具有巨大的经济开发价值[1]。五 十年代至六十年代,由于合成高分子材料的兴起,纤维素资源的开发研究受到极大的影响。七十年代初期,由于国际上出现了石油危机,这种曾被忽视的可更新资源又再次被重视起来.能否利用这些丰富的可再生资源是解决未来能源问题的关键因素。因此,世界各国都很重视纤维素的研究与开发[2]。纤维素结构是纤维素性能研究及应用的基础,本文就纤维素的化学剂物理结构进行了概述。 1纤维素的化学结构 纤维素的元素组成为:C=44.44%,H=6.17%,O=49.39%, 其化学实验式(C 6H 10O 5)n (n 为聚合度,一般高等植物纤维素的聚合度为7000—150000)[3] 纤维素大分子的基环是脱水葡萄糖,其分子式为(C 6H 10O 5)。纤维素的化学结构是由D-吡喃葡萄糖环彼此以β- 1, 4-糖苷键以C1椅式构象联结而成的线形高分 子化合物[4],其结构表达式如图1所示。 非还原端 纤维二糖 还原端 图1 纤维素链结构 除两端的葡萄糖基外,每个葡萄糖基上都有三个游离羟基,分别位于C 2、C 3和C 6位上,所以纤维素的分子可以表示为[[C 6H 7O 2(OH)3]n,其中C 2和C 3位上为仲醇羟基,C 6位上为伯醇羟基,他们的反应能力不同,对纤维素的性质具有重要影 响,如纤维素的酯化、醚化、氧化和接枝共聚,以及纤维素之间的分子间氢键作用,纤维素的溶胀与水解都与纤维素的羟基有关。 纤维素大分子两端的葡萄糖末端基,其结构和性质不同,一端的葡萄糖末端基在C4上存在一个苷羟基,此羟基的氢原子易转移,与基环上的氧原子结合,使氧环结构转变为开链式结构,在C1处形成醛基,具有潜在还原性,固有隐形醛基之称。左端的葡萄糖末端为非还原性的,由于纤维素的每一个分子链一端是还原性,另一端是非还原性,所以纤维素分子具有极性和方向性。 纤维素以及糖链形成以后,其葡萄糖残基上的经基和分子间或者内部的经基基团形成稳定的氧键网络,平行面上的糖链形成稳定的一层糖链片层,使纤维糖链形成极为稳定的超大分子,图2为糖链片层的结构模型。

第三章纤维的力学性质(原文)讲解

第三章纤维的力学性质 第一节纤维的拉伸性质 纺织纤维在纺织加工和纺织品的使用过程中,会受到各种外力的作用,要求纺织纤维具有一定的抵抗外力作用的能力。纤维的强度也是纤维制品其他物理性能得以充分发挥的必要基础,因此,纤维的力学性质是最主要的性质,它具有重要的技术意义和实际意义。纺织纤维的长度比直径大1000倍以上,这种细长的柔性物体,轴向拉伸是受力的主要形式,其中,纤维的强伸性质是衡量其力学性能的重要指标。 一、拉伸曲线及拉伸性质指标 1.纤维的拉伸曲线特征 纤维的拉伸曲线由拉伸试验仪得到,图3-1是一试样长度为20cm,线密度为0.3 tex,密度为

1.5R/cm3的纤维在初始负荷为零开始一直拉伸至断裂时的一根典型的纤维拉伸曲线。它可以分成3个不同的区域:A为线性区(或近似线性区);B为屈服区,在B区负荷上升缓慢,伸长变形增加较快;C为强化区,伸长变形增加较慢,负荷上升较快,直至纤维断裂。

图3-1 纤维的拉伸曲线

纤维的拉伸曲线可以是负荷-伸长曲线,也可以将它转换成应力-应变曲线,图形完全相同,仅坐标标尺不同而已。纤维拉伸曲线3个不同区域的变形机理是不同的。当较小的外力作用于纤维时,纤维产生的伸长是由于分子链本身的伸长和无定形区中缚结分子链伸展时,分子链间横向次价键产生变形的结果。所以,A区的变形是由于分子链键长(包括横向次价键)和键角的改变所致。变形的大小正比于外力的大小,即应力-应变关系是线性的,服从虎克定律。当外力除去,纤维的分子链和横向连接键将回复到原来位置,是完全弹性回复。由于键的变形速度与原子热振动速率相近,回复时间的数量级是10-13s,因此,变形的时间依赖性是可以忽略的,即变形是瞬时的。 当施加的外力增大时,无定形区中有些横向连接键因受到较大的变形而不能承受施加于它们的力而发生键的断裂。这样,允许卷曲分子链伸直,接着分子链之间进行应力再分配,使其他的横向连接键受力增加而断裂,分子链进一步伸展。在这一阶段,纤维伸长变得较容易,而应力上升很缓慢。应力-应变曲线具有较小的斜率,这是B区产生的屈服现象。当外力除去后,变形的回复是不完全的。因为许多横向连接键已经断裂不能回到原来的位置,或者在新的位置上已经重新形成新的横向次价键变成较稳定的结构状态。

几种新型纤维简介

新型纤维介绍汇总 丽赛纤维,芳纶纤维,功能性透气纤维,大豆纖維,玉米纤维,恩卡纤维,VILOFT纤维,竹纤维,新型合成纤维,差别化纤维等新兴纤维简介 Tencel: ****Tencel纤维是由英国Courtaulds公司以木浆为原料经溶剂纺丝方法生产的一种崭新的纤维,是三十年发明的第一种天然纤维。因其生产过程无毒害且纤维本身可被自然界完全分解,因此Tencel又被称为21世纪的绿色纤维。Tencel 纤维集人造纤维与天然纤维的优点于一身. ****在欧洲,除了(Courtaulds) 公司以Tencel的品名生产服装面料用Lyocell。还有:Lenzing公司和AKZO公司则分别以Lenzing-Lyocell和Newcel的名称生产Lyocell (长丝型)。 ****在日本也已经有纤维制造厂引进Lyocell的生产技术。 其面料主要具有以下特色: 1.坚韧耐用 2.非凡触感 3.坠性良好 4.色彩绚丽 Tencel纤维的生产工艺 Tencel纤维生产工艺就是用N-甲替吗啉-N-氧化物 (NMMO) 为溶剂的纺丝工艺。其具体方法是把纤维素浆粕与N-甲替吗啉-N-氧化物 (NMMO) 直接混合,加入添加剂(如CaCl2)和抗氧化剂(如PG)以防止纤维在溶解过程中氧化分解,并调节溶液的粘性和改善纤维的性能。控制水分的含量小于13.3%,使之达到最好不溶解能力。在85-125℃下溶解,得到较高浓度的溶液,溶液经过滤,脱泡,在8 8-125℃下用湿法或干法纺丝,在低温水溶或水/NMMO体系凝固成形,经拉伸,水洗,去油,干燥和溶剂回收等工序,制成Tencel纤维。 NMMO在制造工程中可以回收,因而具有不会给地球环境带来危害的特点。 Tencel纤维及其织物的性能及特点 1.较高的干强和湿强。 2.Tencel的应力应变特点便它与纤维素纤维间抱合力较大,较易混纺。

纤维素结构

纤维素结构 structure of cellulose 包括纤维素的化学结构和物理结构。 纤维素的化学结构纤维素是由D-吡喃型葡萄糖基(失水葡萄糖)组成。简单分子式 为[kg2](C H10O);化学结构式可用下二式表示: 霍沃思式是由许多D-葡萄糖基(1-5结环),藉1-4,β-型联结连接起来的,而且连接在环上碳原子两端的OH和H位置不相同,所以具有不同的性质。式中为聚合度。在天然纤维素中,聚合度可达10000左右;再生纤维素的聚合度通常为200~800。在一个样品中,各个高分子的聚合度可以不同,具有多分散性。 [1045-05] 椅式由于内旋转作用,使分子中原子的几何排列不断发生变化,产生了各种内旋转异构体,称为分子链的构象。纤维素高分子中,6位上的碳-氧键绕5和6位之间的碳-碳键旋转时,相对于5位上的碳-氧键和5位与4位之间的碳-氧键可以有三种不同的构象。如以g表示旁式,t表示反式,则三种构象为gt、tg、和gg(图1[C(6位)上O H基团的 构象]H基团的构象" class=image>)。多数人认为,天然纤维素是gt构象,再生纤维素是tg构象。 [1045-06] 在纤维素分子链中,存在着氢键。这种氢键把链中的O(6位上的氧)与O2'以及O与

O5'连接起来使整个高分子链成为带状,从而使它具有较高的刚性。在砌入晶格以后, 一个高分子链的O与相邻高分子的O之间也能生成链间氢键(图2[纤维素高分子的链中 和链间氢键])。 纤维素的物理结构晶胞及其参数具有一定构象的纤维素高分子链按一定的秩序堆砌,便成为纤维素的微晶体,微晶体的组成单元称为晶胞。代表晶胞尺寸的参数可以从纤维素的宽角X射线图象(图3[纤维素的宽角X射线纤维图 象])直接算出。 在纤维素中存在着化学组成相同,而单元晶胞不同的同质多晶体(结晶变体),常见的结晶变体有四种,即纤维素Ⅰ、Ⅱ、Ⅲ、Ⅳ。四种结晶变体的晶胞参数见表[纤维素的各种结晶变体的晶胞参

植物纤维素化学试题

浙江理工大学 二O一O年硕士学位研究生招生入学考试试题 考试科目:植物纤维化学代码:963 (*请考生在答题纸上答题,在此试题纸上答题无效) 一、名词解释(3×5=15分) 1. 亲电试剂 2. 玻璃转化点 3. 结晶度 4. 剥皮反应 5. —纤维素 二、选择题(2×10=20分(1-6单选,7-10多选)) 1. 针叶材的管胞约占木质部细胞总容积的二-1。 A 45-50%B90-95%C60-70%D30-50% 2. 我们所得到的分离木素中二-2木素和原本木素结构是一样的。 A磨木B Brauns C 硫酸 D 没有一种 3. 无论是碱法还是亚硫酸盐法制浆、脱木素化学过程主要是一种二-3反应。 A 亲电 B 氧化 C 磺化 D 亲核 4. 用NaClO2处理无抽提物木粉、使木素被氧化而除去,剩下的产物为:二-4。 A 综纤维素 B β-纤维素 C 克-贝纤维素 D 氧化纤维素 5. 碱法制浆中、部分木素结构单元的α-醚键断裂后形成二-5中间产物。 A 亚甲基醌 B 正碳离子 C 酚型结构 D 非酚型结构 6. 木素生物合成过程中、不属于首先合成的木素结构单元是:二-6。 A 香豆醇 B 紫丁香醇 C 松柏醇 D 芥子醇 7. 在酸性亚硫酸盐制浆中、木素的缩合方式主要有:二-7。 A Cβ-C5 B Cα-C6 C Cα-C1 D Cβ-C1 E Cβ-C2 8. 半纤维素上的功能基主要有:二-8。 A 羰基 B 羧基 C 乙酰基 D 羟基 E 甲氧基

9. 半纤维素又可称为:二-9。 A 非纤维素的碳水化合物 B 木聚糖 C 结壳物质 D 填充物质 E 骨架物质 10. 一般树皮都含有较多的二-10,故不宜造纸。 A 灰分 B 鞣质 C 木栓质 D 果胶质 E 木素 三、判断题(2×10=20分,正确的打“T”,错误的打“F”) 1. 纤维素单位晶胞的Meyer-Misch模型和Blackwell模型的主要区别在于前者没有考虑纤维素的椅式构象和分子内氢键。 2. 一般来说,吡喃式配糖化物中,β型的酸水解速率低于α型的。 3. 各种碱对纤维素的润胀随着碱浓度的增大,其润胀能力增大。 4. 纤维素的氢键对纤维素纤维及纸张的性质影响不大。 5. 木材在碱法蒸煮过程中木素与氢氧化钠的反应,非酚型结构如在α-碳原子上连有OH基的β-芳基醚键也可以断裂,形成环氧化合物的中间物以及苯环上芳基甲基醚键断裂。 6. 在木素大分子中,大约有60%-70%的苯丙烷单元是以醚键的形式联接到相邻的单元上的,其余30%-40%的结构单元之间以碳-碳键联接。 7. 木材在碱法蒸煮过程中,木素与氢氧化钠的反应首先通过木素大分子中酚型结构基团的α-芳基醚键、α-烷基醚键断裂,形成亚甲基醌中间物。 8. 针叶木的半纤维素主要是己糖,而阔叶木的半纤维素主要是戊糖。 9. 超过纤维饱和点再增加的水称为饱和水。 10. 从木素浓度来看:次生壁>复合胞间层> 细胞角隅胞间层。 四、填空题(每空1×25=25分) 1. 木素分子中存在多种功能基,如(四-1 )、(四-2 )、(四-3 )等,这些功能基影响着木素的化学性质和反应性能。 2. 使原料中的木素溶出转入溶液,(四-4 )的同时,还必须(四-5 ),才能达到目的。 3. 木素分子的生色基团(发色基团)有:(四-6 )、(四-7 )、(四-8 )、(四-9 )等。 4.纤维素分子量和聚合度的测定方法有(四-10 )、(四-11 )、(四-12 )等。(三种即可) 5. 半纤维素的碱性降解包括(四-13 )和(四-14 )。 6. 针叶木的有机溶剂抽出物主要成分是(四-15 ),阔叶木的有机溶剂抽出物主要成分是(四-16 ),而草类的有机溶剂抽出物主要成分是(四-17 )。 7. 木素的化学反应类型有:(四-18 )和(四-19 )。

纤维力学性能

第七章纺织纤维和纱线的 力学性质 讨论纺织纤维与纱线的拉伸性质及其对时间依赖性、纤维基本力学模型,纤维弹性、动态力学性质及疲劳,以及纤维的弯曲、扭转、压缩等力学性能。 第一节纤维的拉伸性质 一、纤维的拉伸曲线与性能指标 1.拉伸曲线 纤维的拉伸曲线有两种形式,即负荷p-伸长△l 曲线和应力σ-应变ε曲线。 2.拉伸性能指标 (1)强伸性能指标 强伸性能是指纤维断裂时的强力或相对强度和伸长(率)或应变。 图7-1 纺织纤维的拉伸曲线 a.强力P :又称绝对强力、断裂强 b 力。它是指纤维能承受的最大拉伸外

力,或单根纤维受外力拉伸到断裂时所需要的力,单位为牛顿(N)。 b.断裂强度(相对强度) Pb:简称比强度或比应力,它是指每特(或每旦)纤维能承受的最大拉力,单位为N/tex,常用cN/dtex(或cN/d)。 c.断裂应力σb:为单位截面积上纤维能承受的最大拉力,标准单位为 N/m2(即帕)常用N/mm2(即兆帕Mpa)表示。 :纤维重力等于其断d.断裂长度L b 裂强力时的纤维长度,单位为km。 (2)初始模量 初始模量是指纤维拉伸曲线的起始部分直线段的应力与应变的比值,即σ- ε曲线在起始段的斜率。 (5-10) 初始模量的大小表示纤维在小负荷作用下变形的难易程度,即纤维的刚性。 (3)屈服应力与屈服伸长率 图7-2 纤维屈服点的确定 纤维在屈服以前产生的变形主要是纤维大分子链本身的键长、键角的伸长和分子链间次价键的剪切,所以基本上是可恢复的急弹性变形。而屈服点以后产生的变形中,有一部分是大分子链段间相互滑移而产生的不可恢复的塑性 变形。 (4)断裂功指标 a.断裂功W:是指拉伸纤维至断

新型纤维的种类及特点教学内容

新型纤维的种类及特 点

新型纤维的种类及特点 当今社会飞速发展和科学技术的进步,以及人们生活水平的提高和社会物质的不断丰富,人们从单纯的追求外观、审美要求向穿着舒适性转化,原来的普通合成纤维已经不适应人们穿着舒适的要求。因此,新型合成纤维应运而生并蓬勃发展。 目前处在信息纺织、新原料纺织时代,新原料从质量、品种、功能、性能等方面开发新品引导潮流。根据服装面料要求舒适、健康、安全的总体趋势,关注服装面料的创新开发,要从研究新纤维的应用开始。目前,服装面料的织物纤维品种已不局限于棉、麻、丝及人棉纤维,开发出很多纺织新材料,有高湿模量的莫代尔和丽赛纤维、天丝、竹纤维、大豆蛋白纤维、聚乳酸(玉米)纤维、超细纤维、PTT纤维、吸湿排汗纤维和保暖纤维等。 一、莫代尔纤维 莫代尔纤维是高湿模量的纤维素再生纤维,原料采用欧洲的榉木,先将其制成木浆,再纺丝加工成纤维。因该产品原料全部为天然材料,是100%的天然纤维,对人体无害,并能够自然分解,对环境无害。柔软、顺滑、有丝质感和真丝一般的光泽,穿着舒适,频繁水洗后依然柔顺,有极好的吸湿性和透气性,富有亮丽的色彩。由于其杰出的透气性和易打理的特性,在女士外套,内衣,运动服装和家用纺织品中的应用越来越广泛。 二、丽赛纤维 丽赛纤维被业界称之为“植物羊绒”,是具有优异综合性能的植物纤维素纤维。由日本东洋纺专有技术及原料体系生产,它的生产原料来源于日本进口

的天然针叶树精制专用木浆。在纺丝过程中,因为纺丝溶液粘度高,含酸量低,牵伸速度、固化速度慢,所以纤维分子是从内向外固化,分子内部结构整齐,取向度、结晶度高。 该纤维从根本上克服了粘胶纤维的缺点,秉承了该系列纤维的所有优点,实现了其它高湿模量纤维素纤维所不能突破的优良性能;具有较强的耐碱性,与棉混纺时,可做丝光整理,使混纺织物更具有特色;该纤维具有很高的湿强度,其优越的高湿模量使生产与服用更理想;该纤维良好的千伸与湿伸性能,便所有的织物具有良好的尺寸稳定性;光滑的圆形横截面和全芯结构使纤维光泽好,极富弹性,悬垂性和滑爽感;高吸湿度和千燥度,使该纤维的织物具有良好的舒适感和身体亲和性,是一种全新的绿色亲肤纤维;该纤维属于天然植物纤维,其废弃物可自然降解,安全环保。 三、天丝 天丝是一种纤维素纤维,采用溶剂纺丝技术,干强略低于涤纶,但明显高于一般的粘胶纤维,湿强比粘胶有明显的改善,具有非常高的刚性,良好的水洗尺寸稳定性(缩水率仅为2%),具有较高的吸湿性,纤维横截面为圆形或椭圆形,光泽优美,手感柔软,悬垂性好,飘逸性好。 天丝兼具普通型粘胶纤维优良的吸湿性、柔滑飘逸性、舒适性等优点外,克服了普通粘胶纤维强力低,尤其是湿强低的缺陷,它的强力几乎与涤纶相近。天丝产品服用性能非常好,具有柔软、舒适、透气性好、光滑凉爽、悬垂性好,耐穿耐用等特点。 四、竹纤维

纤维的分子结构和化学性质(精)

第一节纤维的分子结构和化学性质 成纤高分子:1)线性、长链的分子结构,即使有侧基或支链,也比较短、小。 2)以碳原子为主链的构成元素,因此大多数纤维高分子是有机高分子,即有机纤维。 3)分子链有一定长度,分子间可以达到高的相互作用而有强度。 染整关注:纤维高分子与水有无结合基团、与染料分子有无作用点、与整理剂等有无结合点,是共价键结合、离子键结合、氢键结合还是范得华作用力结合。 例如: 棉纤维麻纤维聚乙烯纤维聚丙烯纤维: 分子结构差异大,左者所用染料和整理剂右者就无法使用。 一、纤维分类 二、纤维素纤维的分子结构和化学性质纤维素分子结构式

结构特点: 1) 环上三个—OH,反应活性点 2) 环间—O—,酸分解之,碱稳 3) 链端:有一隐-CHO,M低还原性 4) 链刚性,H-键多,强度高 5)聚合度 (二)纤维素分子化学性质 1、与酸作用 酸促使苷键水解:(反应式) 酸作用情况 酸使纤维素纤维织物初始手感变硬,然后强度严重下降。 纤维结构、酸的种类、作用时间、温度、纤维结构影响水解反应速率。 生产上应用:含氯漂白剂漂白后,稀酸处理,起进一步漂白作用;中和过剩碱;烂花、蝉翼等新颖印花处理。 用酸注意:稀酸、低温、洗净,避免带酸干燥。 2、与氧化剂作用 纤维素氧化后分子断裂,基团氧化变化,织物强度损伤。 纤维素分子对不同氧化剂作用有不同的敏感程度。 强氧化剂完全分解纤维素。中、低强度氧化剂在一定条件下氧化分解纤维素能力弱,可用来漂白织物。注意:空气中O2在强碱、高温条件易氧化、脆损纤维素织物,应避免。 氧化反应:Cell-OH + [O] Cell-CHO, Cell-C=O, Cell-COOH

两种新型纤维简介

改进后不仅提高了产量,同时可以提高纤维的开松度。打手与喂棉罗拉的结构作了重大改进,可减少短纤维,能提高纱线的强力。 参考文献: [1]李妙福.清梳联工艺设备与管理[M].上海:东华大学出 版社,2006:73 74. [2] 梳理技术 编辑委员会.梳棉清梳联和梳理元件:上 [M].上海:南通金轮针布研究所,2007:111 126. [3]焦记,陈立安.清梳联降低棉结、减少短绒的生产实践 [J].纺织器材,2007,34(3):15 19. The Deficiency and Inn ovation of the Feeding Box of the Clean card Un it ZH A N G Zhi hua,WA N G Gang (Sur a(Jintan)T ex machiner y Cor porat ion,Jintan213200,China) Abstract:On the basis of the analysis of the deficiency of the feeding bo x of the clean card unit for reverse feeding r eg ar ding the pr oblem s such as dam age of fiber in process of co tton pack opening,g oing against pro duction of high quality yarn,as to the pr oblem of the open box w ith reverse feeding failing to cater the requirement of the productio n of high quality y arn and failing to cater the requirement of the pro ductive clean card unit,str aig htforw ard feeding of co tton is introduced w ith sm ooth feeding,less sho rt fiber,thus enhancing the quality of resultant yarn.and applicable to the high production o f clean card unit through w idth ex tensio n. Key W ords:feeding box of clean card unit;straightforw ard feeding;reverse feeding;short fiber;hig h pro duction 科技信息 上海石化成功研发生态聚酯 !!聚酯是生产涤纶纤维的主要原料,广泛应用于纺织行业。在传统的聚酯生产过程中,98%以上均使用锑系催化剂,由于锑属于重金属,是欧美市场重点关注的污染物,使我国纺织品出口受到一定程度的影响。 生态聚酯是指使用轻金属(如钛系)催化剂生产的聚酯,目前全世界只有美国、日本的3家公司能生产。上海石化公司与科研单位合作,成功筛选出钛系催化剂,生产出不含重金属的生态聚酯NEP,江苏太仓金辉化纤实业公司利用此新产品生产的聚酯纤维具有可纺性好,染色均匀等优点,更加环保,具备了出口欧美市场的条件,是传统聚酯的升级换代产品。 全国纺织器材科技信息中心 两种新型纤维简介 1!椰炭纤维 椰炭纤维是将椰子外壳的纤维质加热到1200?制成活性炭,以聚酯为载体纺丝而成的保健类纤维。用该纤维纺制的纺织品具有吸湿、透气、吸异味、除臭、促进人体血液循环等功能,适用于生产运动服装面料、内衣及床上用品等。2!藕丝纤维 藕丝纤维是用荷花茎杆经浸渍、洗晒、脱胶制得的类似麻的纯天然纤维,手感较硬。用该纤维纺制的纺织品具有吸湿、排汗、透气、杀菌等功效,是夏季服装的理想衣料,经特殊整理后,织物表面能散发出一种自然香味,且香味持久,市场潜力很大。 全国纺织器材科技信息中心 # 11 ? 第36卷!第6期2009年11月!!!!!!!!!!!纺织器材 Textile Accessories437

纤维素的大分子结构

第三节棉纤维的结构 棉纤维的结构一般包括大分子结构、超分子结构和形态结构。棉纤维的性能基本上由这些结构所决定。因此,了解棉纤维结构可为检验棉花品质提供理论基础。 一、棉纤维的大分子结构 成熟的棉纤维绝大部分由纤维素组成。纤维素是天然高分子化合物,其分子式为(C6H10O5),大分子结构式如图1-3所示。 图1-3 纤维素大分子结构式 纤维素是一种多糖物质,每个纤维大分子都是由n个葡萄糖剩基,彼此以1-4苷键联结而形成的。所以,纤维素大分子的基本链节是葡萄糖剩基,在大分子结构式中为不对称的六环形结构,也称“氧六环”。相邻两个氧六环彼此的位置扭转180°,依靠苷键连成一个重复单元,即大分子单元结构是纤维素双糖,长度为1.03nm,是纤维素大分子结构的恒等周期。纤维素大分子的空间结构,如图1-4所示。 图1-4 纤维素大分子空间结构示意图 纤维素大分子的官能团是羟基和苷链。羟基是亲水性基团,使棉纤维具有一定的吸湿能力;而苷键对酸敏感,所以棉纤维比较耐碱而不耐酸。此外,纤维素大分子中氧六环之间距离较短,大分子之间羟基的作用又较多,所以纤维素大分子的柔曲性较差,是属于较僵硬的线型大分子,棉纤维表现为比较刚硬,初始模量较高,回弹性质有限。 二、棉纤维的超分子结构 超分子结构是指大于分子范围的结构,又称“聚焦态结构”。 (一)大分子间的结合力 棉纤维中大分子之间是依靠分子引力(又称“范德华力”)和氢键结合的。 1.分子引力 分子引力是永远存在分子间的一种作用力,是由偶极分子之间的静电引力、相邻分子之间诱导电动势引起的诱导力以及相邻原子上电子云旋转引起瞬间偶极矩产生的色散力综合组成。它的强度比共价键的强度小得多,而且与分子间的距离有关,作用距离约为0.3-0.5nm,当分子间距离大于0.5nm时,这种作用力可忽略不计。 2.氢键 氢键是大分子侧基上(或部分主链上)极性基团之间的静电引力。它的结合力略大于分子引力,在作用距离约0.23-0.32nm条件下能使相邻分子较稳定地结合。 (二)结晶态和非结晶态 纤维中大分子的排列是比较复杂的,一般存在两种状态,即某些局部区域呈结晶态,另一些局部区域呈非结晶态。纤维中大分子在规律地整齐排列的状态都叫“结晶态”,纤维中呈现结晶态的区域叫“结晶区”。在纤维的结晶区中,由于大分子排列比较整齐密实,缝隙孔洞较少,分子之间互相接近的各个基团的结合力互相饱和,因而纤维的吸湿较困难,强度较高,变形较小。棉纤维结晶区内结晶结构的最小单元,即单元晶格是由五个平行排列的纤维素大分子在两个氧六环链节长的一段上组成,中间的一个大分子与棱边的四个大分子是倒向的。不同种类的纤维素纤维其晶胞尺寸是不相同的。棉纤维和麻纤维单元晶格的尺寸为a=0.835nm,b=1.03nm,c=0.795nm,?=84°,称为“纤维素Ⅰ晶胞”,如图1-5所示。粘胶

近些年来新型纤维的特点及应用

近些年来新型纤维的特点及应用 摘要:介绍了近年来几种新型天然纤维和新型合成纤维的主要特点,并对它们的应用情况及研究进展进行了概述。 关键词:新型天然纤维;新型合成纤维;纤维特点;发展概况 1新型天然纤维的特点及其发展概述 竹纤维就是从自然生长的竹子中提取出的一种纤维素纤维,是继棉、麻、毛、丝之后的第五大天然纤维。竹纤维具有良好的透气性、瞬间吸水性、较强的耐磨性和良好的染色性等特性,同时又具有天然抗菌、抑菌、除螨、防臭和抗紫外线功能。 1.1.1竹纤维的特点 竹纤维中含有一种名为“竹琨”的抗茵物质,具有天然抗菌、防螨、防臭的药物特性,竹沥有广泛的抗微生物功能,竹纤维中的叶绿素和叶绿素铜钠具有较好的除臭作用。经高科技工艺制作的竹纤维织品可有效地抑制细菌生长,清洁人体周围空气,预防传染病。其抑菌功能经反复洗涤后也不会衰减”。在正常温度条件下,竹纤维及其纺织品很稳定,但在一定环境下竹纤维可以分解为水和二氧化碳。 1.1.2竹纤维的应用 竹纤维织物的天然抗茵、抗紫外线作用在经多次反复洗涤、日晒后,仍能保证其原有的特点,对人体皮肤无任何过敏性不良庋应,并对人体皮肤具有保健作用。现已大量应用于口罩、绷带、手术服、护士服等医用防护品和毛巾、袜子、内衣、床上用品等亲肤日用品。另外,竹纤维与其他材料融合的应用也非常广阔。比如,用竹纤维制备的经济墙板综合了竹纤维和水泥两者的良好特性,具有防火、隔音、隔热、耐水、防蛀及安装简便、经济实用等 优点。用竹纤维与玻璃纤维复合建筑材料为主体骨架的模板组成的活动房屋,具有以下几个优点:减轻建筑物的自重:节约能源;可靠性高;经久耐用。此外,它还具有耐腐蚀、不怕风吹雨淋及雨水浸泡、防火性强等特点。用竹纤维和树脂复合制作的竹纤维增强塑料的强度相当高,可以作为许多土建工程的主、次承力构件,耐腐性比钢材好,也可以应用于交通运输、建筑、家具等行业。1.2海藻纤维 从广义上来说,将含有海藻成分的纤维统称为海藻纤维。海藻酸纤维又称碱溶纤维、藻蛋白酸纤维,其原材料来自天然海藻中所提取的海藻多糖。海藻多糖

纤维素总结

一:纤维素的结构分类及应用: 1)纤维素的结构: 2)纤维素的分类: 根据其在特定条件下的溶解度,可以分级为:α—纤维素,β-纤维素,γ-纤维素,α—纤维素指的是聚合度大于200的纤维素,β-纤维素是指聚合度为10一200的纤维素,γ-纤维素是指聚合度小于10的纤维素。 3)纤维素的应用: 纤维素是一多羟基葡萄糖聚合物,经过特定的物理或化学改性后,具有不同的功能特性,可以粉状,片状,膜,纤维以及溶液等不同形式出现,因此用纤维素开发的功能材料极具灵活性及应用的广泛性。 3.1 高性能纤维材料: 纤维素纤维是现代纺织业的重要原料之一,同时也是纤维素化工和造纸业的重要原料,当前,纸己经成为社会发展的必需品,不仅大量应用于印刷,日用品及包装物,还可以用于绝缘材料,过滤材料以及复合材料等领域,具有广泛而重要的用途。 3.2 可生物降解材料

纤维素能够作为可降解材料的基材使用,因为纤维素具有很多独特的优点:(1)纤维素本身能够被微生物完全降解;(2)维素大分子链上有许多轻基,具有较强的反应性能和相互作用性能,使得材料便于加工,成本低,而且无污染;(3)纤维素具有很强的生物相容性;(4)纤维素本身无毒,可广泛使用,由于纤维素分子间存在很强的氢键,而且取向度和结晶度都很高,使得纤维素不溶于一般溶剂,高温下分解而不融,所以无法直接用来制作生物降解材料,必须对其进行改性,纤维素改性的方法主要有醋化,醚化以及氧化成醛,酮,酸等。纤维素生物降解材料应用广泛,例如园艺品,农,林,水产用品,医药用品,包装材料及光电子化学品等,这里要特别提出的是纤维素在医学,光电子化学,精细化工等高新技术领域应用的更好西川橡胶工业公司研制开发的纤维素,壳聚糖系发泡材料存在很好的应用前景,其特点是重量轻,绝热性好,透气,吸水等,这些特点使其广泛应用于农业,渔业,工业,包装,医疗等各个领域。 3.3 纤维素液晶材料: 天然纤维素及其衍生物液晶是一类新颖的液晶高分子材料,和其它的纤维素衍生物液晶相比,新型的复合型纤维素衍生物液晶在纤维素大分子链中引入了刚性介晶基元,使得控制其液晶性质能够成为现实"这同时就为开发具有特殊性能的液晶高分子提供了新的研究领域,并且其相应的理论基础研究对探索高分子液晶的形成也有十分重要的指导意义,另外,由于天然纤维素是自然界取之不尽,用之不竭的可再生天然高分子,那么在石油及能源日益枯竭的今天,我们就很有必

(完整版)[新型纤维]功能纤维研究现状及发展前景

功能纤维的定义及分类 功能纤维Functional fiber是指除一般纤维所具有的物理机械性能以外,还具有某种特殊功能的新型纤维。例如纤维具有卫生保健功能(抗菌、杀螨、理疗及除异味等);防护功能(防辐射、抗静电、抗紫外线等);热湿舒适功能(吸热、放热、吸湿、放湿等);医疗和环保功能(生物相容性和生物降解性)。 现今,各种功能纤维层出不穷,功能纤维按其属性可分为四大类: 1.物理性功能纤维其中电学功能有抗静电性、导电性、电磁波屏蔽性、光电性以及信息记忆性等;热学功能有耐高温性、绝热性、阻燃性、热敏性、蓄热性以及耐低温性等;光学功能有光导性、光折射性、光干涉性、耐光耐候性、偏光性以及光吸收性等; 物理形态功能有异形截面形状、超微细和表面微细加工性等。 2.化学性功能纤维如光降解性、光交联性、消异味功能和催化活性功能等。 物质分离性功能纤维如分离性功能有中空分离性、微孔分离性和反渗透性等;吸附交换功能有离子交换性、高吸水性、选择吸附性等。 3.生物适应性功能纤维其中医疗保健功能如防护性、抗菌性、生物适应性等;生物功能如人工透析性、生物吸收性和生物相容性。 国外功能纤维的发展概况 日本 目前,日本的功能纺易品占全部纺织品的39%,其中差别化纤维的产量已占日本全部合50%,最近日本新开发了一种消臭功能纤维,消臭范围广,效果持久,耐洗涤,可染色加工,广泛用于棉被、运动服等生活和服装领域。该产品由于消臭剂直接渗入纤维中,赋予织物吸汗,拒水、防污等特性,具有广阔的发展前景。此外日本还实用全同立构的聚丙烯树脂,在高于结晶温度的加热条件(145℃)下,用大于10倍的拉伸比进行拉伸,开发出强度高达1.04GP、模量高达12.74 Gpa、热收缩率为4.5%的高强高模聚丙烯长丝,该纤维还具有更强的耐化学药品性。 根据东洋纺在过去22年的调查资料。日本开发服用及装饰用功能新材料,与新材料织物风格外观有关的品种以聚醋仿真丝项日比较多。其他品种,如抗苗、消臭、弹性、透湿防水、保温、抗静电、导电等健康、安全、舒适性有关的功能纤维已开发上市的共约有l 800多个品种.又根据日本帝人公司近10年来的统计,已报道了的具有透湿、防水、抗菌、防臭、吸汗、发敢、轻量、保温、消臭、抗静电、导电等与健康、安全、舒适性有关的上市功能纤维新材料约有400种。 美国 美国在功能纤维的开发方面不及日本活跃,但其产业用纤维的开发,尤其是中空分离膜纤维的开发却毫不逊色,气体分离膜纤维及液体分离膜纤维早已工业化。美国通用汽车公

新型纺织纤维知多少(一)

新型纺织纤维知多少(一) 文/林娟虞学锋 近年来,许多纺织产品摇举新型纤维材料的旗帜进行着概念炒作,但是如此众多的品种和天花乱坠的功能噱头却不免令消费者产生迷惑。因此,笔者在此“揭秘”部分常见的新型纺织纤维,助您排忧解惑。 莫代尔纤维 莫代尔纤维是奥地利兰精公司开发的高湿模量的再生纤维素纤维的注册商品名称MODAL的中文译名,也有翻译为木代尔纤维。该纤维的原料采用欧洲的榉木,先将其制成木浆,再通过专门的纺丝工艺加工成纤维。 该产品原料全部为天然材料,对人体无害,并能够自然分解,对环境无害。其制成的面料具有吸湿、透气、手感柔软、悬垂性好、穿着舒适等特点,目前主要应用于内衣等服装产品。 彩棉纤维 彩棉是通过杂交、基因变异等手段得到的新品种,棉花具有天然的颜色,织造后不需染色,减少了染化料对环境的污染以及化学残留物对人体的危害。这种转基因的棉花对益虫和人体无害,具有卓越的环保性能,目前已开发的颜色有浅棕、浅黄、绿色、粉色等颜色。 彩棉所制成的面料质地柔软,富有弹性,颜色柔和,尤其适合婴幼儿稚嫩的皮肤,现阶段多用于婴幼儿服装、成人衬衫、内衣等领域。 超细纤维 理论上,一般把细度小于0.9dtex的纤维称为超细纤维。由于直径很小,因此其弯曲刚度很小,纤维手感特别柔软、细腻,具有良好悬垂性、保暖性和覆盖性。此外,与普通面料相比,超细纤维面料的比表面积大,吸附性和除污能力强,可用于制作高级清洁布。 目前,超细纤维主要采用分裂剥离法和溶解去除法进行制造,其中溶解去除法所制成的纤维即通常所说的海岛纤维。

木棉纤维 木棉纤维是锦葵目木棉科内几种植物的果实纤维,属单细胞纤维,其附着于木棉蒴果壳体内壁,由内壁细胞发育、生长而成。一般长约8~32mm、直径约20~45μm。 木棉纤维是天然生态纤维中最细、最轻、中高度最高、最保暖的纤维材质。它的细度仅有棉纤维的1/2,中空率却达到86%以上,是一般棉纤维的2~3倍,是优良的隔热、隔音、保暖和浮力材料,其光泽、吸湿性和保暖性是用作服装面料的天然材料。 汉麻纤维 汉麻,又名大麻、线麻、寒麻、火麻等,别名称谓多达十余种,起源于中国,是人类最早用于织物的天然纤维,有“国纺源头,万年衣祖”美誉,其种植历史至少有8000多年。由于棉花大面积的种植以及化纤的出现,使得其一度销声匿迹。 近年来,由于汉麻纤维在军工产品上的卓越表现,使其再次成为人们关注的焦点,由其所制成的服装衣饰具有吸湿、透气、舒爽、散热、防霉、抑菌、抗辐射、防紫外线、吸音等多种功能,既可军用又可民用。

相关主题
文本预览
相关文档 最新文档