当前位置:文档之家› 三速电动机变极调速控制设备电气说明书

三速电动机变极调速控制设备电气说明书

三速电动机变极调速控制设备电气说明书

目录

一、拖动方案的确定二、电动机的选择三、电气控制原理图的设计四、电器元件的选择五、电器元件明细表六、电器布置图的设计七、电器接线图的设计.八、设计小结

1

课题:《三速电动机变极调速控制设备设计》一、拖动方案的确定

从设计任务1书中内容可知,要求我们设计的控制设备的控制对象为—纺织车间的轴流风机,其全年的送风量是不均匀的,可划分为三个时间段,即夏季、春秋季和冬季。风机的特性可知,当风机转速从n变到n'时,风量Q和轴功率P的变化关系式如下:

n'Q'Q

nn'P'P

n从已知技术数据,春秋季的风景为夏季的66%,冬季的风量为夏季风量的50%,我们知道拖动风机的电动机需要调速控制。于经设计达到夏季风量所需电动机功率为,转速为1457r/min,亦即我们所选电动机的最大功率和转速只要满足大于等11.6kw和1457r/min,控制设备能实现对该电

动机实行调速即可满足设计的技术要求。

对电动机实行调速控制的方案比较多:有调压调速、电磁调速电动机调速、串级调速、变频调速和变极对数调速等。前几种调速方案都可实现对电动机的无级调速,但实现调速的控制设备和控制方案都比较复杂,经济投入较大。只有变极对数调速为有级调速,控制设备相对较简单,经济投入较少。而根据设计的技术数据,纺织车间全年要求的风量变化并不要求连续,只分为三段,在每一段内的风量我们可视作不变(因风量略有变化引起的温、湿度变化是不会超出允许的温、湿度要求范围的),这样式

n'Q'Q

n3可知,拖动风机的电动机转速实际上全年中只要有三个变化点即可满足要求,只需有级调速控制。因此,我们可采用变极对数调速的控制方案。

二、电动机的选择

出确定的拖动方案可知,我们选用变极三速电动机可实现对风机的控制。

在纺织车间内空气中含有棉絮等杂物,这就要求电动机密封性要好,而车间内电动机—般在地面平装,因而我们可选用电动机的外壳防护等级为IP44,结构和安装型式为IMB3。

设风机在夏季、春秋季和冬季的风量分别为Ql、Q2、Q3,

转速分别为n1、n2、n3,轴功串分别为P1、P2、P3。已知条件即得:Q2:Ql=,Q3:Ql=,Pl=, P2=1457r 2

/min。

n'Q'Q

nQn2n121457r/min962r/min

Q1Qn3n131457r/min729r/min

Q1n'Q'Q

nn'P'P

nQ'P'P

Q33Q23P2P 1Q1Q33P3P 1Q133从以上计算可知.风机夏季、春秋季、冬季二个调速点要求的转速分别为1457r/min、962r/min、729r/min,要求的功率分别为、、

根据上述情况和车间内有交流380V,50Hz的二相电源,我们选用YD系列变极三速异步电动机来拖动风机。该电动机的有关参数如下:

型号为 YD180L—8∕6∕4

电动机有三种极对数变化,分别为8极、6极、4极。对应于三种极对数8/6/4的额定功率为7KW/9KW/12KW,满载电流为∕∕,满载转速为740r/min∕980r/min∕1470r/min。绕组接法为△∕Y∕YY。

电动机绕组接线图如图1所示。

3

图1 YD系列变极三速电动机绕组接线图

要满足对风机的控制要求,即夏季采用4极运转,春秋季采用6极运转,冬季采用8极运转,我们分别定义为高速、中速和低速运转状态。这样功率和转速均能满足风机的工作要求,并有裕量。

三、电气控制原理图的设计

电气控制原理图的设计方法较多,在此我们采用两种方法来设计。 (一) 经验设计法

因风机起动属于轻载起动,可对电动机采用全压起动控制电路。于风机和电动机有三种运行速度,故需有三只控制按钮分别发出指令来控制电动机三种速度运行。考虑到控制柜要有短路、过载等保护,在原理图的主回路中设置三只热继电器和三只熔断器,结合三速电动机绕组接线图设计出图2所示电路。

该控制图能实现电动机低、中、高三种速度的控制,不管原来电动机的运行状态如何、只耍按动按钮SB1、SB2、SB4按钮中的任意一只,电动机将工作在某种转速上。例如电动机原为停止状态,我们按动按钮SB4,接触器KM4、KM3先后吸合,使电动机工作在高速状态。再按按钮SB2,接触器KM4、KM3同时释放,接着接触器KMl吸合,电动机高速直接进入低速运行。这样,使电动机在转换状态时的转速变化较大,

不利于电动机的使用。同时风机的风量变化也将不符合设计技术要求,设计技术要求中风量控制要求在三种速度之间的转换能逐段进行。即起动时先进入低速运行,再进入中速,最后进入高速运行,不允许中速或高速直接起动。在高速远行转入低速运行时,先高速变化到中速,再转入低速运行;

4

从低速切换到高速也一样。即要求在三种速度之间转换。不能越级直接切换,满足风机风量控制的技术要求。根据此前提,重新设计出的三速电动机电气控制原理图如图3所示。

图2 三速电动机电气控制原理图草图之一

在此图中接触器KMl吸合,三相电源进入电动机的U1、V1、W1端子,电动机工作在低速状态。接触器KM2吸合,三相电源进入电动机的U2、V2、W2端子,电动机工作在中速状态。接触器KM4、KM3吸合,三相电源进入电动机U3、V3、W3端子,电动机工作在高速状态。低中高三种工作状态分别按钮SB2、SB3、SB4来控制。为避免电源同时接入Ul、V1、W1、U2、V2、W2及U3、V3、W3三者之中的任意二处,在接触器KMl、KM2及KM4线圈回路中接入了机械互锁和电气互锁。为实现在电动机起动时只能低速起动,不允许中速或高速直接起动,在线路中设置了中间继电器KAl,并将KAl的二对常开触点分别串入接触器KM3和KM4的线圈回路,使得

起动时若不按SB2按钮,接触器KM1没有吸合过,则中间继电器KA1不可能吸合,其二对常开触点均处于断开状态。

5

图3 三速电动机电气控制原理图草图之二

6

即使按下SB3或SB4按钮,接触器KM2或KM4均不会吸合。亦即电动机不会直接起动到中速或高速状态。而一旦从低速起动后,中间继电器KAl通过其自锁触点长期吸合,将不影响低、中、高三种速度间的转换。

图中电动机一旦起动后,低速与中速间的相互切换只要按动SB2或SB3按钮即可实现。中速与高速之间的切换同样只要按动SB3或SB4按钮便能实现。但电动机如工作在低速状态,若按动高速SB4按钮,电动机将不能直接进入高速状态,而是先进入中速运行,然后才自动转入高速状态稳定运行。电动机原工作在高速状态,按低速运行按钮SB2情况也相同,要经过中速远行状态才能最后进入低速运行,保证三级速度的切换能逐级进行。为保证实现这样的切换程序,设置了中间继电器KA2—KA5和时间继电器KT1—KT4。其中中间继电器KA3、KA4和时间继电器KT1、KT2保证电动机在低速运行状态时转入高速运行状态的平稳过渡。而KA2、KA5、KT3、KT4的控制功能正好相反。现以电动机在低速远行时要切换到高速运行为例来说明线路的设计思路与工作原理。

电动机运行在低速状态,接触器KMl吸合,其常开触点KMl-3闭合使中间继电器KA3吸合,KA3一对常闭触点串在接触器KM4线圈回路中,保证使得按下高速按钮SB4时,虽其常开触点SB4-1闭合,但接触器KM4线圈因KA3的常闭触点断开而不能得电吸合。只有等接触器KM2吸合,其常闭触点KM2-4使中间继电器KA3失电释放,KA3串在KM4线圈回路中的常闭触点回复后,KM4才能吸合,进而使KM3吸合而使电动机转入高速运行。即实现了低速运行时必须经过中速状态才能最后进入高速运行的目的(注意接触器KM2吸合即使电动机工作在中速状态)。具体工作原理如下所述。电动机在低速运行时,接触器KMl吸合,中间继电器KA3吸台。当按动高速按钮SB4后,其常闭触点SB4-1使KM 2线圈失电释放,同时其常开触点SB4-2使时间继电器KTl线圈得电吸合。于KTl为一断电延时继电器,其延时常开触点马上闭合使中间继电器KA4线圈得电吸合,KA4的常开触点KA4—1使接触器KM2线圈得电吸合(此时因为按钮SB4按动一下已复位,其常闭触点SR4—2巳闭合),电动机进入中速运行。串在KM2自保线路中的KA4常闭触点与常开触点KA4—1共同构成了接触器KM2的点动控制,以便实现从中速到高速的自动切换。KM2吸合后,其常闭触点KM2—4断开,使中间继电器KA3释放, KA3串在KM4线圈回路中的常闭触点复位,为KM4线圈的得电作好准备。在中间继电器KA4吸合其常开

触点KA4—1使KM2吸合的同时,另一对常开触点KA4—2使时间继电器KT2线圈得电吸合自保并开始延时。注意在通电延时时间继电器KT2开始计时时,断电延时时间继电器KTl 也同时在进行计时。因为按钮SB4的常开触点SB4—2是合一下马上断开的。当时间继电器KT2延时到后,其延时常开触

7

点闭合,使接触器KM4线圈只要接触器KM2常闭触点KM2-2回复即可吸合。当KT1延时到后,其延时常开触点断开使KA4线圈失电,KA4释放,KA4的常开触点KA4-1和常闭触点保证KM2线圈失电释放,使KM2-2复位,这样KM4得电吸合,其常开触点又使接触器KM3吸合,KM3常闭触点KM3-3又使KT2失电释放,电动机白动进入高速状态稳定运行。从而实现低速运行经中速自动切换到高速的控制日的。

通过分析,值得注意的是时间继电器KTl的延时时间要比KT2略长。如相反,当KTl延时一到,其延时常开触点断开使KA4释放,从而使KM2释放。促此时KT2的延时常开触点仍未闭合,使KM4能吸合,电动机将失电停机。等到KT2延时到后才又使KM4吸合,进而KM3吸合,电动机转入高速运转。这样在中速自动切换到高速过程中会出现电动机的短暂失电,不利于控制。同理,时间继电器KT3的延时时间也要比KT4略长些。当电动机工作在高速状态,按动低速按钮

SB2后的工作原理与上述类似,只不过此时工作的电器换成了KA2、KA5、KT3、KT4而巳,读者可自行分析。

图3中,各按钮、接触器用到的触点数都较多,我们在选择元器件时要选有相应常开、常闭触点数的类型以满足要求,否则需用中间继电器来扩大触点数目。

图3已能按设计要求实现对电动机的调速控制,但还不完善。因设计技术要求中还要有低、中、高速运转状态的指示,发生故障时的指示,以及电动机定子电流的指示。为此我们设置HL1、HL2、HL3、HL8故障指示灯,HL4一HL7工作状态指示灯。其中HL4为工作电源指示灯,HL5一HL7分别为低、中、高速运转状态指示灯,以便能通过某一指示灯的发亮清楚知道电动机的工作情况。而HL1一HL3分别指示低、中、高速时电动机的过载故障,HL8指示主回路的短路故障现象、定子电流指示在主回路中设置一交流电流表和电流互感器来共同实现。标上各电器接线端子标志后,三速电动机的电气控制原理图已设计完毕,如图3所示。其中中间继电器KA6一KA8是为了扩大接触器KM1、KM3、KM2的辅助触点数而设置。因适合该功率电动机控制的各种类型接触器中辅助触点最多为2常开常闭。

一般电器接线端子的标志规定见表1

8

表1 一般低压电器接线端子的标志

在图4中还标记上了电器的项目代号,项目代号的具体含义与有关内容可参阅国家标形GB5094—85《电气技术中的项目代号)。于该控制设备不很复杂,所以我们没有设置高层代号与位置代号,而只设种类代号,种类代号的前缀符号为“一”。

(二) 逻辑设计法设计

前述实例我们在设计三速电动机电气控制原理图时采用的是经验设计法,下面我们再用逻辑设计法来设计三速电动机电气控制原理图。

前面的分析可知电动机在正常情况下共有四种状态,即停止、低速、中速、高速运转状态,并且SB1、SB2、SB3、SB4四只按钮来分别控制。其中KM1吸合,电动机工作在低速运转状态,KM2吸合为中速运转。KM3、KM4吸合为高速运转。现在,我们计划仍然SB1~SB4、KM1~ KM4来共同完成对电动机四种工作状态的控制(主回路如图3),则逻辑设计法设计的过程如下述

9

10

图4 三速电动机电气控制原理图

11

1.工作循环图

根据前述,为满足对纺织车间全年的温、湿度控制要求,

对电动机的控制我们可确定如下工作程序:

按SB2 停止低速运转按SB3 中速运转按SB4 高速运转按SB3 按SB1 停止低速运转按SB2 中速运转2.作执行几件动作节拍表及主令元件状态表

根据执行元件对应的电动机工作状态和电动机工作程序,我们作出如表2的工作状态表(表中执行元件我们没有标上KM4,是因为KM4、KM3的动作状态相同,可把他们理解成—只双线圈接触器KM3)。

3.设置中间记忆元件

①程序特征码。表2—4中各程序的特征码如下:“0”程序特征码:0000 “1”程序特征码:1000;0000 “2”程序特征码:0100;0000 “3”程序特征码:0010;0000 “4”程序特征码:0100;0000 “5”程序特征码:1000;0000

②确定待相区分组。表2的待相区分组有以下15组:A组:0、1程序重复特征码0000 E组:0、2程序重复特征码0000 C组:0、3程序重复特征码0000 D组:0、4程序重复特征码0000 E组:0、5程序重复特征码0000 F组:1、2程序重复特征码0000

12

G组:1、3程序重复特征码0000 H组:1、4程序重复特征码0000 I组:1、5程序重复特征码1000;0000 J组:2、3程序重复特征码0000 K组:2、4程序重复特征码 0100;

0000 L组:2、5程序重复特征码 0000 M组:3、4程序重复特征码 0000 N组:3、5程序重复特征码 0000 O组:4、5程序重复特征码 0000 将这些待相区分组填入表2。

③中间记忆元件的设置。为将各待相区分组分开,我们设置了KAl、KA2、KA3三个中间继电器,见表2。

4.列写元件逻辑函数式,画出控制电路图

①列写元件逻辑函数式。表2我们将中间记忆元件和执行元件的逻辑式列写如下:

FKA1SB2KA2(SB3KA3)KA1

FKA2SB3KA1KA3[SB1(KA1KA3)]KA2 FKA3SB4KA1KA2(SB2KA1KA2)KA3 FKM1KA1KA2KA2KA1KA3 FKM2KA1KA2KA3KA2KA3KA1 FKM3KA1KA3

⑨绘制电气控制图。根据列写的逻辑式我们绘制出如图5所示三速电动机电气控制原理草图。

13

图5 三速电动机电气控制原理草图

在图中,若电动机原处于停止状态,则起动只能进入低速运转,不能直接进入中、高速运转;因若SB2没按动过,则KAl将不会吸合,其所有常开触点断开。即使按下SB3或SB4,KA2或KA3也不会吸合,则KM2、KM3不会吸合。按SB2后,KAl、KMl得电吸合,电动机进入低速运转。按SB3后,KA2吸合,此时KAl继续保持吸合,然后KMl释放,KM2吸

合,电动机进入中速运转。若在按SB3前先按SB4,因此时KA2没吸合,KA3将不能吸合,工作状态将不变。说明从低速状态不可能直接切换到高速状态。现将各程序执行时中间继电器、接触器吸合情况列写如下:

“1”程序被执行:按SB2,KAl、KMl吸合“2”程序被执行:按SB3,KAl、KA2、KM2吸合“3”程序被执行:按SB4,KAl、KA2、KA3、KM3吸合“4”程序被执行:按SB3,KA2、KA3、KM2吸合“5”程序杖执行:按SB2,KA2、KMl吸合”6”程序被执行:按SBl,所有电器均失电具体工作原理请读者自行分析。

如果要设计出完整的二速电动机电气控制原理图.我们可以考虑各种保护、状态指示等技术要求,如的述经验设计法一眼来完成,在此不冉复述。

14

表2 工作状态表

15

值得指出的是,经验设计法所得的图4与逻辑设计法而得的图14虽都能满足对电动机的控制要求,但对电动机的控制功能有所差别:二图中电动机在起动时都只能先起动到低速运转状态,不能直接进入中速或高速运转状态。低、中、高速三种工作状态不能越级切换,即从低速到高速或从高速到低速都必须经过中速过渡,这是相同的。但图4中电动机

一旦起动转入运转后,不管原处于伺种工作状态,只要按动SB2~SB4中的任一只,即可转入相应的另一种工作状态。如在中速运转时,可以按SB2转入低速运转,也可按SB4转入高速运转。在高速运转时,只要按SB2按钮,电动机先自动进入中速运转,然后切换成低速运转。而图5则不能这样执行。于严格按程序一步步执行,在图14中我们通过分折可知,如果电动机一旦进入第2程序的中速运转状态(参阅表5),就不能再进入第1程序的低速运转,而只能进入第3程序的高速运转。电动机如已工作在第3程序的高速运转状态,要进入低速运转,按SB2是无用的,因此时以KAl、KA3仍吸台,按SB2不可能使KA3线圈失电,从而使KM3失电。而必须先按SB3按钮使KA1失电,电动机先进入中速运转,然后再按SB2使KA失电释放,才能使KMl吸合进入低速运转。即电动机只能从0程序开始,严格按照从0→1→2→3→4→5→6程序的顺序一步步进行,不能逆向或越级,这就是逻辑设计法的特点。对本实例而言,这样的控制功能反而不方便、不灵活,故我们选用经验设计法来完成整个设计。但这并不说明逻辑设计法比经验设计法差,只不过在本实例中从控制功能和操作方面相比较而言不方便、不灵活。对于控制要求而言,二者并无差异,均能严格满足设计要求,到底采用何种设计方法,可根据具体控制对象、控制要求而定。

四、电器元件的选择 1.刀开关

因电路电压为交流380V,三速电功机最大工作电流为,再考虑控制回路中各电器线圈的工作电流(一般为几十毫安至几百毫安),可选额定电压为交流380V,额定电沉为30A 的HK系列胶盖闸刀开关,极数为3极,型号为;HK2—30/3。

2.熔断器

图4中有两类熔断器FUl、FU2。

FU2作为控制回路的短路保护作用,熔体额定电压、额定电流均只要大于等于控制回路的实际负载电压、电流即可。控制回路负载电流为各线圈吸合时的工作电流,且同时工作的线圈最多为8只,故可选熔体额定电流为4A,考虑用螺旋式熔断器。最后选定FU2为:型号RL—25/4,额定电压为交流380V,支持件额定电流为25A,熔体额定电流为4A。

FUl主要作为电动机主回路的短路保护,故溶体电流INF 应按下式计算

16

INF(~)INM

式中INF——电动机的额定电流(A)。

又因三速电动机控制对象为风机,属轻载起动,上式系数取,最后熔体电流INF为:

INF

根据原理图,FUl熔断器应在熔体熔断时使指示灯HL8发光,放应选带有微动开关的熔断器系列。最后选定FUl为:

额定电压为交流380V,支持件额定电流为60A,熔体额定电流为40A,型号为RL1B—60/40。

3.热继电器

因电动机低速运行时,定子绕组为三角形联结,为统—起见,FRl、FR2、yH3均选用带断相保护装置的三相热继电器。

热继电器热元件额定电流IN电动机起动个频繁.,可按下式选取

IN(~)INM

式中,INM—电动机额定电流,单位为A。

三速电动机低、中、高三种工作状态对应的满载电流分别为、、,取上式系数为,则FRl、FR2、FR3对应的热元件电流分别为:

IN1 IN3据此热继电器FR1、PR2、FR3均选型号为JR0—40/3D的热继电器,其中热元件额定电流为25A,整定电流分别定为、和,额定电压为500V满足线路电压380V的要求。

4.接触器

图4中共有KMl一KM4四只交流接触器,因控制的是三相笼型异步电动机的起动与停止,故均选用使用类别为AC —3,又因控制回路的控制电压为交流380V,故四只接触器的线圈额定电压均选为交流380V。

接触器额定电压因线路电压为380V,故选大于等于380V 即可。接触器主触点额定电流,因电动机低、中、高速三种工作状态的输出功率不一样,可计算出各自的实际定子工作电流后选取。这里为统一计,均按三种工作状态时的满载电流来选取。即按、和

17

选取。选用原则为接触器额定电流比实际电流略大,切忌按实际电流大小选。

再考虑辅助触点的数量,最后选定各接触器型号如下:KMl、KM2为CJ20—25 (额定电流为25A) KM3、KM4为CJ20—40 (额定电流为40A)

各接触器额定电压均为380V,极数为3极,线圈额定电压为380V,辅助触点数量为2常开2常闭。

5.电流互感器与电流表

电动机最大满裁电流为,故电流互感器一次侧的额定电流值要大于等于,而二次侧为标准的5A。所以选用LQK——30/5互感器,该互感器额定电压为380V,一次侧额定电流为30A,二次侧额定电流为5A。

电流表只要选与电流互感器的额定一次电流值配套即可,选定为44L1—30A电流表。这里我们选电流互感器和电流表时没有考虑电动机的起动电流冲击。实际应用时若起动电流远大于电流表量程且起动过程较长,我们可采用在起

动时用电器触点将电流互感器二次侧短接的办法来保证电流表在起动时不受起动电流的冲击。待起动完毕再去掉短接在互感器二次侧的电器触点,将电流表串入电流互感器二次侧回路中。

6.中间继电器

图4中共用了 8只小间继电器,对它们选择的主要技术参数为线圈额定电压,常开常闭触点数量,以及中间继电器的额定电压。因主回路、控制回路电压均为交流380V,常开常闭触点用的最多的中间继电器数目是2常开2常闭,故KAl 一KA8中间继电器选用化J7Z—44型,其中其额定电压为380V,线圈额定电压也为380V,触点数为4常开4常闭。触点额定电流为5A肯定满足要求。

7.时间继电路

图4中共有4只时间继电器,其中KT1、KT3为断电延时型,只需延时触点KT2、KT4为通电延时型且既需延时触点又要瞬动触点,吸引线圈额定电压必须适合控制回路电压交流380V。选择结果如下:

KT1、KT3为JR23—61 KT2、KT4为JS23—31

吸引线圈额定电压均为交流380V常闭,延时触点为1常开1常闭,瞬动触点均为2常开2常闭。

8.按钮

18

图4中共用了4只按钮。选择按钮的主要技术数据为型号、型式、触点数量、额定电压与颜色。大部分按钮额定电流为5A能满足控制回路的电流要求。工厂中所用按钮一般型式可选开启式。根据控制回路电压为交流380V,按钮触点数及各按钮的用途,选定各按钮型号为LAl8—22K(即有2常开2常闭触点,型式为一般式),额定电压为交流380V,SB1颜色为红色,SB2一SB4为绿色。

按钮颜色含义可参阅相关有关部分内容。 9.指示灯

图4中共用了8只指示灯,指示灯的主要技术参数为额定电压与颜色。因控制回路电压为交流380V,故所选指示灯额定电压力交流380V,型号为AD11—22/41—5G(具体含义可参阅本书附录B有关内容),各指示灯颜色为HL4白色,HL1一HL3、HL8红色,HL5~HL7绿色。

指示灯颜色含义及选用可参阅本书附录A有关内容 c 10.导线

图4中导线分为两个部分,即连接主回路用导线和连接控制回路用导线。

电控装置中控制电路导线截面,应按规定的载流量选择,但考虑到机械强度的需要。对于低压电控设备的控制线路,所采用导线截面不宜小于的单芯铜绝缘线,或不宜小于的多芯铜绝缘线。导线的额定绝缘电压应与电路的额定工作电压相适应。我们设计的控制回路中负载电流均为各电器线

圈工作电流,控制电压为380V,故选用绝缘电压力交流380V 的BVR—7/型铜芯塑料绝缘软线作为控制线路连接线。该线标称截面为1mm2,环境温度为40℃时允许载流量为14A。考虑导线成捆或在行线槽中布线时按1/2允许裁流量作为实际载流量计算,也达7A,远超出实际负载电流。

主回路中导线一般截面较大,不用考虑机械强度而只按允许载流量选择。在这里主回路中电流按电动机达最大功率时满载电流为选择。选用绝缘电压为380V的BVR—49/型铜心塑料绝缘软线。该线标称截面为10mm2,环境温度为40℃时允许载流量为57A,按其1/2允许载流量作为实际载流量为大于满足要求。

11.接线瑞于

于我们在设计控制柜时往往将整个控制系统分成几部分安装,各部分之间的连接线必须要通过接线端子连接,所以还需选择接线端子。接线端于也分为主回路接线端子与控制回路路接线端了。主回路接线端子与控制回路接线端子的选择以满足电路的电压、电流值为基本原则,结构类型等可根据各自需要而定。这里主回路接线端子选用TZ1—40型,该类接线

19

端广额定电压为交流380V,额定电流为40A,显然满足要求。控制回路则选用TZ1—10型,其额定电压为交流380V,

《常用电机控制与调速技术》课程标准

《常用电机控制与调速技术》课程标准 (120学时) 一、课程概述 1.课程性质与任务 《常用电机控制与调速技术》是五年制高等职业技术学校机电技术应用专业的一门重要专业课。它的主要任务是:使学生掌握机电设备常用电机控制与调速的基本原理及方法,结合技能训练,使学生熟悉常用电机控制与调速的基本操作技能,通过较为完整的理实一体化教学,为后续课程的学习以及全面提高学生的综合素质及学生的专业发展打下良好基础。 2.课程基本理念 坚持以高职教育培养目标为依据,遵循“以应用为目的,以必需、够用为度”的原则,以“掌握概念、强化应用、培养技能”为重点,力图做到“精选内容、降低理论、加强基础、突出应用”。把握学生的认识过程和接受能力的规律,构建了比较完整的专业教学体系,注重对学生创新意识和创新能力的培养,注重对学生综合意识与综合能力的培养,注重对学生实践意识与实践能力的培养。真正把学生培养成为具有较强的社会适应能力和竞争能力的高素质技能应用型人才。 3.课程设计思路 本课程应体现职业教育“以就业为导向,以能力为本位”的培养目标,体现以职业实践活动为主线的教学过程。本课程在内容组织形式上要强调学生的主体性学习,在每个项目实施前,先提出学习目标,再进行任务分析,学生针对项目的各项任务进行相关知识的学习,并通过多种实践活动实施项目以实现学习目标。在教学手段上,本课程可采用多媒体教学,理论联系实际。在教学方面要完成的任务,实现的目的,带着问题学习,启发式、互动式、交互式教学方式并存,从实践到理论,又由理论到实践,进而在理论指导下进行实践,提高了实践的知识含量,使学生既知道该怎么做,又知道为什么这样做。最后根据多元化的评分标准进行自我评价。 二、课程目标 (一)总目标 通过本课程学习,学生初步掌握常用电机控制和调速相关的基础知识和基本技能,了解这些知识与技能在生产实践中的应用,关注科学技术的现状及发展趋势。 学习科学探究方法,发展自主学习能力,养成良好的思维习惯和职业规范,能运用相关的专业知识、专业方法和专业技能解决工程中的实际问题。

电动机自动快速再起动电路图

电动机知识 匿名 随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。在众多交流变频调速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。ACC800变频器是ACS800系列中具有提升机应用程序的重要一员, 它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。 1DTC控制技术 DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定

转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度 。直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于5ms)。 2防止溜钩控制 作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性("回馈"是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。溜钩是指在电磁制动器抱住之前和松开之后的瞬间,极易发生重物由停止状态出现下滑的现象。 电磁制动器从通电到断电(或从断电到通电) 需要的时间大约为016s(视起重机型号和起重量大小而定),变频器如过早停止输出,将容易出现溜钩,因此变频器必须避免在电磁制动器抱闸的情况下输出较高频率,以免发生"过流"而跳闸的误动作。 防止溜钩现象的方法是利用变频器零速全转矩功能和直流制动励磁功能。零速全转矩功能,即变频器可以在速度为零的状态下,保持电动机有足够大的转矩,从而保证起重设备在速度为零时,电动机能够使重物在空中停止,直到电磁制动器将轴抱住为止,以防止溜钩的发生。直流制动励磁功能,即变频器在起动之前自动进行直流强励磁,使电动机有足够大的起动

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联的KT1、KT2断电延

时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

电机与电气控制技术60个有用知识点汇总

电机与电气控制技术的60个有用的知识点 1、低压电器 是指在交流额定电压1200V,直流额定电压1500V及以下的电路中起通断、保护、控制或调节作用的电器。 2、主令电器 自动控制系统中用于发送控制指令的电器。 3、熔断器 是一种简单的短路或严重过载保护电器,其主体是低熔点金属丝或金属薄片制成的熔体。 4、时间继电器 一种触头延时接通或断开的控制电器。 5、电气原理图 电气原理图是用来表示电路各电气元器件中导电部件的连接关系和工作原理的电路图。6、联锁 “联锁”电路实质上是两个禁止电路的组合。K1动作就禁止了K2的得电,K2动作就禁止了K1的得电。 7、自锁 电路自锁电路是利用输出信号本身联锁来保持输出的动作。 8、零压保护 为了防止电网失电后恢复供电时电动机自行起动的保护叫做零压保护。 9、欠压保护 在电源电压降到允许值以下时,为了防止控制电路和电动机工作不正常,需要采取措施切断电源,这就是欠压保护。 10、星形接法

三个绕组,每一端接三相电压的一相,另一端接在一起。 11、三角形接法 三个绕组首尾相连,在三个联接端分别接三相电压。 12、减压起动 在电动机容量较大时,将电源电压降低接入电动机的定子绕组,起动电动机的方法。 13、主电路 主电路是从电源到电动机或线路末端的电路,是强电流通过的电路。 14、辅助电路 辅助电路是小电流通过电路。 15、速度继电器 以转速为输入量的非电信号检测电器,它能在被测转速升或降至某一预定设定的值时输出开关信号。 16、继电器 继电器是一种控制元件,利用各种物理量的变化,将电量或非电量信号转化为电磁力(有触头式)或使输出状态发生阶跃变化(无触头式)。 17、热继电器 是利用电流的热效应原理来工作的保护电器。 18、交流继电器 吸引线圈电流为交流的继电器。 19、全压起动 在电动机容量较小时,将电动机的定子绕组直接接入电源,在额定电压下起动。 20、电压 电路两端的电位差。 21、触头 触头亦称触点,是电磁式电器的执行元件,起接通和分断电路的作用。 22、电磁结构 电磁机构是电磁式电器的感测元件,它将电磁能转换为机械能,从而带动触头动作。 23、电弧 电弧实际上是触头间气体在强电场作用下产生的放电现象。 24、接触器 接触器是一种适用于在低压配电系统中远距离控制、频繁操作交、直流主电路及大容量控制电路的自动控制开关电器。 25、温度继电器 利用过热元件间接地反映出绕组温度而动作的保护电器称为温度继电器。 26、点动电路

基于STM32的直流电机PWM调速控制

电动摩托车控制器中的电机PWM调速 摘要:随着“低碳”社会理念的深入,新型的电动摩托车发展迅速,逐渐成为人们主要的代步工具之一,由于直流无刷电机的种种优点,在电动摩托车中也得到了广泛应用,因此,本文控制部分主要介绍一种基于STM32F103芯片的新型直流无刷电机调速控制系统,这里主要通过PWM技术来进行电机的调速控制,且运行稳定,安全可靠,成本低,具有深远的意义。 1.总体设计概述 1.1 直流无刷电机及工作原理 直流无刷电机(简称BLDCM),由于利用电子换向取代了传统的机械电刷和换向器,使得其电磁性能可靠,结构简单,易于维护,既保持了直流电机的优点又避免了直流电机因电刷而引起的缺陷,因此,被广泛应用。另外,由于直流无刷电机专用控制芯片价格昂贵,本文介绍了一种基于STM32的新型直流无刷电机控制系统,既可降低直流无刷电机的应用成本,又弥补了专用处理器功能单一的缺点,具有重要的现实意义和发展前景。 工作原理:直流无刷电机是同步电机的一种,其转子为永磁体,而定子则为三个按照星形连接方式连接起来的线圈,根据同步电机的原理,如果电子线圈产生一个旋转的磁场,则永磁体的转子也会随着这个磁场转动因此,驱动直流无刷电机的根本是产生旋转的磁场,而这个旋转的磁场可以通过调整A、B、C三相的电流来实现,其需要的电流如图1所示 随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。 1.2 总体设计方案 总体设计方案的硬件部分详细框图如图1所示。

电机调速中的控制技术

电机调速中的控制技术 交流传动系统中的交流电动机是一个多变量、非线性、强耦合、时变的被控对象, 随着交流电动机调速理论的突破和调速装置性能的完善, 电动机的调速从直流发电机-电动机组调速、晶闸管可控整流器直流调压调速逐步发展到交流电动机变频调速, 变频调速又由WVF控制的PWM频调速发展到矢量控制、直接转矩控制变频调速。现代控制理论中的控制方法, 实现方法简便, 在电机调速领域中, 具有更广阔的应用前景。由目前国内外的研究成果可以看出, 电机传动的控制逐步向多元化、智能化和多种方法综合运用的方向发展。 一、矢量控制技术 VVV F空制是从电动机稳态方程出发研究其控制特性,动态控制效果很不理想。20 世纪70 年代初德国工程师F.Blaschke 首 先提出用矢量变换的方法来研究交流电动机的动态控制过程, 不但要控制各变量的幅值, 同时还要控制其相位, 以实现交流电动机磁通和转矩的解耦, 促使了高性能交流传动系统逐步走向实用化, 目前高动态性能的矢量控制变频器已经成功地应用在轧机主传动、电力机车牵引系统和数控机床中。这种理论的主要思想是将异步电动机模拟成直流机, 通过坐标变换的方法, 分别控制励磁电流分量与转矩电流分量, 从而获得与直流电动机一样良好的动态调速特性[1] 。这种控制方法现已较成熟, 产品质量较稳定。

这种方法采用了坐标变换, 所以对控制器的运算速度、处理能力等性能要求较高。近年来,围绕着矢量变换控制的缺陷, 如系统结构复杂、非线性和电机参数变化影响系统性能等等问题, 国内、外学者也进行了大量的研究。 二、直接转矩控制技术 1985年,德国的Depenbrock 教授提出了异步电动机直接转矩控制方法, 解决了系统复杂性和控制精度之间的矛盾。直接转矩控制系统不需要坐标变换,也不需要依赖转子数学模型, 理论上非常诱人。实验室条件下也已做出性能指标相当高的样机。只是还有些问题未解决, 如低速时转矩观测器和转速波动等, 未能产品化。现在市面上自称实现了转矩直接控制的系统, 大多都是或者采用了将磁链定向与直接转矩控制相结合的方法, 低速时采用磁链定向矢量变换控制, 高速时采用直接转矩控制。或者同时观测转子磁链, 作为直接转矩控制系统的校正。 直接转矩无差拍控制是基于离散化直接转矩控制系统提出来的一种控制方法。无差拍控制可以在一个控制周期内, 完全消除定子磁链模值和电磁转矩的动、静态误差, 消除由于使用滞环比较器产生的转矩脉动,使电机可以运行在极低速下, 扩大了调速范围。 转矩(磁链)跟踪预测控制方法认为磁链模值已经被准确控 制或只发生缓慢地变化, 没有考虑磁链模值的控制问题。对磁链和转矩都进行了预测跟踪控制, 控制效果明显优于单纯的转矩跟

双速电机控制电路图

双速电机控制电路图 双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。 此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p =1。 ∴转速比=2/1=2 控制电路分析 1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、 W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开, 防KM1误动。 4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM 2线圈串联,这种控制就是按钮的互锁控制,保证△与YY两种接法不可能同时出现,同时KM2辅助常闭触点接入KM1线圈回路,KM1辅助常闭触点接入K M2线圈回路,也形成互锁控制。

电机与电气控制技术试题库和答案(供参考)

电机与电气控制技术试题库及答案 一、名词解释:(每题5分) 1、低压电器:(B) 是指在交流额定电压1200V,直流额定电压1500V及以下的电路中起通断、保护、控制或调节作用的电器。 2、主令电器:(B) 自动控制系统中用于发送控制指令的电器。 3、熔断器:(B) 是一种简单的短路或严重过载保护电器,其主体是低熔点金属丝或金属薄片制成的熔体。 4、时间继电器:(B) 一种触头延时接通或断开的控制电器。 5、电气原理图(B) 电气原理图是用来表示电路各电气元器件中导电部件的连接关系和工作原理的电路图 6、联锁(C) “联锁”电路实质上是两个禁止电路的组合。K1动作就禁止了K2的得电,K2动作就禁止了K1的得电。 7、自锁电路:(C) 自锁电路是利用输出信号本身联锁来保持输出的动作。 8、零压保护(B) 为了防止电网失电后恢复供电时电动机自行起动的保护叫做零压保护。 9、欠压保护(B) 在电源电压降到允许值以下时,为了防止控制电路和电动机工作不正常,需要采取措施切断电源,这就是欠压保护。 10、星形接法:(A)

三个绕组,每一端接三相电压的一相,另一端接在一起。 11、三角形接法:(C) 三个绕组首尾相连,在三个联接端分别接三相电压。 12、减压起动(A) 在电动机容量较大时,将电源电压降低接入电动机的定子绕组,起动电动机的方法。 13、主电路:(A) 主电路是从电源到电动机或线路末端的电路,是强电流通过的电路, 14、辅助电路;(B) 辅助电路是小电流通过电路 15、速度继电器:(C) 以转速为输入量的非电信号检测电器,它能在被测转速升或降至某一预定设定的值时输出开关信号。 16、继电器:(C) 继电器是一种控制元件,利用各种物理量的变化,将电量或非电量信号转化为电磁力(有触头式)或使输出状态发生阶跃变化(无触头式)17、热继电器:(C) 是利用电流的热效应原理来工作的保护电器。 18、交流继电器:(C) 吸引线圈电流为交流的继电器。 19、全压起动:(C) 在电动机容量较小时,将电动机的定子绕组直接接入电源,在额定电压下起动。 20、电压:(A) 电路两端的电位差 21、触头 触头亦称触点,是电磁式电器的执行元件,起接通和分断电路的作用。

电动机无极调速的方法及原理

电动机无极调速的方法及原理 随着电力电子学、微电子技术、计算机技术以及电机理论和自动控制理论的发展,影响三相交流电动机发展的问题逐渐得到了解决,目前三相异步交流电动机的调速性能已达到直流调速的水平。在不久的将来交流调速必将取代直流调速。在实际生产过程中,根据加工工艺的要求,生产机械传动机构的运行速度需要进行调节。这种负载不变,人为调节转速的过程称为调速。通常有机械调速和电气调速两种方法,通过改变传动机构转速比的调速方法称为机械调速;通过改变电动机参数而改变系统运行转速的调速方法称为电气调速。不同的生产机械,对调速的目的和具体要求各不相同,对于鼓风机和泵类负载,通过调节转速来调节流量,这与通过调节阀门调节的方法相比,节能效果更加显著。 调速控制是交流电动机的重要控制内容,实际应用中的交流调速方法有多种,常见的有变极调速、转子串电阻调速、串级调速、电磁调速、异步电动机调速、变频调速等。 目前广泛使用的调速方法仍然是传统的改变极对数和改变转子电阻的有级调速控制系统,近年来,随着电力电子、计算机控制以及矢量控制等技术的进步,变频调速技术发展迅速,已应用于很多生产领域,这是将来调速发展的方向。 1、变级调速的实现 变极调速和转子串电阻调速都属于有极调速的范畴,本章主要介绍变极调速控制电路. 当电网频率固定以后,三相异步电动机的同步转速与它的磁极对数成反比.因此,只要改变电动机定子绕组的磁极对数,就能改变它的同步转速,从而改变转子转速.通过绕组的不同组合连接方式,可得到两极、三极速度,最多可获得四极速度,但常见的是两极速度变级调速,即双速电动机的变速. 变极调速有两种方法:第一种,改变定子绕组的连接方法;第二种,在定子上设置具有不同极对数的两套互相独立的绕组. 三相异步电动机的同步转速n 与电动机的极对数p成反比,改变鼠笼式三相异步电动机 1 定子绕组的极对数,就改变了同步转速.因此称之为变极调速.在改变磁极对数时,转子磁极对数也必须同时改变,因此变极调速常用于鼠笼转子三相异步电动机,这是因为鼠笼式转子三相异步电动机本身没有固定的级数,它的极对数能自动地与定子极对数相对应. 1.1变极调速的原理

电工实训报告——三速电动机控制

电工实训报告——三速电动机控制 一、实训目的: (1)了解三速电动机的结构及原理; (2)掌握三速电动机的接线和用9个灯泡代替三速电机的接线原理; (3)掌握三速电动机控制的动作原理; (4)掌握复杂的控制线路的接线; (5)掌握复杂的控制线路的故障检查方法。 二、实训原理: 1、电路分析: 如图所示: 三速电动机有两套在连接上独立的定子绕组,有三种不同的转速。当接触器KM1、KM2闭合时,电动机的绕组端头U1、U1、V1、W1(逆时针)接到电源的U、V、W相上,作“三角”连接,电动机低速运行;当接触器KM3闭合时,电动机的绕组端头U、V、W接到电源的U、V、W相上,作单“Y”连接,电动机中速运行;当接触器KM4、KM5闭合时,电动机的绕组端头U1、V1、W3经KM5短接,而端头U2、V2、W2(顺时针)接到电源的U、V、W想上,作双“Y”连接,电动机高速运行。电动机由“三角”连接变成双“Y”连接的变极原理与双速电动机相同,只是三速电动机时开口三角形,如果接成闭口三角形,那么电动机中速运行时,在闭口三角形中将产生环流,而开口三角形就不会。实训时,如果条件有限,可以采用9个灯泡来代替9个半绕组。 以下是简化图: 2、动作原理:

(1)低速运行: 按下SB1,KM1、KM2、KA得电,U1、U1、V1、W1(逆时针)接到电源的U、V、W相上,单“三角”运行,KA闭合,低速运行。(六个灯泡亮但是较暗) (2)中速运行: 按下SB2 ,KM1、KM2失电,KM3、KT得电,电动机作单“Y”运行,中速运行。(三个灯泡亮) (3)一段时间后,常闭KT断开,常开KT闭合,KM3、KT失电,KM4,KM5得电,绕组端头U1、V1、W3经KM5短接,而端头U2、V2、W2(顺时针)接到电源的U、V、W想上,作双“Y”连接,电动机高速运行。(六个灯泡亮) (4)停止:按下SB,KM4、KM5失电,所有触点恢复原来状态,6个灯泡灭。 三、实训步骤: 1、元器件检查: (1)用万用表的“二极管”档位检查接触器的主触点及辅助触点常开、常闭触点,当按下KM时,常开应闭合,常闭应断开。 (2)测量接触器、时间继电器线圈电阻值是否正常,时间继电器的线圈阻值约10KΩ左右。 (3)检查热继电器元件及常闭触头是否处于完好状态。 (4)测量电动机绕组的电阻值和六个灯泡的阻值是否正常。 (5)检查中间继电器的常开、常闭触点是否正常。 (6)检查按钮和复合按钮常开、常闭点,当按下时,常开应闭合,常闭应断开。 (7)检查熔断器两端,以确定其完好。 2、线路接线: (1)主电路接线图:

双速异步电机的调速控制线路

双速异步电机的调速控制线路 根据异步电动机转速公式:,当电源频率f 一定时,若改变电动机定子绕组的磁极对数P,就可使电动机转速改变。采用双速电机可改善机床的调速性能,简化变速机构,因此在车、铣、镗床中都有应用。常见的双速电动机的绕组有两种接线方式:Δ/YY 及Y/YY。 1.Δ/YY接法 图a)为双速电动机Δ/YY接法电路图。当绕组的1、2、3号出线端接电源,而使4、5、6号出线端悬空时,电机绕组接成三角形,每相绕组中有两个线圈串联,成四个极,电动机低速运转;当把1、2、3号端子短接,4、5、6号端子接电源时,则绕组为双星形,每相绕组中两个线圈并联,成两个极,电机作高速运转。 在三角形与双星形转换时,电动机输出功率分别为: 由于,所以。 由此可知,电机从Δ接法的低速运转变成YY接法的高速运转时,转速升高一倍,而功率只增加15%,所以这种调速方法可近似地看成恒功率调速。它很适合一般金届切削机床对调速的要求。 2.Y/YY接法 图b)为Y/YY接法,当电机转速增加一倍(YY接法)时,输出功率也增加一倍,属于恒转矩调速。它适用于电梯、起重饥、皮带运输机等要求恒转矩调速的场合。 3. 控制电路 图2.25为常用的双速电动机Δ/YY调速控制电路图,其中:KM1得电为低速,KM2得电为高速,KM3为短接接触器。

图a)用两个复合按钮SB2及SB3分别控制KM1及KM2、KM3,实现低速与高速的直接转换而无需经过停止状态。 图b)是用转换开关SA来选择低速或高速方式后,由按钮SB2发令启动电动机的控制电路。 图c)转换开关SA选择高、停、低速。当选择高速时,采用时间继电器KT,按时间原则自动控制电动机低速起动、经延时后转换到高速运行。 上述三个控制电路中,低速与高速之间都用接触器动断触头互锁,以防短路故障。 功率较小的双速电动机可采用图a)和图b)的控制方式;容量较大的双速电动机,宜可采用图c)的控制方式。

《驱动电机及控制技术》教学大纲

《驱动电机及控制技术》教学大纲 一、授课对象 本课程适用于汽车服务系新能源汽车制造与装配专业(中、高级)班三年制 二、课程学时 总学时108课时,6课时/周,1学期授完。 三、课程的任务和目的 本课程是中等职业学校电子技术应用与维修专业教材,是一门机电类专业课程。其任务是:使学生掌握常用电动机的结构及其控制方法,培养学生对常用电动机的维护、保养与检修的技能和解决实际问题的能力;对学生进行职业意识培养和职业道德教育,提高学生的综合素质与职业能力,增强学生适应职业变化的能力,为学生职业生涯的发展奠定基础。 本课程目的是:使学生能掌握电动类、制冷类日用电器中主要使用的三种电动机——单相异步电动机、直流电动机和单相串励电动机的结构、原理及应用,以及电动类、制冷空调类电器专用电动机的结构及其控制方法。熟悉对上述电动机进行维护、保养与检修。结合生产生活实际,培养学生对所学专业知识的兴趣和爱好,养成自主学习与探究学习的良好习惯,从而能够解决专业技术实际问题,养成良好的工作方法、工作作风和职业道德。 四、课程内容和要求 第一章:直流电动机8课时 1.教学内容: 第一节:直流电动机的结构和分类 第二节:直流电动机的工作原理与运行特性 第三节:直流电动机的起动、反转和调速。 2.教学要求与建议:了解直流电动机的基本结构和分类,掌握直流电动机的基本工作原理,理解直流电动机的起动、反转、调速的原理和方法,初步了解直流电动机常见故障的检修方法。 第二章:单相异步电动机10课时 1.教学内容: 第一节:异步电动机的结构和工作原理 第二节:单相异步电动机的分类 第三节:单相异步电动机的反转和调速 2.教学要求与建议:了解单相异步电动机的基本结构,掌握单相异步电动机的基本工作原理,理解异步电动机的分类和起动方式,了解单相异步电动机的反转、调速的原理和方法,初步了解单相异步电动机常见故障及其检修方法。 第三章:单相串励电动机12课时 1、教学内容 第一节:单相串励电动机的结构和运转原理 第二节:单相串励电动机的运行特性 第三节:单相串励电动机的反转和调速 2、教学要求与建议:理解单相串励电动机的基本结构和工作原理,了解单相串励电动机的主要特点和应用。 第四章:三相异步电动机16课时 1.教学内容: 第一节:三相异步电动机的结构和工作原理

直流电机PWM调速与控制设计报告

综合设计报告 单位:自动化学院 学生姓名: 专业:测控技术与仪器 班级:0820801 学号: 指导老师: 成绩: 设计时间:2011 年12 月 重庆邮电大学自动化学院制

一、题目 直流电机调速与控制系统设计。 二、技术要求 设计直流电机调速与控制系统,要求如下: 1、学习直流电机调速与控制的基本原理; 2、了解直流电机速度脉冲检测原理; 3、利用51单片机和合适的电机驱动芯片设计控制器及速度检测电路; 4、使用C语言编写控制程序,通过实时串口能够完成和上位机的通信; 5、选择合适控制平台,绘制系统的组建结构图,给出完整的设计流程图。 6、要求电机能实现正反转控制; 7、系统具有实时显示电机速度功能; 8、电机的设定速度由电位器输入; 9、电机的速度调节误差应在允许的误差范围内。 三、给定条件 1、《直流电机驱动原理》,《单片机原理及接口技术》等参考资料; 2、电阻、电容等各种分离元件、IC、直流电机、电源等; 3、STC12C5A60S2单片机、LM298以及PC机; 四、设计 1. 确定总体方案; 2. 画出系统结构图; 3. 选择以电机控制芯片和单片机及速度检测电路,设计硬件电路; 4. 设计串口及通信程序,完成和上位机的通信; 5. 画出程序流程图并编写调试代码,完成报告;

直流电机调速与控制 摘要:当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 本电机控制系统基于51内核的单片机设计,采用LM298直流电机驱动器,利用PWM 脉宽调制控制电机,并通过光耦管测速,经单片机I/O口定时采样,最后通过闭环反馈控制系统实现电机转速的精确控制,其中电机的设定速度由电位器经A/D通过输入,系统的状显示与控制由上位机实现。经过设计和调试,本控制系统能实现电机转速较小误差的控制,系统具有上位机显示转速和控制电机开启、停止和正反转等功能。具有一定的实际应用意义。关键字:直流电机、反馈控制、51内核、PWM脉宽调制、LM298 一、系统原理及功能概述 1、系统设计原理 本电机控制系统采用基于51内核的单片机设计,主要用于电机的测速与转速控制,硬件方面设计有可调电源模块,串口电路模块、电机测速模块、速度脉冲信号调理电路模块、直流电机驱动模块等电路;软件方面采用基于C语言的编程语言,能实现系统与上位机的通信,并实时显示电机的转速和控制电机的运行状态,如开启、停止、正反转等。 单片机选用了51升级系列的STC12c5a60s2作为主控制器,该芯片完全兼容之前较低版本的所有51指令,同时它还自带2路PWM控制器、2个定时器、2个串行口支持独立的波特率发生器、3路可编程时钟输出、8路10位AD转换器、一个SPI接口等,

七种电机调速方式比较

七种电机调速方式比较 一、变极对数调速方法:这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的。本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 特点如下:1、具有较硬的机械特性,稳定性良好;2、无转差损耗,效率高;3、接线简单、控制方便、价格低;4、有级调速,级差较大,不能获得平滑调速;5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 二、变频调速方法:变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。本方法适用于要求精度高、调速性能较好场合。其特点:1、效率高,调速过程中没有附加损耗;2、应用范围广,可用于笼型异步电动机;3、调速范围大,特性硬,精度高;4、技术复杂,造价高,维护检修困难。 三、串级调速方法:串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,

多采用晶闸管串级调速。本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。其特点为:1、可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;2、装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;3、调速装置故障时可以切换至全速运行,避免停产;4、晶闸管串级调速功率因数偏低,谐波影响较大。 四、绕线式电动机转子串电阻调速方法:绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。 五、定子调压调速方法:改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同转速。由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如专供调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。调压调速的主要装置是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种。晶闸管调压方式为最佳。调压调速一般适用于100KW以下的生产机械。调压调速的特点:1、调压调速线路简单,易实现自动控制;2、调压过程中转差功率以发热形式消

三速电机

三速电动机是在双速电动机的基础上发展而来的。在三速电动机的定子槽内安放两套绕组,一套为三角形绕组,另一套是星形绕组。适当变换这两套绕组的联结方法,就可以改变电动机的磁极对数。使电动机具有高速、中速、和低速三种不同的转速。 三速电动机共有十个引出端子,它们的新旧文字符号对照为:U1(D1)、U 2(D4)、U3(D7)、U4(D11)、V1(D2)、V2(D5)、V4(D12)、W1(D3)、W2(D6)、W4(D13)。 一)三速电动机定子绕组的接法 低速、中速、高速,三种速度的电动机定子绕组接线方法,示于图21311中。

由图21311可知,三速电动机的接法为: 1)低速三角形接法是:U1(D1)接L1(A)相;V1(D2)接L2(B)相;W 1(D3)与U3(D7)短接后接L3(C)相;其余端子空着不接。 2)中速星形接法是:U4(D11)接L1(A)相;V4(D12)接L2(B)相;W 4(D13)接L3(C)相;其余端子空着不接。 3)高速双星形接法是:U1(D1)、V1(D2)、W1(D3)、U3(D7),四个接线端子短接起来;U2(D4)接L1(A)相;V2(D5)接L2(B)相、W2(D6)接L3(C)相;剩余的三个端子空着不接。 二)三速电动机的控制线路 三速电动机的新符号控制线路如图21312所示。

三速电动机的旧符号控制线路如图21313所示。 三速电动机的控制线路中的KM1与KM3(旧符号中的C1与C3)比较特殊。其中KM1需要具有四个主触头的接触器;而KM3则需要具有六个主触头的接触器。如果买不到多主触头的接触器时,可用两个接触器代替。 图21312三速电动机的控制线路部分的原理非常简单,它实际上就相当于三个正转控制线路的组合。 图21312三速电动机控制线路在各速度之间相互转换时都必须先按停止按钮SB1,然后再按动需转换速度的控制按钮。 二)三速电动机的自动加速控制线路 三速电动机的自动加速控制线路如图21314所示。

相异步电动机的几种调速控制

三相异步电动机的几种调速控制 收藏此信息添加:佚名来源: 根据异步电动机的转差率S表达式: 可知交流电动机转速公式如下: 式中n---电动机的转速,r/min; p---电动机极对数; f1---供电电源频率,Hz; s---异步电动机的转差率。 由上式分析,通过改变定子电压频率f1、极对数p以及转差率s都可以实现交流异步电动机的速度调节,具体可以归纳为变极调速、变转差率调速和变频调速三大类,而变转差率调速又包括调压调速、转子串电阻调速、串级调速等,它们都属于转差功率消耗型的调速方法。 一、变极调速

1、变极调速的方法 变换异步电动机绕组极数从而改变同步转速进行调速的方式称为变极调速。其转速只能按阶跃方式变化,不能连续变化。变极调速的基本原理是:如果电网频率不变,电动机的同步转速与它的极对数成反比。因此,变更电动机绕组的结线方式,使其在不同的极对数下运行,其同步转速便会随之改变。异步电动机的极对数是由定子绕组的联接方式来决定,这样就可以通过改换定子绕组的联接来改变异步电动机的极对数。变更极对数的调速方法一般仅适用于笼型异步电动机。双速电动机、三速电动机是变极调速中最常用的两种形式。 2.双速电动机的控制线路 双速电动机的定子绕组的联接方式常有两种:一种是绕组从三角形改成双星形,如下图(a)所示的连接方式转换成如图(c)所示的连接方式,另一种是绕组从单星形改成双星形,如图(b)所示的连接方式转换成如图(c)所示的连接方式,这两种接法都能使电动机产生的磁极对数减少一半即电动机的转速提高一倍。 双速电动机的定子绕组的接线图

下图是双速电动机三角形变双星形的控制原理图,当按下起动按钮SB2,主电路接触器KMl的主触头闭合,电动机三角形连接,电动机以低速运转;同时KA的常开触头闭合使时间继电器线圈带电,经过一段时间(时间继电器的整定时间),KMl的主触头断开,KM2、KM3的主触头闭合,电动机的定子绕组由三角形变双星形,电动机以高速运转。 双速电动机的控制原理图 线路工作原理分析:

电机与调速题答案

《电机与调速》课程复习、练习题 一、填空题 1、他励直流电动机的固有机械特性是指在U=U N、Φ=ΦN、电枢回路不串电阻 的条件下,转速n 和电磁转矩Tem 的关系。 2、直流电动机调速多采用两种方式结合的方法,即额定转速以下调速采用恒转矩 调速方法,而额定转速以上调速采用恒功率调速方法,同时要兼顾到电动机运动部件的机械强度和换向条件和电压等级。 3、为了使直流电机正、负电刷间的感应电动势最大,只考虑励磁磁场时,电刷应放置在 几何中性线上。 4、自励式直流电动机按励磁方式分为并励式;串励式;复励式这几类。 5、直流电动机拖动恒转矩负载进行调速时,应采用恒转矩速方法;拖动恒功率负载进行 调速时,应采用恒功率调速方法。 6、已知直流电动机的额定数据为:P N=160KW,U N= 220V, n N=850r/min,ηN=90﹪则电动机的输入功率 P1= 178KW ,额定电流IN= 808A 。 7、可用下列关系来判断直流电机的运行状态:当EaU时为发电机状态,此状态下,电 机的电磁转矩方向与电枢旋转方向相反。 8、一台直流发电机额定数据为:额定功率P N=10KW,额定电压U N=230V,额定转速n N=2850r/min, 额定效率ηN=85%,它的额定电流是 43.48A 及额定负载使得输入功率是 11.76KW 。 9、三相异步电动机根据转子结构不同,可分为笼型转子异步电动机 和绕线型转子异步电动机两类。 10、根据转差率s的数值范围,可以判断三相异步电动机的运行状态,当s在0~1范围内,三相异步电动机运行于电动机状态,此时电磁转矩性质为驱动转矩,定子电动势性 质为反电动势;s在—∞~0 范围内运行于发电状态,此时电磁转矩性质为制 动转矩,定子电动势性质为电源电动势。 11、一台4极的三相异步电动机接入频率为50赫兹的三相对称电源,其 s=0.05,它的同步转速1500r/min,额定转速1425r/min。 12、三相异步电动机的额定数据如下: P N=4KW ,U N=380V,定子额定功率因数COSΦN=0.77,额定效率ηN=0.84, n N=960r/min,则额定电流I N= 9.40 A。 13、一台三相异步电动机带恒转矩负载运行,若电源电压下降,则电动机的转速下降,定 子电流增大,最大转矩减小,临界转差率不变。

三速电动机变极调速控制设备电气说明书

三速电动机变极调速控制设备电气说明书 三速电动机变极调速控制设备电气说明书 目录 一、拖动方案的确定()二、电动机的选择()三、电气控制原理图的设计()四、电器元件的选择()五、电器元件明细表()六、电器布置图的设计()七、电器接线图的设计().八、设计小结()(此标准答案仅供参考,图) 1 课题:《三速电动机变极调速控制设备设计》一、拖动方案的确定 从设计任务1书中内容可知,要求我们设计的控制设备的控制对象为—纺织车间的轴流风机,其全年的送风量是不均匀的,可划分为三个时间段,即夏季、春秋季和冬季。由风机的特性可知,当风机转速从n变到n’时,风量Q和轴功率P的变化关系式如下:?n’?Q’?Q?? ?n??n’?P’?P?? ?n?从已知技术数据,春秋季的风景为夏季的66%,冬季的风量为夏季风量的50%,我们知道拖动风机的电动机需要调速控制。由于经设计达到夏季风量所需电动机功率为11.6kw,转速为1457r/min,亦即我们所选电动机的最大功率和转速只要满足大于等11.6kw

和1457r/min,控制设备能实现对该电动机实行调速即可满足设计的技术要求。 对电动机实行调速控制的方案比较多:有调压调速、电磁调速电动机调速、串级调速、变频调速和变极对数调速等。前几种调速方案都可实现对电动机的无级调速,但实现调速的控制设备和控制方案都比较复杂,经济投入较大。只有变极对数调速为有级调速,控制设备相对较简单,经济投入较少。而根据设计的技术数据,纺织车间全年要求的风量变化并不要求连续,只分为三段,在每一段内的风量我们可视作不变(因风量略有变化引起的温、湿度变化是不会超出允许的温、湿度要求范围的),这样由式 ?n’?Q’?Q?? ?n?3可知,拖动风机的电动机转速实际上全年中只要有三个变化点即可满足要求,只需有级调速控制。因此,我们可采用变极对数调速的控制方案。 二、电动机的选择 出确定的拖动方案可知,我们选用变极三速电动机可实现对风机的控制。 在纺织车间内空气中含有棉絮等杂物,这就要求电动机密封性要好,而车间内电动机—般在地面平装,因而我们可选用电动机的外壳防护等级为IP44,结构和安装型式为IMB3。 设风机在夏季、春秋季和冬季的风量分别为Ql、Q2、Q3,转速分别为n1、n2、n3,轴功串分别为P1、P2、P3。由已知条件即得:

相关主题
文本预览
相关文档 最新文档