当前位置:文档之家› 二阶系统的性能指标分析

二阶系统的性能指标分析

二阶系统的性能指标分析
二阶系统的性能指标分析

邢台学院物理系

《自动控制理论》

课程设计报告书

设计题目:二阶系统的性能指标分析

专业:自动化

班级:

学生姓名:

学号:

指导教师:

2013年3 月24 日

邢台学院物理系课程设计任务书

专业:自动化班级:

2013年3 月24 日

摘要

二阶系统是指由二阶微分方程描述的自动控制系统。例如,他励直流电动机﹑RLC电路等都是二阶系统的实例。二阶系统的性能指标分析在自动控制原理中具有普遍的意义。

控制系统的性能指标分为动态性能指标和稳态性能指标,动态性能指标又可分为随动性能指标和抗扰性能指标。

稳态过程性能

稳态误差是系统稳定后实际输出与期望输出之间的差值

本次课程设计以二阶系统为例,研究控制系统的性能指标。

关键词:二阶系统性能指标稳态性能指标动态性能指标稳态误差调节时间

目录

1.二阶系统性能指标概述 (1)

2. 应用模拟电路来模拟典型二阶系统。 (1)

3.二阶系统的时间响应及动态性能 (4)

3.3.1 二阶系统传递函数标准形式及分类 (4)

3.3.2 过阻尼二阶系统动态性能指标计算 (5)

3.3.3 欠阻尼二阶系统动态性能指标计算 (7)

3.3.4 改善二阶系统动态性能的措施 (14)

4. 二阶系统性能的MATLAB 仿真 (18)

5 总结及体会 (19)

参考文献 (19)

1.二阶系统性能指标概述

二阶系统是指由二阶微分方程描述的自动控制系统。例如,他励直流电动机﹑RLC 电路等都是二阶系统的实例。二阶系统的性能指标分析在自动控制原理中具有普遍的意义。

控制系统的性能指标分为动态性能指标和稳态性能指标,动态性能指标又可分为随动性能指标和抗扰性能指标。

稳态过程性能

稳态误差是系统稳定后实际输出与期望输出之间的差值

2. 应用模拟电路来模拟典型二阶系统。

1.2—l 是典型二阶系统原理方块图,其中T0=1秒;T1=0.1秒;K1

分别为10;5;2.5;1。

开环传递函数为:

)

1()1()(11

101+=+=

S T S K S T S T K S G (2-1)

其中,==

1

T K K 开环增益。

闭环传递函数:

22

22

22

121

21

)(n

n

nS

S S T S T K

S S T K S W ωξωωξ++=

++=

++=

(2-2)

其中,01111T T K T K T

n =

==

ω (2-3) 110

2

1T K T =

ξ (2-4) 图2-1 二阶系统

(1)当10<<ξ。即欠阻尼情况时,二阶系统的阶跃响应为衰减振荡,如图2-2中曲线①所示。

)0sin(11)(2

+--

=-t e t C d t n ωξ

ξω )0(≥t (2-5)

式中: 21ξωω-=n d

ξ

ξθ2

1

1-=-tg

峰值时间可由式(2-5)对时间求导数,并令它等于零得到:

2

ωπωπ

-=

=n d

p t (2-

6)

超调量Mp : 由1)(-=t C M p 求得

2

1ξξπ

--=e M p (2-7)

调节时间s t ,采用2%允许误差范围时,近似的等于系统时间常数n

ξω4

的四

倍,即

n

s t ξω4

=

(2-8)

(2)当1=ξ,即临界阻尼情况时,系统的阶跃响应为单调的指数曲线,如图2-2中曲线②所示。 输出响应C(t)为

)1(1)(t e t C n t n ωω+-=- (t ≥0) (2-9)

调节时间s t 可由下式求得

98.0)1(1)(=+-=-s n t t e t C s n ωω (2-10)

(3)当1>ξ,即过阻尼情况时,系统的阶跃响应为单调的指数曲线:

)2

21

1(

1

221)(S t S e

S t S e

n

t C --

--+

=ξω (t ≥0) (2-11)

式中 n S ωξξ)1(21-+= ;n S ωξξ)1(22--= ;

当ξ远大于1时,可忽略-S 1的影响,则

t

n e

t C ωξξ)12(1)(----= (t ≥0) (2-12)

这时调节时间s t 近似为:

n

s t ωξξ)14

2

--=

(2-13)

其中22500≈=n ?; 224.0500

210

≈?=

ξ

3.二阶系统的时间响应及动态性能

3.3.1 二阶系统传递函数标准形式及分类

常见二阶系统结构图如图3-6所示其中K ,T 为环节参数。系统闭环传递函数为

K

s s T K

s ++=

Φ2

1)( 化成标准形式

2

2

22)(n

n n

s s s ωξωω++=Φ (首1型) (3-5)

1

21

)(2

2++=

Φs T s T s ξ (尾1型) (3-6) 式中,K T T 1=

,1

1T K T n ==ω,1121KT =ξ。

ξ、n ω分别称为系统的阻尼比和无阻尼自然频率,是二阶系统重要的特征参数。二阶系统的首1标准型传递函数常用于时域分析中,频域分析时则常用尾

1标准型。

二阶系统闭环特征方程为

02)(2

2=++=n

n s s s D ωξω 其特征特征根为

122,1-±-=ξωξωλn n

若系统阻尼比ξ

取值范围不同,则特征根形式不同,响应特性也不同,由此可将

二阶系统分类,见表3-3。

数学上,线性微分方程的解由特解和齐次微分方程的通解组成。通解由微分

方程的特征根决定,代表自由响应运动。如果微分方程的特征根是1λ,2λ,, n

λ且无重根,则把函数t

e 1λ,t

e 2λ,, t

n e λ称为该微分方程所描述运动的模态,也

叫振型。

如果特征根中有多重根λ,则模态是具有t te λ, ,2t e t λ形式的函数。 如果特征根中有共轭复根ωσλj ±=,则其共轭复模态t e )j (ωσ+与t e )j (ωσ-可写成实函数模态t e t ωσsin 与t e t ωσcos 。

每一种模态可以看成是线性系统自由响应最基本的运动形态,线性系统自由响应则是其相应模态的线性组合。

3.3.2 过阻尼二阶系统动态性能指标计算

设过阻尼二阶系统的极点为 ()

n T ωξξλ11

21

1---=-

=

()

n T ωξξλ11

22

2-+-=-

= )(21T T >

系统单位阶跃响应的拉氏变换

s

T s T s s R s s C n

1)1)(1()()()(212++=

=ωΦ

进行拉氏反变换,得出系统单位阶跃响应 111)(2

1

122

1

-+-+

=-

-

T T e

T T e t h T t T t

0≥t

(3-7)

过阻尼二阶系统单位阶跃响应是无振荡的单调上升曲线。根据式(3-7),令21T T 取不同值,可分别求解出相应的无量纲调节时间1T t s ,如图3-7所示。图中ξ为参变量,由

)1)(1(22122T s T s s s n n ++=++ωξω

可解出

2

1212)(1T T T

T +=

ξ

当21T T (或ξ)很大时,特征根221T -=λ比111T -=λ远离虚轴,模态2

T t e -很快衰减为零,系统调节时间主要由111-=λ对应的模态1t e -决定。此时可将过阻尼二阶系统近似看作由1λ确定的一阶系统,估算其动态性能指标。图3-7

曲线体现了这一规律性。

图3-8 给

出系统单位阶跃响应曲线。

例3-4

图 3-7 过阻尼二阶系统的调节时间特性

角速度随动系统结构图如图3-9所示。图中,K 为开环增益,1.0=T s 为伺服电动机时间常数。若要求系统的单位阶跃响应无超调,且调节时间1≤s t s ,问K 应取多大?

解 根据题意,考虑使系统的调节时间尽量短, 应取阻尼比1=ξ。由图3-9,令闭环特征方程 01

2)1(121

12212=++=+=++

T s T s T s T K s T s 比较系数得 ?

??====?==5.22.01.02

.01.0222

211T K T T 查图3-7,可得系统调节时间95.075.41==T t s s ,满足系统要求。

3.3.3 欠阻尼二阶系统动态性能指标计算

1.欠阻尼二阶系统极点的两种表示方法

欠阻尼二阶系统的极点可以用如图3-10所示的两种形式表示。 (1)直角坐标表示

n n d j j ωξξωωσλ22,11-±-=±= (3-8)

2)“极”坐标表示

???=∠=β

λωλn ???-==21sin cos ξβξβ (3-9)

2.欠阻尼二阶系统的单位阶跃响应

由式(3-5),可得系统单位阶跃响应的拉氏变换为

s s s s R s s C n n n 12)()()(2

2

2

ωξωωΦ++==222)1()(21

n

n n s s s ωξξωξω-+++-= 22222222)1()(11)1()(1n

n n n n n s s s s ωξξωωξξξωξξωξω-++-?---+++-= 系统单位阶跃响应为

()

()

=---

--=--t e t e t h n t n t n n ωξξ

ξ

ωξξωξω22

21sin 11cos 1)(

()()[]=-+----

-t

t e n n t n ωξξωξξ

ξ

ξω222

2

1sin 1cos 111

1n

t

n

t

ξω

-

-+

?

(3-10)

系统单位脉冲响应为

[]

?

?

?

?

?

?

?

?

-

?

-

+

+

-

=

Φ

=

'

=-

-

2

2

2

2

2

1

1

1

)

1(

)

(

1

)(

)(

)(

ξ

ω

ω

ξ

ξω

ω

ξ

n

n

n

n

s

L

s

L

t

h

t k

t

e

n

t

n nω

ξ

ξ

ω

ξω2

2

1

sin

1

-

-

=-

(3-11)

典型欠阻尼二阶系统的单位阶跃响应如图3-11所示。响应曲线位于两条包络线2

1

ξω-

±-t n

e之间,如图3-12所示。包络线收敛速率取决于

n

ξω(特征

根实部之模),响应的阻尼振荡频率取决于

n

ω

ξ2

1-(特征根虚部)。响应的初始值0

)0(=

h,初始斜率0

)0(=

'h,终值1

)

(=

h。

3欠阻尼二阶系统动态性能指标计算

(1)峰值时间p t :令0)()(=='t k t h ,利用式(3-11)可得 01sin 2=-t n ωξ 即有 ,3,2,,012πππωξ=-t n 由图3-1,并根据峰值时间定义,可得

n

p t ωξπ

2

1-=

(3-12)

(2)超调量0

:将式(3-12)代入式(3-10)整理后可得

2

11)(ξξπ

--+=e t h p

σ%100)

()()(?∞∞-=

h h t h p %2

1ξξπ

--=e

100?% (3-13)

可见,典型欠阻尼二阶系统的超调量0

只与阻尼比ξ有关,两者的关系如图

3-13所示。

图3-13 欠阻尼二阶系统%σ与ξ的

关系曲线

(3)调节时间s t :用定义求解系统的调节时间比较麻烦,为简便计,通常按阶跃响应的包络线进入5%误差带的时间计算调节时间。令

05.011112

2

=-=

--+

--ξ

ξ

ξωξωt

t

n

n

e e

可解得

n

n s t ξωξωξ5.3)

1ln(21

05.0ln 2≈

-+-=

(8.03.0<<ξ ) (3-14)

式(3-12)~(3-14)给出典型欠阻尼二阶系统动态性能指标的计算公式。可见,典型欠阻尼二阶系统超调量0

只取决于阻尼比ξ,而调节时间s t 则与阻尼比ξ

和自然频率n ω均有关。按式(3-14)计算得出的调节时间s t 偏于保守。n ξω一定时,调节时间s t 实际上随阻尼比ξ还有所变化。图3-14给出当n T ω1=时,调节

时间s t 与阻尼比ξ之间的关系曲线。可看出,当707.0=ξ(?=45β)时,

T t s 2≈,实际调节时间最短,≈=000032.4σ5%,超调量又不大,所以一般称707.0=ξ为“最佳阻尼比”。

4.典型欠阻尼二阶系统动态性能、系统参数及极点分布之间的关系

根据式(3-13)、式(3-14)及式(3-8)、式(3-9),可以进一步讨论系统动态性能、系统参数及闭环极点分布间的规律性。

当n ω固定,ξ增加(β减小)时,系统极点在s 平面按图3-15中圆弧轨迹(I )移动,对应系统超调量

σ%减小;同时由于极点远离虚轴,n ξω增加,调节

时间s t 减小。图3-16(a)给出n ω=1,ξ改变时的系统单位阶跃响应过程。

当ξ固定,n ω增加时,系统极点在s 平面按图3-15中的射线轨迹(II )移动,对应系统超调量σ%不变;

由于极点远离虚轴,n ξω增加,调节时间s t 减小。图3-16(b)给出了

ξ=0.5(?=60β),n ω变化时的系统单位阶跃响应过程。&§

一般实际系统中,T是系统的固定参数,不能随意改变,而开环增益K是各

环节总的传递系数,可以调节。K增大时,系统极点在s平面按图3-15中的垂直线(III)移动,阻尼ξ变小,超调量σ%会增加。图3-16(c)给出1

=

T,K变化时系统单位阶跃响应的过程。

综合上述讨论:要获得满意的系统动态性能,应该适当选择参数,使二阶系统的闭环极点位于?=45β线附近,使系统具有合适的超调量,并根据情况尽量使其远离虚轴,以提高系统的快速性。

掌握系统动态性能随参数及极点位置变化的规律性,对于分析设计系统是十分重要的。

图3-16 二阶系统单位阶跃响应

(a)n ω=1,ξ改变时的阶跃响应;(b) ξ=0.5,n ω改变时的阶跃响应;(c)T =1,K 改变时的阶跃响应

3.3.4 改善二阶系统动态性能的措施

采用测速反馈和比例加微分控制方式,可以有效改善二阶系统的动态性能。

例3-8 在如图3-22(a)所示系统中,分别采用测速反馈和比例加微分控制,系统结构图分别如图3-22(b)和(c)所示。其中216

K。分别写出它们各自的

.0

=

t

开环传递函数、闭环传递函数,计算出动态性能指标(σ%,

t)并进行对比分

s

析。

解图3-22(a)、b)中的系统是典型欠阻尼二阶系统,其动态性能指标(%

σ,

t)按式(3-13)、式(3-14)计算。而图3-22(c)表示的系统有一个闭环零点,s

不符合上述公式应用的条件。将各系统的性能指标的计算及比较列于表3-6中。图3-22所示的系统可以用表3-7中相应的公式(或用MATLAB)计算其动态性能指标。可以看出,采用测速反馈和比例加微分控制后,系统动态性能得到了明显改善。

从物理本质上讲,图3-22(b)系统引入速度反馈,相当于增加了系统的阻尼,使系统的振荡性得到抑制,超调量减小;图3-22(c)所示系统采用了比例加微分控制,微分信号有超前性,相当于系统的调节作用提前,阻止了系统的过调。相对于原系统而言,两种方法均可以改善系统的动态性能。实际使用中,比例加微分装置一般串联在前向通道信号功率较弱的地方,需要放大器进行信号放大;而反馈则是从大功率的输出端反馈到前端信号较弱的地方,一般不需要信号放大。从效果上看,由于比例加微分环节是高通滤波器,会放大噪声,影响系统正常工作;而测速反馈不会有这样的问题。从经济角度考虑,比例加微分实现简单,费用低;测速反馈装置价格高。实际采用哪一种方法,应根据具体情况适当选择。

1.加开环零点对系统动态性能的影响

比较图3-22(a)和(b)所示两系统的开环传递函数可以看出,后者比前者多一个开环零点,因而影响了系统的闭环特征多项式,改变了闭环极点的位置(见图3-23)。显然,图3-22(b)所示系统闭环极点)(b λ较图3-22(a)所示系统闭环极点)(a λ远离虚轴(相应调节时间s t 小),且β角小(对应阻尼比ξ较大,超调量σ%较小),因而动态性能优于图3-22(a)所示系统。

附加开环零点是通过改变闭环极点(改变模态)来影响闭环系统动态性能的。

2.附加闭环零点对系统动态性能的影响

图3-22(b),(c)两系统有相同的开环传递函数,只是闭环传递函数中后者较前者多一个闭环零点。附加闭环零点不会影响闭环极点,因而不会影响单位阶跃响应中的各模态。但它会改变单位阶跃响应中各模态的加权系数,由此影响系统的动态性能。

附加闭环零点是通过改变单位阶跃响应中各模态的加权系数影响闭环系统动态性能的。

将图3-22(c)系统闭环传递函数等效分解如图3-24所示。从信号的合成关系上可见,图3-22(c)所示系统的单位阶跃响应)()(t h c 是在图3-22(b)系统单位

阶跃响应)()(t h b 基础上叠加了一个)()(t k K b t '

/而成的。即有

)()()(t h K t h t h b

t b c '+=

明显看出,附加闭环零点会使系统的峰值时间提前,超调量增加。附加的闭环零点靠虚轴越近(t K 越大),这种影响越强烈。

附加闭环极点的作用与附加闭环零点恰好相反。读者可以自行分析。 同时附加闭环零点极点时,距虚轴近的零点或极点对系统影响较大。 图3-25给出在1

1

)(2

++=

Φs s s 基础上分别附加闭环零点、极点和同时附加闭环零点极点后系统阶跃响应的变化趋势。

(a)附加闭环零点对系统阶跃响应的影响;(b)附加闭环极点对系统阶跃响应的影响;

二阶系统的阶跃响应及频率特性

实验二二阶系统的阶跃响应及频率特性 实验简介:通过本实验学生能够学习二阶系统的频率响应和幅频特性的测试方法,对实验装置和仪器的调试操作,具备对实验数据、结果的 处理及其与理论计算分析比较的能力。 适用课程:控制工程基础 实验目的:A 学习运算放大器在控制工程中的应用及传递函数的求取。 B 学习二阶系统阶跃响应曲线的实验测试方法。 C 研究二阶系统的两个重要参数ζ、ω n 对阶跃瞬态响应 指标的影响。 D 学习频率特性的实验测试方法。 E 掌握根据频率响应实验结果绘制Bode图的方法。 F 根据实验结果所绘制的Bode图,分析二阶系统的主要 动态特性(M P ,t s )。 面向专业:机械类 实验性质:综合性/必做 知 识 点:A《模拟电子技术》课程中运算放大器的相关知识; B《数字电子技术》课程中采样及采样定理的相关知识; C《机械工程控制基础》课程中,传递函数,时域响应, 频率响应三章的内容。 学 时 数:2 设备仪器:XMN-2自动控制原理学习机,CAE-98型微机接口卡,计算机辅助实验系统2.0软件,万用表。 材料消耗:运算放大器,电阻,电容,插接线。 要 求:实验前认真预习实验指导书的实验内容,完成下述项目, 做实验时交于指导教师检查并与实验报告一起记入实验成绩。 B推导图2所示积分放大器的输出输入时域关系和传递函数。

C 推导图3所示加法和积分放大器的输出输入时域关系(两输入单输出) 和S <1>.写出op1,op2,op9,0p6对应的微分方程组(4个方程)。 <2>.画出系统方框图。 <3>.用方框图化简或方程组联立消元的方法求取实验电路所示系统的 传递函数,写出求解过程。 和ζ。 <4>.求取该系统的ω n 实验地点:教一楼327室 实验照片:实验装置及仪器

二阶系统性能改善与稳定性

例1 系统结构图如图所示。求开环增益K分别为10,0.5,0.09时系统的动态性能指标。 计算过程及结果列表 K 计算 10 0.5 0.09 开环 传递 函数 )1 ( 10 ) ( 1+ = s s s G )1 ( 5.0 ) ( 2+ = s s s G )1 ( 09 .0 ) ( 3+ = s s s G 闭环 传递 函数10 10 ) ( 2 1+ + = Φ s s s 5.0 5.0 ) ( 2 2+ + = Φ s s s 09 .0 09 .0 ) ( 2 3+ + = Φ s s s 特征 参数 ? ? ? ?? ? ? ? = = = ? = = = 81 arccos 158 .0 16 .3 2 1 16 .3 10 ξ β ξ ω n ? ? ? ?? ? ? ? = = = ? = = = 45 arccos 707 .0 707 .0 2 1 707 .0 5.0 ξ β ξ ω n ?? ? ? ? = ? = = = 67 .1 3.0 2 1 3.0 09 .0 ξ ω n 特征 根 12 .3 5.0 2,1 j ± - = λ5.0 5.0 2,1 j ± - = λ ? ? ? - = - = 9.0 1.0 2 1 λ λ ? ? ? = = 11 .1 10 2 1 T T 动态 性能 指标 2 2 1 00 00 1.01 1 60.4 3.5 3.5 7 0.5 p n s n t e t ξπξ π ξω σ ξω -- ? == ? - ? ? == ? ? ?=== ? ? ? ? ? ? ? ? ? ? ? = = = = = - = - - 7 5.3 5 238 .6 1 1 2 2 n s n p t e t ξω σ ω ξ π ξ ξπ() 1221 11 9 31 ,0 s s p T T t t T T t λλ σ ?== ? =?= ? ?=∞= ?

二阶系统的性能指标

一、二阶系统传递函数的标准形式 二阶系统的闭环传递函数写成标准形式为:22 2 2)()(n n n s s s R s C ωξωω++= 式中,ξ为阻尼比;n ω为无阻尼自振频率。 所以,二阶系统的特征方程为:022=++n n s s ωξω 由上式解得二阶系统的二个特征根(即闭环极点)为:2 2.11ξωξω-±-=n n j s 随着阻尼比ξ取值的不同,二阶系统的特征根(即闭环极点)也不相同。 二、单位阶跃函数作用下二阶系统的过渡过程(针对欠阻尼状态,10<<ξ ) 令)(1)(t t r =,则有s s R 1 )(= ,二阶系统在单位阶跃函数作用下输出信号的拉氏变换为:2 2222 22)()(1 ) )((211 2)(d n d d n d n n d n d n n n n n s s s s j s j s s s s s s s C ωξωωωξωωξωξωωξωωξωξωωξωω++? -+++-=-++++- =?++= 式中,2 1ξωω-=n d 为有阻尼自振频率 对上式进行反拉氏变换,得: ) sin(11) sin 1(cos 1sin cos 1)(2 2 ?ωξ ωξ ξ ωωωξωωξωξωξωξω+-- =-+-=?- -=----t e t t e t e t e t c d t d d t d t d n d t n n n n 式中,ξ ξ?2 1-=arctg 由上式看出,对应10<<ξ时的过渡过程,)(t c 为衰减的正弦振荡曲线。其衰减速度取决 ?角的定义

于n ξω值的大小,其衰减振荡的频率便是有阻尼自振频率d ω,即衰减振荡的周期为: 2 122ξ ωπ ωπ -= = n d d T 三、二阶系统的性能指标 1.上升时间tr :上升时间是响应曲线由零上升到稳态值所需要的时间。 根据定义,当r t t =时,1)(=r t c 。 即 0sin 1cos 2 =-+ r d r d t t ωξ ξ ω 或 n n r d t tg ξωξωω2 1-=,)(?πω-=tg t tg r d 所以,上升时间为:2 1ξ ω?π--= n r t 2.峰值时间tp :过渡过程曲线达到第一个峰值所需的时间。 ??ωtg t tg dt t dc p d t t p =+?==)(0) ( ( ,3,2,,0πππω=p d t ) 由于峰值时间tp 是过渡过程曲线达到第一个峰值所需的时间,故取πω=p d t 即 21ξ ωπωπ-= = n d p t 3.最大超调量p σ 最大超调量为:%100) ()()(?∞∞-= c c t c p p σ % 100% 100)sin 1(cos % 100)sin 1(cos 2 12 2 ?=??-+ -=?-+-=-- --ξξπ ξωξωσπξξ πωξ ξ ωe e t t e p t p d p d t p n p n 式中,)(p t c 为过渡过程曲线第一次达到的最大输出值;)(∞c 为过渡过程的稳态值()(∞c =1)。

二阶系统阶跃响应实验报告

实验一 二阶系统阶跃响应 一、实验目的 (1)研究二阶系统的两个重要参数:阻尼比ξ和无阻尼自振角频率ωn 对系统动 态性能的影响。 (2)学会根据模拟电路,确定系统传递函数。 二、实验内容 二阶系统模拟电路图如图2-1 所示。 系统特征方程为T 2s 2+KTs+1=0,其中T=RC ,K=R0/R1。根据二阶系统的标准 形式可知,ξ=K/2,通过调整K 可使ξ获得期望值。 三、预习要求 (1) 分别计算出T=0.5,ξ= 0.25,0.5,0.75 时,系统阶跃响应的超调量σP 和过渡过 程时间tS 。 ) 1( p 2 e ζζπσ--=, ζ T 3t s ≈

代入公式得: T=0.5,ξ= 0.25,σp=44.43% ,t s=6s; T=0.5,ξ= 0.5,σp=16.3% ,t s=3s; T=0.5,ξ= 0.75,σp=2.84% ,t s=2s; (2)分别计算出ξ= 0.25,T=0.2,0.5,1.0 时,系统阶跃响应的超调量σP 和过渡过程时间tS。 ξ= 0.25,T=0.2,σp=44.43% ,t s=2.4s; ξ= 0.25,T=0.5,σp=44.43% ,t s=6s; ξ= 0.25,T=1.0,σp=44.43% ,t s=12s; 四、实验步骤 (1)通过改变K,使ξ获得0,0.25,0.5,0.75,1.0 等值,在输入端加同样幅值的阶跃信号,观察过渡过程曲线,记下超调量σP 和过渡过程时间tS,将实验值和理论值进行比较。 (2)当ξ=0.25 时,令T=0.2 秒,0.5 秒,1.0 秒(T=RC,改变两个C),分别测出超调量σP 和过渡过程tS,比较三条阶跃响应曲线的异同。 五、实验数据记录与处理: 阶跃响应曲线图见后面附图。 原始数据记录: (1)T=0.5,通过改变R0的大小改变K值

自动控制原理实验——二阶系统的动态过程分析

实验二二阶系统的动态过程分析 一、 实验目的 1. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。 2. 定量分析二阶系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。 3. 加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的 性质。 4. 了解和学习二阶控制系统及其阶跃响应的Matlab 仿真和Simulink 实现方 法。 二、 实验内容 1. 分析典型二阶系统()G s 的ξ和n ω变化时,对系统的阶跃响应的影响。 2. 用实验的方法求解以下问题: 设控制系统结构图如图所示,若要求系统具有性能: %20%,1,p p t s σσ=== 试确定系统参数K 和τ,并计算单位阶跃响应的特征量d t ,r t 和s t 。 图 控制系统的结构图 3. 用实验的方法求解以下问题: 设控制系统结构图如图所示。图中,输入信号()r t t θ=,放大器增益A K 分别取,200和1500。试分别写出系统的误差响应表达式,并估算其性能指标。

图 控制系统的结构图 三、 实验原理 任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。 通常,二阶控制系统2 22 ()2n n n G s s ωξωω=++可以分解为一个比例环节、一个惯性环节和一个积分环节,其结构原理如图所示,对应的模拟电路图如图所示。 图 二阶系统的结构原理图 图 二阶系统的模拟电路原理图 图中:()(),()()r c u t r t u t c t ==-。 比例常数(增益系数)2 1 R K R = ,惯性时间常数131T R C =,积分时间常数242T R C =。其闭环传递函数为: 12 221112 ()1()(1)c r K U s TT K K U s T s T s K s s T TT == ++++ (0.1)

MATLAB下二阶系统的单位阶跃响应

二阶系统在不同参数下对单位阶跃信号的响应 一、二阶系统 所谓二阶系统就是其输入信号、输出信号的关系可用二阶微分方程来表征的系统。比如常见的RLC电路(图a)、单自由度振动系统等。 图a 图b 二阶系统传递函数的标准形式为 2 22 () 2 n n n H s s s ω ξωω = ++ 二、二阶系统的Bode图(nω=1) MATLAB程序为 >> clear >> num=[1]; >> den=[1 0.2 1]; >> bode(num,den); grid on hold on den=[1 0.4 1]; bode(num,den); >> den=[1 0.6 1]; >> bode(num,den); >> den=[1 0.8 1]; >> bode(num,den); >> den=[1 1.4 1]; >> bode(num,den); >> den=[1 2 1]; >> bode(num,den); >> legend('0.1','0.2','0.3','0.4','0.7','1.0')

运行结果为 三、二阶系统对单位阶跃信号的响应( =1) n MATLAB程序为 >> clear >> num=[1]; >> den=[1 0 1]; >> t=0:0.01:25; >> step(num,den,t) >> grid on >> hold on >> den=[1 0.2 1]; >> step(num,den,t) >> den=[1 0.4 1]; >> step(num,den,t) >> den=[1 0.6 1]; >> step(num,den,t) >> den=[1 0.8 1]; >> step(num,den,t) >> den=[1 1.0 1]; >> step(num,den,t)

二阶系统性能改善及稳定性

例1 系统结构图如图所示。求开环增益K 分别为10,0.5,0.09时系统的动态性能指标。 计算过程及结果列表 K 计算 10 0.5 0.09 开环 传递 函数 )1(10 )(1+= s s s G )1(5 .0)(2+= s s s G ) 1(09 .0)(3+=s s s G 闭环 传递 函数 10 10 )(21++= Φs s s 5 .05 .0)(22++= Φs s s 09 .009 .0)(23++= Φs s s 特征参数 ?? ? ? ????===?===81arccos 158.016.32116.310ξβξωn ?? ? ? ????===?===45arccos 707.0707.021707 .05.0ξβξωn ?? ? ??=?===67.13.0213 .009.0ξωn 特征 根 12.35.02,1j ±-=λ 5.05.02,1j ±-=λ ???-=-=9.01.021λλ???==11.1102 1T T 动态 性能 指标 2 2 100001.01160.43.5 3.5 7 0.5p n s n t e t ξπξπξωσξω--? ==?-??==???===?? ???? ????? =====-=--7 5 .35238.61001002 2 n s n p t e t ξωσωξπξξπ ()122111009 31,0 s s p T T t t T T t λλσ?==? =?=??=∞=?

调整参数可以在一定程度上改善系统性能,但改善程度有限 §3.3.4 改善二阶系统动态性能的措施 (1) 测速反馈 —— 增加阻尼 (2) 比例+微分 —— 提前控制 例 2 在如图所示系统中分别采用测速反馈和比例+微分控制,其中 10K =,216.0=t K 。分别写出各系统的开环传递函数、闭环传 递函数,计算动态性能指标(σ%,s t )并进行对比分析。

2. 实验二 二阶系统阶跃响应

实验二二阶系统阶跃响应 一、实验目的 1. 研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响,定量分析ζ和ωn与最大超调量σp和调节时间ts之间的关系。 2. 进一步学习实验系统的使用。 3. 学会根据系统的阶跃响应曲线确定传递函数。 4. 学习用MATLAB仿真软件对实验内容中的电路进行仿真。 二、实验原理 典型二阶闭环系统的单位阶跃响应分为四种情况: 1)欠阻尼二阶系统 如图1所示,由稳态和瞬态两部分组成:稳态部分等于1,瞬态部分是振荡衰减的过程,振荡角频率为阻尼振荡角频率,其值由阻尼比ζ和自然振荡角频率ωn决定。 (1)性能指标: : 单位阶跃响应C(t)进人±5%(有时也取±2%)误差带,并且不再超出该误差带的调节时间t S 最小时间。 超调量σ% ;单位阶跃响应中最大超出量与稳态值之比。 单位阶跃响应C(t)超过稳态值达到第一个峰值所需要的时间。 峰值时间t P : 结构参数ξ:直接影响单位阶跃响应性能。 (2)平稳性:阻尼比ξ越小,平稳性越差 长,ξ过大时,系统响应迟钝,(3)快速性:ξ过小时因振荡强烈,衰减缓慢,调节时间t S 也长,快速性差。ξ=0.7调节时间最短,快速性最好。ξ=0.7时超调量σ%<5%,调节时间t S 平稳性也好,故称ξ=0.7为最佳阻尼比。 2)临界阻尼二阶系统(即ξ=1) 系统有两个相同的负实根,临界阻尼二阶系统单位阶跃响应是无超调的,无振荡单调上升的,不存在稳态误差。

3)无阻尼二阶系统(ξ=0时)此时系统有两个纯虚根。 4)过阻尼二阶系统(ξ>1)时 此时系统有两个不相等的负实根,过阻尼二阶系统的单位阶跃响应无振荡无超调无稳态误差,上升速度由小加大有一拐点。 三、实验内容 1. 搭建模拟电路 典型二阶系统的闭环传递函数为: 其中,ζ 和ωn对系统的动态品质有决定的影响。 搭建典型二阶系统的模拟电路,并测量其阶跃响应: 二阶系统模拟电路图其结构图为: 系统闭环传递函数为: 式中, T=RC,K=R2/R1。 比较上面二式,可得:ωn=1/T=1/RC ζ=K/2=R2/2R1。 2 2 2 2 ) ( ) ( ) ( n n n w s w s w s R s C S + + = = ξ φ

二阶系统的性能指标

二阶系统的性能指标 控制系统的性能指标是评价系统动态品质的定量指标,是定量分析的基础。 系统的时域性能指标通常通过系统的单位阶跃响应进行定义。常见的性能指标有:上升时间t r 、峰值时间t p 、调整时间t s 、最大超调量M p 、振荡次数N 。 1.评价系统快速性的性能指标 上升时间t r 响应曲线从零时刻出发首次到达 稳态值所需时间。对无超调系统, 上升时间一般定义为响应曲线从 稳态值的10%上升到90%所需 的时间。 峰值时间t p 响应曲线从零上升到第一个峰值 所需时间。 调整时间t s 响应曲线到达并保持在允许误差 范围(稳态值的±2%或±5%)内所 需的时间。 2.评价系统平稳性的性能指标 ? 最大超调量M p 响应曲线的最大峰值与稳态值之差。通常用百分数表示: %100)() ()(?∞∞-≡o o p o p x x t x M 若x o (t p ) < x o (∞),则响应无超调。 ? 振荡次数N 在调整时间t s 内系统响应曲线的振荡次数。实测时,可按响应曲线穿越稳态值次数的一半计数。 3.欠阻尼二阶系统的时域性能指标 ? 上升时间t r 欠阻尼二阶系统的阶跃响应为:0),sin(11)(2≥+--=-t t e t x d t o n ?ωξξω 根据上升时间的定义有:()1sin 11)(2=+--=-?ωξξωr d t r o t e t x r n 2221arccos 11ξωξ πξωξξπω?π--=---=-=n n d r arctg t 显然, ξ一定时,ωn 越大,t r 越小; ωn 一定时,ξ 越大,t r 越大。 ? 峰值时间t p 令0)(=dt t dx o ,并将t = t p 代入可得:21ξ ωπωπ-==n d p t

实验二-二阶系统的动态特性与稳定性分析

实验二-二阶系统的动态特性与稳定性分析

自动控制原理 实验报告 实验名称:二阶系统的动态特性与稳定性分析班级: 姓名: 学号:

实验二二阶系统的动态特性与稳定性分析 一、实验目的 1、掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态 )对系统动态2、分析二阶系统特征参量(ξ ω, n 性能的影响; 3、分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质; 4、了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态; 5、学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink实现方法。 二、实验内容 1、构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。 2、用Matlab和simulink仿真,分析其阶跃响应动态性能,得出性能指标。 3、搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、

峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响; 4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响; 5、 将软件仿真结果与模拟电路观测的结果做比较。 三、实验步骤 1、 二阶系统的模拟电路实现原理 将二阶系统: ωωξω2 2)(22 n n s G s s n ++= 可分解为一个比例环节,一个惯性环节和一个积分环节 ωωξω221)() ()()(2C C C C s C C 2 22 6215423 2 15423 2 2154215426316 320 n n s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++= ++=++== 2、 研究特征参量ξ对二阶系统性能的影响 将二阶系统固有频率5 .12n =ω 保持不变,测试阻尼

二阶系统阶跃响应实验报告

实验一二阶系统阶跃响应 一、实验目的 (1)研究二阶系统的两个重要参数:阻尼比E和无阻尼自振角频率3 态性能的影 响。 (2)学会根据模拟电路,确定系统传递函数。 二、实验内容 二阶系统模拟电路图如图2-1所示 a 2-i二阶系疣按拟电帘图 系统特征方程为TV+KTS+仁0其中T=RC K=R0/R1根据二阶系统的标准 形式可知,E =K/2,通过调整K可使E获得期望值 三、预习要求 (1) 分别计算出T=0.5,E = 0.25, 0.5, 0.75时,系统阶跃响应的超调量c P和过渡过程时 间ts。 代入公式得: T=0.5, E : =0.25, c P=44.43%,t s=6s; T=0.5, E : =0.5 , d P=16.3% ,t s=3s; T=0.5, E : =0.75, c p=2.84% ,t s=2s; (2) 分别计算出E = 0.25,T-0.2,0.5,1.0时,系统阶跃响应的超调量c P和过渡 过程时间ts。 E = =0.25,T-0.2, c p-44.43% ,t s- 2.4s; E = =0.25,T-0.5, c P-44.43% ,t s-6s; E = =0.25,T-1.0, c P-44.43% ,t s- 12s; 四、 (1) 实验步骤 通过改变K,使E获得0, 0.25, 0.5, 0.75, 1.0等值,在输入端加同样幅值的阶跃 信号,观察过渡过程曲线,记下超调量b P和过渡过程时间ts,将实验值和理论值 进行比较。 n对系统动 ) 2 t s 3T

(2)当E =0.25时,令T=0.2秒,0.5秒,1.0秒(T=RC改变两个C),分别测出超调量b P和过渡过 程tS,比较三条阶跃响应曲线的异同。 五、实验数据记录与处理: 阶跃响应曲线图见后面附图。 原始数据记录: (1) T=0.5,通过改变R0的大小改变K值 理论值与实际值比较: 对误差比较大,比如T=0.5,E =0.75时,超调量的相对误差为30%左右。造成误差的原因主要有以下几个方面: (1)由于R0是认为调整的阻值,存在测量和调整误差,且不能精确地保证E的大小等于 要求的数值; (2)在预习计算中我们使用了简化的公式,例如过渡时间大约为3~4T/ E,这并不是一个 精确的数值,且为了计算方便取3T/E作统一计算; (3)实际采样点的个数也可能造成一定误差,如果采样点过少,误差相对会大。 六、实验总结 通过本次实验,我们从图形上直观的二阶系统的两个参数对系统动态性能的影响,巩固了理论知识。其次我们了解了一个简单的系统是如何用电路方式实现的,如何根据一个

实验二 二阶系统的动态特性与稳定性分析

自动控制原理 实验报告 实验名称:二阶系统的动态特性与稳定性分析班级: 姓名: 学号:

实验二 二阶系统的动态特性与稳定性分析 一、实验目的 1、 掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态 2、 分析二阶系统特征参量(ξω,n )对系统动态性能的影响; 3、 分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质; 4、 了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态; 5、 学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink 实现方法。 二、实验内容 1、 构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。 2、 用Matlab 和simulink 仿真,分析其阶跃响应动态性能,得出性能指标。 3、 搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响; 4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响; 5、 将软件仿真结果与模拟电路观测的结果做比较。 三、实验步骤 1、 二阶系统的模拟电路实现原理 将二阶系统: ωωξω22)(22 n n s G s s n ++= 可分解为一个比例环节,一个惯性环节和一个积分

环节ωωξω221)() ()()(2C C C C s C C 2 22 6215423 2 15423 2 2154215426316 320 n n s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++= ++=++== 2、 研究特征参量ξ对二阶系统性能的影响 将二阶系统固有频率5.12n =ω保持不变,测试阻尼系数ξ不同时系统的特性,搭建模拟电路,改变电阻R6可改变ξ的值 当R6=50K 时,二阶系统阻尼系数ξ=0.8 当R6=100K 时,二阶系统阻尼系数ξ=0.4 当R6=200K 时,二阶系统阻尼系数ξ=0.2 (1)用Matlab 软件仿真实现二阶系统的阶跃响应,计算超调量%σ、峰值时间tp 以及调节时间ts 。 当12.5n =ω,0.8=ξ时: clear g=tf(12.5^2,[1 25*0.8 12.5^2]), step(g) Transfer function: 156.3 ------------------- s^2 + 200 s + 156.3

一二阶系统频率特性测试与分析

广西大学实验报告纸 姓名: 指导老师:胡老师 成绩: 学院:电气工程学院 专业:自动化 班级:121 实验内容:零、极点对限性控制系统的影响 2014年 11月 16 日 【实验时间】2014年11月14日 【实验地点】宿舍 【实验目的】 1. 掌握测量典型一阶系统和二阶系统的频率特性曲线的方法; 2. 掌握软件仿真求取一、二阶系统的开环频率特性的方法; 3. 学会用Nyquist 判据判定系统的稳定性。 【实验设备与软件】 1. labACT 实验台与虚拟示波器 2. MATLAB 软件 【实验原理】 1.系统的频率特性测试方法 对于现行定常系统,当输入端加入一个正弦信号)sin()(t X t X m ωω=时,其稳态输出是一个与输入信号频率相同,但幅值和相位都不同的正弦信号 )sin()()sin()(ψωωψω+=+=t j G X t Y s Y m m 。 幅频特性:m m X Y j G /)(=ω,即输入与输出信号的幅度比值,通常转换成)(lg 20ωj G 形式。 相频特性:)(arg )(ωω?j G =,可以直接基于虚拟示波器读取,也可以用“李沙育图行”法得到。 可以将用Bode 图或Nyquist 图表示幅频特性和相频特。 在labACT 试验台采用的测试结构图如下:

被测定稳定系统对于实验就是有源放大电路模拟的一、二阶稳定系统。 2.系统的频率测试硬件原理 1)正弦信号源的产生方法 频率特性测试时,一系列不同频率输入正弦信号可以通过下图示的原理产生。按照某种频率不断变化的数字信号输入到DAC0832,转换成模拟信号,经一级运放将其转换为模拟电压信号,再经过一个运放就可以实现双极性电压输出。 根据数模转换原理,知 R V N V 8 012- = (1) 再根据反相加法器运算方法,得 R R R V N V N V R R V R R V 1281282282201210--=??? ??+-?-=??? ? ??+-= (2) 由表达式可以看出输出时双极性的:当N 大于128时,输出为正;反之则为负;当输入为128时,输出为0. 在labACT 实验箱上使用的参考电压时5V 的,内部程序可以产生频率范围是对一阶系统是0.5 H Z ~64H Z 、对二阶系统是0.5 H Z ~16 H Z 的信号,并由B2单元的OUT2输出。

实验一基于MATLAB的二阶系统动态性能分析

实验一基于MATLAB 的二阶系统动态性能分析 一、实验目的 1、观察学习二阶控制系统的单位阶跃响应、脉冲响应。 2、记录单位阶跃响应曲线、脉冲响应曲线。 3、掌握时间响应分析的一般方法。 4、掌握系统阶跃响应曲线与传递函数参数的对应关系。 二、实验设备 PC 机,MATLAB 仿真软件。 三、实验内容1、作以下二阶系统的单位阶跃响应曲线 10 10)(2++=s s s G 2、分别改变该系统的ζ和n ω,观察阶跃响应曲线的变化。 3、作该系统的脉冲响应曲线。 四、实验步骤1、二阶系统为 10)(++=s G (1)键人程序观察并纪录阶跃响应曲线 (2)健入 damp(den) 计算系统的闭环根、阻尼比、无阻尼振荡频率,并作记录。记录实际测取的峰值大小、C max (t p )、峰值时间t p 、过渡时间t s 并与理论值相比较。实际值 峰值C max (t p ) 峰值时间t p 过渡时间 t s %5±%2±2、修改参数,分别实现ζ=1,ζ=2的响应曲线,并作记录。程序为: n0=10;d0=[1110];step(n0,d0) %原系统ζ=0.316/2 hold on %保持原曲线 n1=n0,d1=[16.3210];step(n1,d1) %ζ=1 n2=n0;d2=[112.6410];step(n2,d2)

%ζ=2 修改参数,写出程序分别实现1n ω=01n ω和2n ω=20n ω的响应曲线,并作记录。%10 0=n ω3、试作以下系统的脉冲响应曲线,分析结果 10)(++=s G 10 2102)(21+++=s s s s G ,有系统零点情况,即s=-5。

标准二阶系统的阶跃响应及性能分析

11级自动控制原理实验二 姓名:陈泉 学号:1104130103 班级:楼宇自动化01班 2013年11月26日星期二

1、标准二阶系统的阶跃响应及性能分析 考虑图2.2所示的标准二阶系统,假设ωn=1(这等价于ωn t为自变量),利用程序lab.3_1.m观察ζ=0.1,0.2,0.4,0.7,1.0,2.0时的系统单位阶跃响应,估计各自对应的性能水平,并将其与理论值进行比较。 解:Lab.3_1.m程序如下 t=[0:0.1:12]; num=[1]; zeta1=0.1; den1=[1 2*zeta1 1]; sys1=tf(num,den1); zeta2=0.2; den2=[1 2*zeta2 1]; sys2=tf(num,den2); zeta3=0.4; den3=[1 2*zeta3 1]; sys3=tf(num,den3); zeta4=0.7; den4=[1 2*zeta4 1]; sys4=tf(num,den4); zeta5=1.0; den5=[1 2*zeta5 1]; sys5=tf(num,den5); zeta6=2.0; den6=[1 2*zeta6 1]; sys6=tf(num,den6); [y1,T1]=step(sys1,t); [y2,T2]=step(sys2,t); [y3,T3]=step(sys3,t); [y4,T4]=step(sys4,t); [y5,T5]=step(sys5,t); [y6,T6]=step(sys6,t); plot(T1,y1,T2,y2,T3,y3,T4,y4,T5,y5,T6,y6)

基于matlab的二阶动态系统特性分析

测控技术基础课程设计 设计题目:基于matlab的二阶动态系统特性分析 姓名: 学号: 专业:机械电子 班级: 指导教师: 2014年 6月 26日---年 6月 26日

目 录 第一章 二阶系统的性能指标 1.1 一般系统的描述 1.2 二阶系统的性能指标 第二章 二阶系统基于matlab 的时域分析 2.1 用matlab 求二阶系统的动态性能指标 2.2 二阶系统的动态响应分析 2.2.1 二阶系统的单位阶跃响应与参数ξ的关系 2.2.2 二阶系统的单位阶跃响应与参数n ω的关系. 第三章 设计体会 参考文献

1. 二阶系统的性能指标 1.1. 一般系统的描述 凡是能够用二阶微分方程描述的系统称为二阶系统。从物理上讲,二阶系统包含两个独立的储能元件,能量在两个元件之间交换,是系统具有往复震荡的趋势。当阻尼比不够充分大时,系统呈现出震荡的特性,所以,二阶系统也称为二阶震荡环节。很多实际工程系统都是二阶系统,而且许多高阶系统在一定条件下也可以简化成为二阶系统近似求解。因此,分析二阶系统的时间相应具有重要的实际意义。 传递函数可以反映系统的结构参数,二阶系统的典型传递函数是: 2 2021)()()(n n i s s s X s X s G ωξω++= = 其中, n ω为二阶系统的无阻尼固有频率,ξ称为二阶系统的阻尼比。 1.2. 二阶系统的性能指标 系统的基本要求一般有稳定性、准确性和快速性这三个指标。系统分析及时对这三个指标进行分析。建立系统的数学模型后,就可以用不同的方法来分析和研究系统,以便于找出工程中需要的系统。在时域,这三个方面的性能都可以通过求解描述系统的微分方程来获得,而微分方程的解则由系统的结构参数、初始条件以及输入信号所决定。 上升时间r t :当系统的阶跃响应第一次达到稳态值的时间。上升时间是系统 响应速度的一种度量。上升时间越短,响应速度越快。 峰值时间p t :系统阶跃响应达到最大值的时间。最大值一般都发生在阶跃响应的第一个峰值时间,所以又称为峰值时间。 调节时间s t :当系统的阶跃响应衰减到给定的误差带,并且以后不再超出给定的误差带的时间。 最大超调量p M :相应曲线的最大峰值与稳态值的差称为最大超调量p M ,即 ) (max ∞-=c c M p 或者不以百分数表示,则记为 =p M % 100)() (max ?∞∞-c c c 最大超调量 p M 反映了系统输出量在调节过程中与稳态值的最大偏差,是衡 量系统性能的一个重要的指标。 在实际应用中,常用的动态性能指标多为上升时间、调节时间和超调量。通

(整理)二阶系统的阶跃响应.

实验一 一、二阶系统的阶跃响应 实验报告 ___系__专业___班级 学号___姓名___成绩___指导教师__一、实验目的 1、学习实验系统的使用方法。 2、学习构成一阶系统(惯性环节)、二阶系统的模拟电路,分别推导其传递函数。了解电路参数对环节特性的影响。 3、研究一阶系统的时间常数T 对系统动态性能的影响。 4、研究二阶系统的特征参数,阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。 二、实验仪器 1、EL-AT-II 型自动控制系统实验箱一台 2、计算机一台 三、实验内容 (一) 构成下述一阶系统(惯性环节)的模拟电路,并测量其阶跃响应。 惯性环节的模拟电路及其传递函数如图1-1。 (二)构成下述二阶系统的模拟电路,并测量其阶跃响应。 典型二阶系统的闭环传递函数为 ()2222n n n s s s ωζωω?++= (1) 其中ζ和n ω对系统的动态品质有决定的影响。 图1-1 一阶系统模拟电路图 R1 R2

构成图1-2典型二阶系统的模拟电路,并测量其阶跃响应: 电路的结构图如图 1-3 系统闭环传递函数为 ()()()()2 2 2/1//11/2T S T K s T s U S U s ++==? 式中 T=RC ,K=R2/R1。 比较(1)、(2)二式,可得 n ω=1/T=1/RC ξ=K/2=R2/2R1 (3) 由(3)式可知,改变比值R2/R1,可以改变二阶系统的阻尼比。改变RC 值可以改变无阻尼自然频率n ω。 今取R1=200K ,R2=0K Ω,50K Ω,100K Ω和200K Ω,可得实验所需的阻尼比。图1-2 二阶系统模拟电路图 图1-3 二阶系统结构图 R2

闭环零点对二阶系统单位阶跃响应的影响

闭环零点对二阶系统单位阶跃响应的影响作者: 单位: 邮编: 摘要 在工程上电路中出现两个储能元件时便构成了二阶系统。由于欠阻尼二阶系统最具有实际意义,并且二阶系统往往需要满足工程最佳参数的要求,然而仅仅通过改变开环放大系数从而满足工程要求则可能会出现系统稳态误差增大的现象,设置具有闭环零点的二阶系统既可以达到满足工程所需的阻尼比,又可保证系统稳态精度。 在全面的分析了二阶系统之后,得出二阶系统的动态变化,由此引入带有零点的二阶系统,并分析了在欠阻尼状态下二阶系统的单位阶跃响应,并分析了其上升时间、峰值时间、调节时间、最大超调量,与没有零点的二阶系统进行了动态特性的对比。在此基础上分析了零点位置变化对二阶系统的影响。得到了重要结论。 关键字:二阶系统上升时间峰值时间调节时间最大超调量

0 引言 在已经知道了二阶系统的动态特性的基础之上,进一步研究具有闭环零点的二阶系统。并通过对比二阶系统和具有闭环零点的二阶系统,得出一定的结论。讨论当零点移动时对动态特性的影响。对满足工程所需的阻尼比,保证系统稳态精度具有重要作用。 1 二阶系统 用二阶微分方程描述的系统成为二阶系统。 等效开环传递函数方框图: 其闭环传递函数方框图: 其中n ω无阻尼自然振荡角频率,ξ为阻尼比。 W B (s )=2n 22n 2n s s +ωξω+ω (1-1) 二阶系统的特征方程为: 2n 22n s s +ωξω+=0 两根为S 1,2=12n n -ξω-ξω 二阶系统极点分布图:

1、当ξ>1时,(过阻尼) 2、当0<ξ<1时,(欠阻尼) 3、当ξ=1时,(临界阻尼) 4、当ξ=0时,(无阻尼) 5、当ξ<0时,(发散振荡) 在不同的阻尼比时,二阶系统的动态响应有很大的差别,因此阻尼比ξ是二阶系统的重要参数,当ξ<0时系统不可以正常工作,而在ξ>1时,系统动态响应进行得太慢,所以对二阶系统来说欠阻尼是最有实际意义的。

二阶系统的阶跃响应

第3章辅导 控制系统典型的输入信号 1. 阶跃函数 阶跃函数的定义是 , 00 ,) (t t A r t x 式中A 为常数。A 等于1的阶跃函数称为单位阶跃函数,如图所示。它表示为 x r (t)=l(t),或x r (t)=u(t) 单位阶跃函数的拉氏变换为 X r (s)=L[1(t)]=1/s 在t =0处的阶跃信号,相当于一个不变的信号突然加到系统上;对于恒值系统,相当于给定值突然变化或者突然变化的扰动量; 对于随动系统,相当于加一突变的给定位置信号。 2. 斜坡函数 这种函数的定义是 0,00 ,) (t t t A t x r 式中A 为常数。该函数的拉氏变换是 X r (s)=L[At]=A/s 2 这种函数相当于随动系统中加入一按恒速变化的位置信号,该恒速度为A 。当A =l 时, 称为单位斜坡函数,如图所示。

3. 抛物线函数 如图所示,这种函数的定义是 0, 00 , t ) (2 t t A t x r 式中A 为常数。这种函数相当于随动系统中加入一按照恒加速变化的位置信号,该恒加速度为A 。抛物线函数的拉氏变换是 X r (s)=L[At 2 ]=2A/s 3 当A =1/2时,称为单位抛物线函数,即X r (s)=1/s 3。 4. 脉冲函数 这种函数的定义是 0)(0,) 0( ,0,0) (t A t t t x r 式中A 为常数,ε为趋于零的正数。脉冲函数的拉氏变换是 A A L s X r lim ) (当A =1,ε→0时,称为单位脉冲函数δ(t),如图 所示。单位脉冲函数的面积等于 l , 即

1 )(dt t 在t =t 0处的单位脉冲函数用 δ(t-t 0)来表示,它满足如下条件 幅值为无穷大、持续时间为零的脉冲纯属数学上的假设,但在系统分析中却很有用处。单位脉冲函数δ(t)可认为是在间断点上单位阶跃函数对时间的导数,即 反之,单位脉冲函数 δ(t)的积分就是单位阶跃函数。 控制系统的时域性能指标 对控制系统的一般要求归纳为稳、准、快。工程上为了定量评价系统性能好坏,必须给出控制系统的性能指标的准确定义和定量计算方法。 1 动态性能指标 动态性能指标通常有如下几项:延迟时间d t 阶跃响应第一次达到终值)(h 的50%所需的时间。 上升时间r t 阶跃响应从终值的 10%上升到终值的 90%所需的时间;对有振荡的系统, 也可定义为从 0到第一次达到终值所需的时间。 峰值时间p t 阶跃响应越过稳态值 )(h 达到第一个峰值所需的时间。 调节时间s t 阶跃响到达并保持在终值 ) (h 5%误差带内所需的最短时间;有时也用 终值的 2%误差带来定义调节时间。 超调量 % 峰值 )(p t h 超出终值)(h 的百分比,即 % 100) () ()(h h t h p % 在上述动态性能指标中,工程上最常用的是调节时间 s t (描述“快”),超调量 %(描 述“匀”)以及峰值时间 p t 。 2 稳态性能指标 稳态误差是时间趋于无穷时系统实际输出与理想输出之间的误差,是系统控制精度或抗 干扰能力的一种度量。稳态误差有不同定义,通常在典型输入下进行测定或计算。

二阶系统的阶跃响应实验报告

实验二 二阶系统的阶跃响应实验报告 1.实验的目的和要求 1)掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术; 2)定量分析二阶控制系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响; 3)加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质; 4)了解与学习二阶控制系统及其阶跃响应的MATLAB 仿真。 2.实验内容 1)分析典型二阶系统2222)(n n n s s s G ωξωω++=的ξ(ξ取值为0、0.25、0.5、1、 1.2……)和n ω(n ω取值10、100……)变化时,对系统阶跃响应的影响。 2)典型二阶系统,若0.707ξ=,1 10n s ω-=,确定系统单位阶跃响应的特征量%σ、r t 和s t 。 3.需用的仪器 计算机、Matlab6.5编程软件 4.实验步骤 1)利用MA TLAB 分析n ω=10时ξ变化对系统单位阶跃响应的影响。 观察并记录响应曲线,根据实验结果分析ξ变化对系统单位阶跃响应的影响。 2)利用MA TLAB 分析ξ=0时n ω变化对系统单位阶跃响应的影响。 观察并记录响应曲线,根据实验结果分析n ω变化对系统单位阶跃响应的影响。 3)利用MA TLAB 计算特征量%σ、r t 和s t 。 5.教案方式 讲授与指导相结合 6.考核要求 以实验报告和实际操作能力为依据 7.实验记录及分析 1)程序: 》t=[0:0.01:10]。 y1=step([100],[1 0 100],t)。 y2=step([100],[1 5 100],t)。 y3=step([100],[1 10 100],t)。 y4=step([100],[1 20 100],t)。 y5=step([100],[1 80 100],t)。 subplot(3,2,1)。 plot(t,y1,'-')。

相关主题
文本预览
相关文档 最新文档