当前位置:文档之家› R语言小波分析wavelet

R语言小波分析wavelet

R语言小波分析wavelet
R语言小波分析wavelet

6.小波分析 wavelet analysis

自从学习过佛瑞艾尔变形和频率估计,作者对小波分析产生的兴趣,开始阅读一些相关的资料。同时发现正在给自己上数学课的David Walnut 教授是小波分析的泰山北斗。他写的这方面的教课书遍布全球。作者的心中又产生的无比的崇敬与羡慕,所以将当前世界最先进的小波分析技巧写出来与大家分享。

读过《R语言时间系列中文教程》都应该知道如何使用弗瑞艾尔变形估计频率。但必须假设,被估计的频率是始终存在于波动之中的。更经常的状况是在一整个波中某一频率只在这个波中的一小部分出现。使用弗瑞艾尔变形不可能监测到在某一时间点上的频率变化,因为它假设所估计的频率都是自始至终存在的。例如,下面的波中有一个很慢的频率是始终存在的,在中间部分突然出现了频率非常高的新波动,而且很快就消失了。这样的波动需要使用小波分析。

t=1:500

c1 = 2*cos(2*pi*t/150 + .6*pi)

plot.ts(c1)

t2= ifelse(t>200 & t<300,t,0)

c2=1*cos(2*pi*t2/10 + .6*pi)

par(new=T)

plot.ts(c2)

par(new=F)

例如心电图是有来测量人心脏跳动的手段,心脏的各个组成部分不是同时不停的工作的,在一个心房收缩的过程中某些的心房是休息的。所以在心电图上来看,微小的波动是突然出现仅仅持续很短的时间就消失了,像这样的微小波动就要使用小波分析来捕捉。

心电图是医生进行临床诊断的方法之一,通过阅读心电图医生可以推测病人的心脏是正常的还是哪里出现的毛病。接下来我们要介绍使用小波分析计算机智能进行自动诊断,也就是说我们积累了很多人的心电图数据通过小波分析将心电图的特色提取出来。这些特色将告诉我们病人的心脏是正常的还是有状况。通过这些心电图的数据我们可以建立一个数学模型,当有一个新的病人进来我们就可以对他的心电图进行诊断。

这里使用的数据也是网上的数据,有600行,每一行代表着一个波动,虽然这些波动不是心电图的波动,但我们把它全当做心电图的波动来使用,只是为了介绍概念。

(A) Downward Trend. (B) Cyclic. (C) Normal. (D) Upward Shift. (E) Upward Trend. (F) Downward Shift.

从上面的贴图可以看到波动分为6种,第一种是向下型,第二种是循环型,第

三种是正常型,第四种是向上移动型,第五种是向上型,第六种是向下移动型。在数据中,1到100 行为第一型,101 到200 行为第二型,以此类推。

# extracting DWT coefficients (with Haar filter)

library(wavelets)

feature<-NULL

mydata <-

read.table("https://www.doczj.com/doc/cd16020226.html,/ml/databases/synthetic_control/synthetic_con trol.data",header=F, sep="")

#mydata <- read.table("C://Users//User//Desktop//R

Language//Wavelet//synthetic_control.data",header=F, sep="")

for (i in 1:nrow(mydata)) {

a <- t(mydata[i,])

wt <- dwt(a, filter="haar", boundary="periodic")

feature <- rbind(feature, unlist(c(wt@W,wt@V[[wt@level]])))

}

feature <- as.data.frame(feature)

上面的命令是用来读取数据提取小波分析数据特色的,所使用的程序包叫做WAVELETS。数据是通过使用read.table 命令直接读取一个因特网的连接。上面的FOR 循环是从1循环到600 ,也就是对于每一行的数据都要执行FOR 循环的命令。其中最关键的命令为DWT 命令(离散小波),这个命令把每一行波动进行小波分析并且提出其中的特色。其中我们使用的是其中HAAR 小波,BOUNDARY 的设置为PERIODIC 也就是循环的。RBIND 命令只是把所有的特色困绑在一起存储于FEATURE 变量中。最后一句的命令是将生成的FEATURE矩阵转化为DATA.FRAME 对象可做下面的使用。这里是上面一部分代码运行的贴图

# set class labels into categorical values

classId <- c(rep("1",100), rep("2",100), rep("3",100),

rep("4",100), rep("5",100), rep("6",100))

wtSc <- data.frame(cbind(classId, feature))

我们数据中有6种波,上面的命令是将波的类型(1-6)和波的特色捆绑在一起生成新的DATA.FRAME对象称作wtSc 。

# build a decision tree with ctree() in package party

library(party)

ct <- ctree(classId ~ ., data=wtSc,

controls = ctree_control(minsplit=30, minbucket=10, maxdepth=5))

pClassId <- predict(ct)

# check predicted classes against original class labels

table(classId, pClassId)

上面一节的语句中使用了一个叫作PARTY 的程序包,作用是在于对前面提取出的FEATURE 对象建立决策树模型。CTREE 命令是用来生成这个决策树的,来看一下这一节输出结果

输出中有一个6 X 6 的矩阵被称作“对错矩阵”。可以看到我们原本有100个1型的波动,其中有97 个被这个数学模型正确的认识出来了,有3 个被错误的认作2型波动。再比方说,这个数学模型正确的认出了99个2型波动,但其中的一个被错误的认作1型波动。

# accuracy

(sum(classId==pClassId)) / nrow(wtSc)

这条语句用来计算生成的决策树模型的正确率,值为87%。即为百分之八十七

的正确率。

plot(ct, ip_args=list(pval=FALSE), ep_args=list(digits=0))

PLOT 语句用来输出决策树模型的插图

比方说,数据第一行代表的病人,或者是一个与这个病人状况非常相似的病人,回到这里从新做了心电图。数据中1-100行都是1型波动。通过我们的数学模型,还可以知道这个病人的心电图是1型的吗?通过数学模型来判定病人的心

电图型号被称作预测。下面就是进行预测的代码,同样需要将心电图的特色提取出来,然后放回到数学模型中来判定型号。

#make predictions

f<-NULL 初始化F 变量

a <- t(mydata[1,]) 1号病人的心电图存入a 中,代表这个人又回来了。

wt <- dwt(a, filter="haar", boundary="periodic") 输入提取特色

f <- rbind(f, unlist(c(wt@W,wt@V[[wt@level]]))) 特色放入f 中

f <- as.data.frame(f) f 转为DATA.FRAME对象

predict(ct,f) 使用前面模型的名字叫ct, 特色叫f 来进行预测

预测结果是 [1] 1 是说明我们的数学模型已经认出这个病人的心电图是1 型的。

小波的几个术语及常见的小波基介绍

小波的几个术语及常见的小波基介绍 本篇是这段时间学习小波变换的一个收尾,了解一下常见的小波函数,混个脸熟,知道一下常见的几个术语,有个印象即可,这里就当是先作一个备忘录,以后若有需要再深入研究。 一、小波基选择标准 小波变换不同于傅里叶变换,根据小波母函数的不同,小波变换的结果也不尽相同。现实中到底选择使用哪一种小波的标准一般有以下几点: 1、支撑长度 小波函数Ψ(t)、Ψ(ω)、尺度函数φ(t)和φ(ω)的支撑区间,是当时间或频率趋向于无穷大时,Ψ(t)、Ψ(ω)、φ(t)和φ(ω)从一个有限值收敛到0的长度。支撑长度越长,一般需要耗费更多的计算时间,且产生更多高幅值的小波系数。大部分应用选择支撑长度为5~9之间的小波,因为支撑长度太长会产生边界问题,支撑长度太短消失矩太低,不利于信号能量的集中。 这里常常见到“紧支撑”的概念,通俗来讲,对于函数f(x),如果自变量x在0附近的取值范围内,f(x)能取到值;而在此之外,f(x)取值为0,那么这个函数f(x)就是紧支撑函数,而这个0附近的取值范围就叫做紧支撑集。总结为一句话就是“除在一个很小的区域外,函数为零,即函数有速降性”。 2、对称性 具有对称性的小波,在图像处理中可以很有效地避免相位畸变,因为该小波对应的滤波器具有线性相位的特点。 3、消失矩 在实际中,对基本小波往往不仅要求满足容许条件,对还要施加所谓的消失矩(Vanishing Moments)条件,使尽量多的小波系数为零或者产生尽量少的非零小波系数,这样有利于数据压缩和消除噪声。消失矩越大,就使更多的小波系数为零。但在一般情况下,消失矩越高,支撑长度也越长。所以在支撑长度和消失矩上,我们必须要折衷处理。

基于小波变换的图像分割的研究

摘要 近年来,对图像分割的研究一直是图像技术研究的焦点。图像分割是一种很重要的图像分析技术,它的目的是把图像分为具有各种特性的区域并把感兴趣的部分提取出来。它融合了多个学科的成果,并且成功应用于工业、农业、医学、军事等领域,得到了广泛的应用。 图像分割是一个经典的问题,实现方法有很多种,但是至今仍没有一种通用的解决方法。经过研究发现,区分真正的噪声和边缘是图像分割的难题之一,然而小波变换则可以解决这一问题,小波变换是一种时--频两域的分析工具。本文则基于小波变换对图像分割技术进行研究,主要介绍了小波阈值分割方法。文中通过直方图、建立模型等手段对这两种方法做出具体的讨论,并利用Matlab分别对两种方法进行仿真,并得到了有效的结果。根据仿真结果我们可以看出不同分割方法的不同分割效果,从而更好地理解这些方法。 关键词:图像分割;小波变换;阈值;

Abstract In recent years, the study of image segmentation has been the focus of imaging technology. Image segmentation is an important image analysis, its purpose is to take the various characteristics part out of the image. It combines the results of multiple disciplines, and successfully applied to such fields as industry, agriculture, medicine, military, and a wide range of applications. There are many ways to achieve image segmentation, but could not find a common solution. After the study found that the distinction between real noise and the edge of one of the difficult problem of image segmentation, wavelet transform can solve this problem, wavelet transform is a time - frequency domain analysis tools. In this paper, image segmentation technique based on wavelet transform to study the two wavelet segmentation method, the wavelet thresholding segmentation method. Histogram, the establishment of model and other means to make a specific discussion of these two approaches, and use the Matlab simulation, and the effective results of the two methods, respectively. According to the results of the simulation we can see the different segmentation results of different segmentation methods, in order to better understand these methods. Key words:Image; Wavelet transform; Threshold

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率

的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。 因此需要一种如下的数学工具:可以将信号的时域和频域结合起来构成信号的时频谱,描述和分析其时频联合特征,这就是所谓的时频局部化分析方法,即时频分析法。1964年,Gabor 等人在傅立叶变换的基础上引入了一个时间局部化“窗函数”g(t),改进了傅立叶变换的不足,形成窗口化傅立叶变换,又称“Gabor 变换”。 定义“窗函数”(t)g 在有限的区间外恒等于零或很快地趋于零,用函数(t )g -τ乘以(t)f ,其效果等同于在t =τ附近打开一个窗口,即: ()()()dt e t g t f G t j f ωττω-+∞ ∞--=?, (4-3) 式(4-3)即为函数f(t)关于g(t)的Gabor 变换。由定义可知,信号(t)f 的Gabor 变换可以反映该信号在t =τ附近的频谱特性。其逆变换公式为: ()()()ττωτωπ ωd G t g e d t f f t j ,21 ? ?+∞ ∞ --- = (4-4) 可见()τω,f G 的确包含了信号(t)f 的全部信息,且Gabor 窗口位置可以随着 τ的变化而平移,符合信号时频局部化分析的要求。 虽然Gabor 变换一定程度上克服了傅立叶变换缺乏时频局部分析能力的不

基于小波分析的机械故障诊断

绪 论 机械故障诊断技术作为一门新兴的科学,自从二十世纪六七十年代以来已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了智能化阶段。现在,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践已经证明开展故障诊断与状态预测技术研究具有重要的现实意义。 我国的故障诊断技术在理论研究方面,紧跟国外发展的脚步,在实践应用上还是基本落后于国外的发展。在我国,故障诊断的研究与生产实际联系不是很紧密,研究人员往往缺乏现场故障诊断的经验,研制的系统与实际情况相差甚远,往往是从高等院校和科研部门开始,再进行到个别行业,而国外的发展则是从现场发现问题进而反映到高等院校或科研部门,使得研究有的放矢[1]。 要求机械设备不出故障是不现实的,因为不存在绝对安全可靠的机械设备。因此,为了预防故障和减少损失,必须对设备的运行状态进行监测,及时发现设备的异常状况,并对其发展趋势进行跟踪:对己经形成的或正在形成的故障进行分析诊断,判断故障的部位和产生的原因,并及早采取有效的措施,这样才能做到防患于未然。因此,设各状态监测与故障诊断先进技术的研究对于保证复杂机械设备的安全运行具有重要意义。 关键词:小波分析,故障诊断,小波基选取,奇异性 基于小波分析的机械故障检测 小波奇异性理论用于机械故障检测的基本原理 信号的奇异性与小波变换的模极大值之间有如下的关系: 设)(x g 为一光滑函数,且满足条件0g(x) lim ,1x)dx ( g x ==∞→+∞ ∞-?,不妨设)(x g 为高斯函数,即σσπ2221)(x e x g -= ,令 d x,/x)( dg x)(=ψ由于?+∞ ∞-=0x)dx (ψ,因此,可取函数x)(ψ

小波分析算法资料整理总结

一、小波分析基本原理: 信号分析是为了获得时间和频率之间的相互关系。傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。相关原理详见附件资料和系统设计书。 注:小波分析相关数学原理较多,也较复杂,很多中文的著作都在讨论抽象让非数学相关专业人难理解的数学。本人找到了相对好理解些的两个外文的资料: Tutorial on Continuous Wavelet Analysis of Experimental Data.doc Ten.Lectures.of.Wavelets.pdf 二、搜索到的小波分析源码简介 (仅谈大体印象,还待继续研读): 1、83421119WaveletVCppRes.rar 源码类型:VC++程序 功能是:对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。 说明:在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。但这是为专业应用写的算法,通用性差。 2、WA.FOR(南京气象学院常用气象程序中的小波分析程序) 源码类型:fortran程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。 3、中科院大气物理学所.zip(原作者是美国Climate Diagnostics Center的C. Torrence 等)源码类型:fortran和matlab程序各一份 功能是:气象应用。用小波分析方法对太平洋温度的南方涛动指数进行分析。 说明:用的是Morlet和墨西哥帽小波。程序编写规范,思路清晰,但这是为专业应用写的算法,通用性差。 4、Morlet小波变换源程序.rar 源码类型:matlab程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。

基于小波变换的图像处理.

基于小波变换的数字图像处理 摘要:本文先介绍了小波分析的基本理论,为图像处理模型的构建奠定了基础,在此基础上提出了小波分析在图像压缩,图像去噪,图像融合,图像增强等图像处理方面的应用,最后在MATLAB环境下进行仿真,验证了小波变化在图像处理方面的优势。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像增强 引言 数字图像处理是利用计算机对科学研究和生产中出现的数字化可视化图像 信息进行处理,作为信息技术的一个重要领域受到了高度广泛的重视。数字化图像处理的今天,人们为图像建立数学模型并对图像特征给出各种描述,设计算子,优化处理等。迄今为止,研究数字图像处理应用中数学问题的理论越来越多,包括概率统计、调和分析、线性系统和偏微分方程等。 小波分析,作为一种新的数学分析工具,是泛函分析、傅立叶分析、样条分析、调和分析以及数值分析理论的完美结合,所以小波分析具有良好性质和实际应用背景,被广泛应用于计算机视觉、图像处理以及目标检测等领域,并在理论和方法上取得了重大进展,小波分析在图像处理及其相关领域所发挥的作用也越来越大。在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。但短时傅立叶分析只能在一个分辨率上进行,所以对很多应用来说不够精确,存在很大的缺陷。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像增强等,本文重点在图像去噪,最后用Matlab进行了仿真[1]。

小波分析-经典解读

时间序列-小波分析 时间序列(Time Series )是地学研究中经常遇到的问题。在时间序列研究中,时域和频域是常用的两种基本形式。其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。显然,时域分析和频域分析对此均无能为力。 20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。 目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。 一、小波分析基本原理 1. 小波函数 小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足: ? +∞ ∞ -=0dt )t (ψ (1) 式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系: )a b t ( a )t (2 /1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。 需要说明的是,选择合适的基小波函数是进行小波分析的前提。在实际应用研究中,应针对具体情况选择所需的基小波函数;同一信号或时间序列,若选择不同的基小波函数,所得的结果往往会有所差异,有时甚至差异很大。目前,主要是通过对比不同小波分析处理信号时所得的结果与理论结果的误差来判定基小波函数的好坏,并由此选定该类研究所需的基小波函数。 2. 小波变换 若)t (b ,a ψ是由(2)式给出的子小波,对于给定的能量有限信号)R (L )t (f 2 ∈,其连续小波变换(Continue Wavelet Transform ,简写为CWT )为: dt )a b t ( f (t)a )b ,a (W R 2 /1-f ? -=ψ (3) 式中,)b ,a (W f 为小波变换系数;f(t)为一个信号或平方可积函数;a 为伸缩尺度;b 平移参数; )a b x ( -ψ为)a b x (-ψ的复共轭函数。地学中观测到的时间序列数据大多是离散的,设函数)t k (f ?,

基于小波变换的边缘检测技术(完整)

第一章图像边缘的定义 引言 在实际的图像处理问题中,图像的边缘作为图像的一种基本特征,被经常用于到较高层次的特征描述,图像识别。图像分割,图像增强以及图像压缩等的图像处理和分析中,从而可以对图像进行进一步的分析和理解。 由于信号的奇异点或突变点往往表现为相邻像素点处的灰度值发生了剧烈的变化,我们可以通过相邻像素灰度分布的梯度来反映这种变化。根据这一特点,人们提出了多种边缘检测算子:Roberts算子Prewitt算子Laplace算子等。 经典的边缘检测方法是构造出像素灰度级阶跃变化敏感的微分算子。这些算子毫无例外地对噪声较为敏感。由于原始图像往往含有噪声、而边缘和噪声在空间域表现为灰度有大的起落,在频域则反映为同是主频分量,这就给真正的边缘检测到来困难。于是发展了多尺度分析的边缘检测方法。小波分析与多尺度分析有着密切的联系,而且在小波变换这一统一理论框架下,可以更深刻地研究多尺度分析的边缘检测方法,Mallat S提出了一小波变换多尺度分析为基础的局部极大模方法进行边缘检测。 小波变换有良好的时频局部转化及多尺度分析能力,因此比其他的边缘检测方法更实用和准确。小波边缘检测算子的基本思想是取小波函数作为平滑函数的一阶导数或二阶导数。利用信号的小波变换的模值在信号突变点处取局部极大值或过零点的性质来提取信号的边缘点。常用的小波算子有Marr 算子Canny算子和Mallat算子等。

§1.1信号边缘特征 人类的视觉研究表明,信号知觉不是信号各部分简单的相加,而是各部分有机组成的。人类的信号识别(这里讨论二维信号即图像)具有以下几个特点:边缘与纹理背景的对比鲜明时,图像知觉比较稳定;图像在空间上比较接近的部分容易形成一个整体;在一个按一定顺序组成的图像中,如果有新的成份加入,则这些新的成份容易被看作是原来图像的继续;在视觉的初级阶段,视觉系统首先会把图像边缘与纹理背景分离出来,然后才能知觉到图像的细节,辨认出图像的轮廓,也就是说,首先识别的是图像的大轮廓;知觉的过程中并不只是被动地接受外界刺激,同时也主动地认识外界事物,复杂图像的识别需要人的先验知识作指导;图像的空间位置、方向角度影响知觉的效果。从以上这几点,可以总结出待识别的图像边缘点应具有下列特征即要素:具有较强的灰度突变,也就是与背景的对比度鲜明;边缘点之间可以形成有意义的线形关系,即相邻边缘点之间存在一种有序性;具有方向特征;在图像中的空间相对位置;边缘的类型,即边缘是脉冲型、阶跃型、斜坡型、屋脊型中哪一种。 §1.2图像边缘的定义 边缘检测是图像处理中的重要内容。而边缘是图像中最基本的特征,也是指周围像素灰度有变化的那些像素的集合。主要表现为图像局部特征的不连续性,也就是通常说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常分为阶跃边缘和屋顶边缘两种类型。阶跃边缘在阶跃的两边的灰度值有明显的变化;屋顶边缘则位于灰度增加与减少的交界处。我们可以利用灰度的导数来刻画边缘点的变化,分别求阶跃边缘和屋顶边缘的一阶,二阶导数。如图可见,对于边缘点A,阶跃边缘的一阶导数在A点到最大值,二阶导数在A点过零点;屋顶边缘的一阶导数在A点过零点,二阶导数在A点有最大值。

小波分析理论简介

小波分析理论简介 (一) 傅立叶变换伟大的历史贡献及其局限性 1 Fourier 变换 1807年,由当年随拿破仑远征埃及的法国数学、物理学家傅立叶(Jean Baptistle Joseph Fourier ,1786-1830),提出任意一个周期为T (=π2)的函数 )(t f ,都可以用三角级数表示: )(t f = ∑∞ -∞=k ikt k e C = 20 a + ∑∞=1cos k k kt a + ∑∞ =1 sin k k kt b (1) k C = π 21 ? -π 20 )(dt e t f ikt = * ikt e f , (2) k k k C C a -+= )(k k k C C i b --= (3) 对于离散的时程 )(t f ,即 N 个离散的测点值 m f ,=m 0,1,2,……,N-1, T 为测量时间: )(t f =2 0a + )sin cos (12 1∑-=+N k k k k k t b t a ωω+t a N N 2 2cos 21 ω=∑-=1 0N k t i k k e C ω (4) 其中 ∑-== 1 02cos 2 N m m k N km x N a π ,=k 0,1,2,…,2N (5) ∑-== 1 2sin 2N m m k N km x N b π , =k 1,2,…, 2N -1 (6) ∑-=-= 1 )/2(1N m N km i m k e x N C π ,=k 0,1,2,…,N-1 (7) t N k k ?=π ω2 ,N T t =? (8) 当T ∞→ 时,化为傅立叶积分(即 Fourier 变换): ? ∞ ∞ --= dt e t f f t i ωω)()( =t i e f ω, (9) ωωπ ωd e f t f t i )(21 )(? ∞ ∞ -= (10)

小波分析入门_本人总结_

给我们一个信号时,我们从时域中观察这个信号时,我们得到的信息是信号的持续的时间,随着时间的变化,信号的幅度起起伏伏。如果我们更进一步,就是起伏速度较快的部分对应着信号中高频部分。变换缓慢的部分对应着代表信号中的频率低频部分。我们也可以估算信号中直流分量的大小。当然这都是我们直观的理解。这种单纯的从时域中的信号的波形得到的信息是不全面的。有的时候我们想要知道我们的信号中含有那些频率成分,相应频率的强度,相位。这就是从从频域的角度来看待我们的信号。这就需要一个数学变换的工具,将我们的信号变换到频域。这个强大的数学工具就是傅里叶变换,变换后我们希望我们还可以回到时域中,也就是我们的变换是可可逆的,事实上,傅里叶变换就有这个信息不损失的性质。如今傅里叶变换已经成为一个体系。一切来自于数学中的分解思想,在这里我们选择一组正交基。对我们信号函数的分解就像是对空间中某一一向量分解到三个坐标系一样,只不过函数的坐标是傅里叶系数而已。这样,我们经过傅里叶变换就可以知道我们的信号中含有的频率成分。但是这里有一个隐含的假设,或者说是傅里叶变换的致命弱点,那就是他潜在的假设了我们的信号是平稳信号。何为平稳信号?所谓的平稳信号就是信号的各种频率成分在信号的全部持续时间中都存在。举个例子,假如我们对一个持续时间在[0,100s]的平稳信号做傅里叶变换,得出信号中有59HZ,那么就说明,对该平稳信号,59HZ从0开始,在这100s中的任何一个时刻都存在。 可是,当我们的信号不是平稳信号时,例如59HZ产生50s 处,强度和上一个信号的完全相同,其他频率也完全相同,如果我们对这一个信号做傅里叶变换,由于傅里叶变换的积分域是从负无穷到正无穷,所以不幸的是,我们得到了和上一信号完全一样的结果,我们无法再从频域回到时域了。也就是FT并没有告诉我们非平稳信号的各种频率分别出现在那个时间段上。 事实上,在现实生活中,非平稳信号和平稳信号交织在一起的。例如 心电图(ECG)、脑电图(EEG)和肌电图(EMG)。所以知道哪些频率出现在何种时间段的需求是那么的紧迫。换句话说,就是我们想要同时知道信号的时间信息和频率信息。解决方案就是FT的改进版:STFT(短时傅里叶变换)。 小波变换: 小波(wavelet)的意思是:a small wave。FT中,我们选用的是exp(jwt)函数作为我们变换空间的一组标准正交基,exp(jwt)函数在时间轴上一直存在,从-∞到+∞上均存在的信号,不会衰减,而我们在小波变换中选用的小波不仅持续时间是有限的,即只在某一个时间段内存在,而且小波的频率也是有限的,即超过一定的频率之外,该频率的强度(幅度)会逐渐衰减到0。小波变换较之于傅里叶变换的优点可以归结为如下方面:1)使得信号的存储较之于傅里叶变换后再去存储更加的有效,也就是更易于压缩,进而传输图像。2)方便了对信号的分析,因为能够更好地去近似现实中的信号(non stationary signal)。3)当信号函数中有不连续的点的时候,如果用FT得到信号的近似,会有吉布斯现象(虽然在功率上会很好的近似,但是在不连续点附近却有一个固定的误差,无法进一步减小),比之于FT的这个缺点,我们的小波变换能够更好的对数据中的不连续点进行近似。

基于小波理论

3)基于小波理论的模型(Wavelet Based Model)小波分析方法是对一组已知的交通流时间序列v0i(将原始信号视为尺度0上的信号)和选定的尺度函数ψ(t)、小波函数φ(t)及其对应的分解系数序列{an}、{bn}、重构系数序列{pn}、{qn},进行N 尺度的分解,得到一个基本时间序列信号vji和一组干扰信号wji(j=1,2,…,N),然后利用其他预测方法(如ARMA)对分解后的近似信号、干扰信号进行预测,将分解信号及相应的预测结果利用重构算法(如Mallat 算法)得到原尺度的信号及其预测结果[18]。在小波分析中,多尺度方法对于高频扰功信号具有较强的适应能力,在强干扰作用下,该方法较之普通的时间序列方法具有更强的抗干扰能力,因此多尺度时间序列的方法更适用于短时交通流的预测。但是对信号进行二进小波分解时,每次分解都将使信号样本减少一半,进行分解后只能依据较少的样本数据来进行阶数和参数的估计,影响重构模型和预测精度。而且同时还需要利用其他时间序列方法,这本身就影响了预测精度,限制了它的应用,而且也没有考虑相邻路段的影响。 4)基于分形理论的模型(Fractal Based Model) 分形理论是描述复杂系统的一种强有力的工具。广义地,我们把形态、功能、信息等方面具有的自相似的研究对象统称为分形,把研究分形的性质及其应用的科学称为分形理论,分形几何揭示了系统的无标度性或自相似性,而分维是描写分形的定量参数,通常是一个分数。一般地,如果某个形体是由将整个形体缩小到1/β的βD个形体所构成,则称 D 为相似维数。由于短时交通系统存在自相似性,使得短时交通流量具有可预测性。短时交通流的分形预测方法的关键是分维,一般利用建立在H.Whitney 的拓扑嵌入理论及 F.Takens 证明的状态空间重构的理论之上的G-P 算法进行计算。就是利用观测到的交通流时间序列vi(t-k)(k=1,2,…,P),确定原交通流系统的嵌入空间维数m和时滞参数τ,从而在m维上建立一个与原交通流系统拓扑结构相同的动力学系统。对于m 维欧氏空间上的动力学系统v。=f(v)(其中v=(v1,v2,…,vn)是系统的状态向量,也可以看做系统相空间上的一个点),随着时间的推延,其相空间上的轨迹可能渐进地趋向于其上的某个子集A(A是系统的吸引子),这样对系统特性的研究也就转化为对吸引子的研究。 利用分形理论进行交通流量预测,存在很大的适应性和有效性。但是利用分形方法进行预测有一个基本前提,即:当前的交通流演化过程与过去出现的交通流的变化过程具有自相似性。因此分形预测只能在无标度区间内作尺度变换,一

小波变换的理解

由于小波变换的知识涵盖了调和分析,实变函数论,泛函分析及矩阵论,所以没有一定的数学基础很难学好小波变换.但是对于我们工科学生来说,重要的是能利用这门知识来分析所遇到的问题.所以个人认为并不需要去详细学习调和分析,实变函数论,泛函分析及矩阵论等数学知识.最重要是的理解小波变换的思想!从这个意义上说付立叶变换这一关必需得过!因为小波变换的基础知识在付立叶变换中均有提及,我觉得这也就是很多小波变换的书都将付立叶分析作为其重要内容的原因.所以我认为学习小波应从<数字信号处理>中的付立叶分析开始.当然也可从<信号与系统>这本书开始.然后再看杨福生老师的小波变换书.个人觉得他的书最能为工科学生所接受. 2信号的分解 付立叶级数将周期信号分解为了一个个倍频分量的叠加,基函数是正交的,也就是通常所说的标准正交基.通过分解我们就能将特定的频率成分提取出来而实现特定的各种需要,如滤波,消噪等.付立叶变换则将倍频谱转换为了连续谱,其意义差不多.小波变换也是一种信号分解思想:只不过它是将信号分解为一个个频带信号的叠加.其中的低频部分作为信号的近似,高频部分作为信号的细节.所谓的细节部分就是一组组小波分量的叠加,也就是常说的小波级数. 3小波变换的时频分析思想 付立叶变换将信号从时域变换到了频域,从整体上看待信号所包含的频率成分.对于某个局部时间点或时间段上信号的频谱分析就无能为力了,对于我们从事信号的奇异性检测的人来说,付立叶变换就失去了意义(包括加窗付立叶变换).因为我们要找的是信号的奇异点(时域方面)和奇异点处所包含的频带(频域方面)也就是说需要一种时频分析方法.当然能有纯时域的分析方法更好!(据说数学形态学能达到这种效果).小波变换之所以可以检测信号的奇异点,正在于它的"小".因为用小的波去近似奇异信号要比正弦波要好的多. 4小波变换的实质 小波变换的公式有内积形式和卷积形式,两种形式的实质都是一样的.它要求的就是一个个小波分量的系数也就是"权".其直观意义就是首先用一个时窗最窄,频窗最宽的小波作为尺子去一步步地"量"信号,也就是去比较信号与小波的相似程度.信号局部与小波越相似,则小波变换的值越大,否则越小!当一步比较完成后,再将尺子拉长一倍,又去一步步地比

小波分析综述

高级数字信号处理 题目:小波分析的最新进展 姓名: 学号: 年级: 专业:电子与通信工程

小波分析的最新进展 摘要 小波分析打破了傅立叶变换的局限性,在继承和发展傅立叶分析基础上产生的各种改进,具有广泛的应用。经过几十年的发展,小波变换的理论越来越成熟,为了更好的完善这一强有力的分析工具,许多人依然在不断的研究。本文主要介绍了小波变换的基本理论,讨论了小波变换在各种信息和图像处理方面的最新研究现状及应用,最后展望了小波分析理论进一步发展进行了概述。 关键词:小波变换图像处理信号处理

Wavelet analysis of the latest developments Abstract The wavelet analysis to break the limitations of the Fourier transform, a variety of the inheritance and development on the basis of Fourier analysis to generate improvements, with a wide range of applications. After decades of development, the theory of wavelet transform more mature, in order to better improve this powerful analytical tool that many people are still in continuous research. This paper introduces the basic theory of wavelet transform, wavelet transform discuss the latest research in a variety of status and application of information and image processing, and finally prospect of further development of the theory of wavelet analysis are outlined. Keywords: wavelet transform image processing Signal Processing

基于小波变换的图像处理综述

Value Engineering 1小波变换的定义 小波分析是对Fourier 分析的一个重要补充和完善。因此,小波变换的定义应该是尽可能的由少数几个函数生成的;而理想的小波基应该是类似于Fourier 分析的。小波分析主要可以分为两个变换,即连续小波变换和离散小波变换。 2小波分析处理图像的发展 小波分析是一个不断发展的过程,经历“应用-理论-应用”的循环过程。小波分析是多学科交叉理论的结晶,包含泛函数分析、数值分析、分形理论、信息论、调和理论以及逼近论和时频分析等。并提出一种自适应的时-频局部化方法,可在时-频域任意转换,可聚焦任意信号的时段和频段,称为数学中的“望远镜”和“显微镜”。小波变换是Fourier 变换的深层次发展,是近年来工程领域关注的热点,将小波分析用于无损检测、医学CT 、构件探伤等。小波起源就与信号处理密不可分,1984年,法国工程师J.Morlet 和Grossman 对地质信号的分界提出了伸缩、平移的概念,首次提出”Wavelets ”一词。1985年,法国大数学家Meyer 提出光滑正交小波的理念,证明一维小波的存在性,构造出小波函数,是小波数学理论的先驱。随后与他的学生Lemarie 提出多尺度分析的思想。1988年,比利时数学家Ingrid Daubechies 构造出具有紧支撑的有限光滑小波函数,并撰写的《小波十讲(Ten Lectures on Wavelets )》为小波研究和应用领域的专家学者提供了系统的小波理论讲解。1989年,Mallat 在多分辨的基础上,构造mallat 算法进行分解和重构,打开了小波应用的大门。1990年,Latto 和Tenenbaum 将小波分析用于偏微分方程求解,为小波分析的普及、发展及应用提供了动力。 3小波在图像处理中的主要应用:3.1图像变换小波变换具有捕获点奇异性的能力, 而一维信号中的奇异性主要表现为点奇异性,因此,利用小波变换处理一维信号可以取得很好的效果。图像变换相当于是对数字图像阵列的预处理。因为图像阵列维数相对较大,能够直接进行处理复杂度高、计算繁复,就需要一种算法将它变换,减少计算量,小波变换亦能达到良好去除冗余度的效果。 3.2图像压缩 数字图像的压缩目的即减少图像所需的比特数,经小波变换,通过时间域压缩图像的压缩比比传统的压缩方法高,速度快,而压缩后要能够保持信号与图像的特征基本是不变的,这也是一种有损压缩,但是在传递中抗干扰能力相对较强。Shappro 推倒出离散正交小波变换,提出“嵌入”式的“零树”小波编码图像压缩方法,相比于其它图像编码方法压缩比高、无方块效应。目前,基于小波变换的基础发展起来的图像编码方法称为新的静止图像压缩标准。而基于小波变换分析的压缩方法比较成功的是格型矢量量化小波系数编码,小波包最优基方法,多级树集合分裂算法(SPIHT ),小波域多尺度ARMA 模型纹理方法等。 3.3图像增强与恢复 图像去噪方法分空域滤波、频域滤波和最优线性滤波法。Donoho 和Johnstone 在高斯噪声模型下,应用多维独立正态变量决策理论,提出了小波阈值去噪方法和改进的信号去噪的软阈值方法和硬阈值方法,推导出VisuShrink 阈值公式及SureShrink 阈值公式,从理论上证明该阈值是渐进最优的。Weaver 等人通过分析小波变换高频、低频系数的相关特性,提出基于小波变换域内高、低系数相关的去噪方法。图像复原即利用模糊理论、粗糙集理论等去模糊,研究表明,模糊图像是由降质函数与清晰图像卷积得到,通过分析使图像模糊的因素,如高斯噪声、脉冲噪声、白噪声等,建立图像退化模型,根据采集图像提供的资料恢复清晰的图像。 3.4图像分割 —————————————————————— —作者简介:黄奎(1990-),男,重庆人,硕士,研究方向为水工结构工程。 基于小波变换的图像处理综述 Overview of Image Processing Based on Wavelet Transform 黄奎HUANG Kui (重庆交通大学, 重庆400074)(Chongqing Jiaotong University ,Chongqing 400074,China ) 摘要:小波分析主要广泛应用在科学研究和工程技术中。虽然在现阶段的小波理论相对成熟,近些年关于小波理论的应用和研 究也在不断的发展和更新。小波变化在图像处理领域中的应用也囊括图像与处理的所有方面。本文通过介绍小波变换的起源,将小波 应用在图像处理中的压缩、还原图像、边缘检测和图像分割,宏观剖析小波的研究现状历史、发展动向及优势。 Abstract:The wavelet analysis is widely used in scientific research and engineering technology.Although the wavelet theory is relatively mature at this stage,the application and researches on the wavelet theory in recent years is also in constant development and renewal.The application of wavelet transform in image processing covers all aspects of image processing.Through the introduction of the origin of wavelet transform,and by applying wavelet in image compression,image restoration,edge detection and image segmentation,this article analyzes the research situation,development trend and advantage of wavelet. 关键词:小波分析;图像;应用;边缘检测;宏观剖析Key words:wavelet analysis ;image ;application ;edge detection ;macro analysis 中图分类号:TP391文献标识码:A 文章编号:1006-4311(2015)08-0255-02·255· DOI:10.14018/https://www.doczj.com/doc/cd16020226.html,13-1085/n.2015.08.143

基于小波变换的图像融合的研究

基于小波变换的图像融合的研究 摘要:数据融合是80年代初形成与发展起来的一种信息综合处理技术。图像融合是数据融合在数字图像处理方面的一个应用。近年来,图像融合已成为图像理解和计算机视觉领域一项重要的新技术。把小波变换技术应用到图像融合技术之中时该研究领域的重大突破。本文首先论述图像融合技术和小波变换的相关理论,在将小波变换运用于图像融合,并设计了相关实验验证基于小波变换的图像融合,对融合结果进行质量评价。 关键词:小波变换,图像融合 1.引言 图像融合是信息融合技术的一个重要的分支,它是以图像为主要研究内容的数据融合技术。从八十年代初到至今,图像融合技术已引发了世界范围的广泛研究兴趣和热潮,它在自动目标识别、计算机视觉、遥感机器人、医学图像处理以及军事应用等众多领域有着广泛的应用前景。 图像融合的方法与具体的处理对象类型、处理等级有关。如:可分为像素级融合、特征级融合和决策级融合三大类。主要基于各类图像的解析度不同、表现的目的不同,相应的处理方法也要根据具体情况而定。随着小波变换技术的出现,在众多融合方法中,基于小波变换的融合方法具有良好的效果,现已成为当今研究的一个热点。同时产生的一个亟待解决的问题是如何准确地对融合效果进行评价。评价的方法有很多,评价的标准也是因人、因物而不同,这就需要进行综合研究比较,得出不同融合方法的适应性和优异性。 2.图像融合技术简介 图像融合以图像作为研究和处理对象,是一种综合多个源图像信息的先进图像处理技术,它把对同一目标或场景的多重源图像根据需要通过一定的融合规则融合成为一幅新图像,在这一幅新图像中能反映多重源图像中的信息,以达到对目标或场景的综合描述,以及精确的分析判断,有效地提高图像信息的利用率、系统对目标探测识别的可靠性及系统的自动化程度。其目的是集成多个源图像中的冗余信息和互补信息,以强化图像中的可读信息、增加图像理解的可靠性等。相对于源图像,通过图像融合得到的融合图像可信度增加、模糊性减少、可读性增强、分类性能改善等,并且融合图像具有良好的鲁棒性,所以通过图像融合技术将会获得更精确的结果,也将会使系统更实用。 图像融合的方法目前能够参照的有很多,如HIS变换法,PCA法,聚类分析法,贝叶斯方法,小波变换方法等等,目前成为主流方法的研究是基于小波变换的图像融合方法。在此简单介绍几种融合方法,了解各方法的优缺点。 (1)线性加权法 线性加权法是一种最简单的图像融合方法,它直接对多幅原图像的对应像素点进行加权叠加。如A k(i,j)为n幅图像A k在对应位置(i,j)的灰度值,那么融合后图像可通过下式得到

相关主题
文本预览
相关文档 最新文档