当前位置:文档之家› 2020年高考数学(理)函数与导数 专题15 高考中常考题型综合解析(解析版)

2020年高考数学(理)函数与导数 专题15 高考中常考题型综合解析(解析版)

2020年高考数学(理)函数与导数 专题15 高考中常考题型综合解析(解析版)
2020年高考数学(理)函数与导数 专题15 高考中常考题型综合解析(解析版)

函数与导数

15 导数及其应用 高考中常考题型综合解析

一、具体目标:

1.导数概念及其几何意义:(1)了解导数概念的实际背景;(2)理解导数的几何意义.

2.导数的运算:(1)根据导数定义,求函数y c y x ==,,2

y x =,1

y x

=

的导数; (2)能利用下面给出的基本初等函数公式和导数的四则运算法则求简单函数的导数. 3.导数在研究函数中的应用:

①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次)。

②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次). 2.生活中的优化问题:会利用导数解决某些实际问题。 考点透析:

1.导数概念及其几何意义:(1)了解导数概念的实际背景;(2)理解导数的几何意义.

2.导数的运算:(1)根据导数定义,求函数y c y x ==,,2

y x =,1

y x

=

的导数; (2)能利用下面给出的基本初等函数公式和导数的四则运算法则求简单函数的导数.

3.以研究函数的单调性、单调区间、极值(最值)等问题为主,与不等式、函数与方程、函数的图象相结合;

4.单独考查利用导数研究函数的某一性质以小题呈现,综合研究函数的性质以大题呈现;

5.适度关注生活中的优化问题.

6.备考重点:

【考点讲解】

(1) 熟练掌握导数公式及导数的四则运算法则是基础;

(2) 熟练掌握利用导数研究函数的单调性、极值(最值)的基本方法,灵活运用数形结合思想、分类讨论思想、函数方程思想等,分析问题解决问题.

二、知识概述:一) 1.由0

()()

'()lim

x f x x f x f x x

?→+?-=?可以知道,函数的导数是函数的瞬时变化率,函数的瞬时变化率是平

均变化率的极限.

2.基本初等函数的导数公式及导数的运算法则 1)基本初等函数的导数公式

2)导数的运算法则

(1) [f (x )±g (x )]′=f ′(x )±g ′(x );(和或差的导数是导数的和与差)

(2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(积的导数是,前导后不导加上后导前不导) (3)2

()'()()'()()

'()()f x f x g x g x f x g x g x ???-?=?

???

(g (x )≠0).(商的导数是上导下不导减去上不导下导与分母平方的商)

(4) 复合函数的导数

复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u

的导数与u 对x 的导数的乘积.

3.函数()y f x =在0x x =处的导数几何意义

函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).

【温馨提示】1.求函数()f x 图象上点00(,())P x f x 处的切线方程的关键在于确定该点切线处的斜率k ,由导数的几何意义知0'()k f x =,故当0'()f x 存在时,切线方程为000()'()()y f x f x x x -=-.

4.可以利用导数求曲线的切线方程,由于函数()y f x =在0x x =处的导数表示曲线在点00(,())P x f x 处切线的斜率,因此,曲线()y f x =在点00(,())P x f x 处的切线方程,可按如下方式求得:

第一,求出函数()y f x =在0x x =处的导数,即曲线()y f x =在点00(,())P x f x 处切线的斜率; 第二,在已知切点坐标和切线斜率的条件下,求得切线方程000'()()y y f x x x =+-;如果曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(此时导数不存在)时,由切线的定义可知,切线的方程为0x x =. 【提示】解导数的几何意义问题时一定要抓住切点的三重作用:①切点在曲线上;②切点在切线上;③切点处的导数值等于切线的斜率. 二)函数的单调性:

1.设函数y =f (x )在某个区间内可导,如果0)(>'x f ,则函数y =f (x )为增函数;如果f ' (x )<0,则函数y =f (x )为减函数;如果恒有f ' ( x )=0,则y =f (x )为常函数.

2.应当理解函数的单调性与可导性并无本质的联系,甚至具有单调性的函数并不一定连续.我们只是利用可导来研究单调性,这样就将研究的范围局限于可导函数.

3.f (x )在区间I 上可导,那么0)(>'x f 是f (x )为增函数的充分条件,例如f (x )=x 3是定义于R 的增函数, 但 f '(0)=0,这说明f '(x )>0非必要条件.)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定.

4. 讨论可导函数的单调性的步骤:

(1)确定)(x f 的定义域;

(2)求)(x f ',令0)(='x f ,解方程求分界点; (3)用分界点将定义域分成若干个开区间;

(4)判断)(x f '在每个开区间内的符号,即可确定)(x f 的单调性.

5.我们也可利用导数来证明一些不等式.如f (x )、g (x )均在[a 、b ]上连续,(a ,b )上可导,那么令

h (x )=f (x )-g (x ),则h (x )也在[a ,b ]上连续,且在(a ,b )上可导,若对任何x ∈(a ,b )有h '(x )>0且 h (a )≥0,则当x ∈(a ,b )时 h (x )>h (a )=0,从而f (x )>g (x )对所有x ∈(a ,b )成立. 三)函数的极、最值: 1.函数的极值 (1)函数的极小值:

函数y =f(x)在点x =a 的函数值f(a)比它在点x =a 附近其它点的函数值都小,f′(a)=0,而且在点x =a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a 叫做函数y =f(x)的极小值点,f(a)叫做函数y =f(x )的极小值. (2)函数的极大值:

函数y =f(x)在点x =b 的函数值f(b)比它在点x =b 附近的其他点的函数值都大,f′(b)=0,而且在点x =b 附近的左侧f′(x)>0,右侧f′(x)<0,则点b 叫做函数y =f(x)的极大值点,f(b)叫做函数y =f(x)的极大值. 极小值点,极大值点统称为极值点,极大值和极小值统称为极值. 2.函数的最值

(1)在闭区间[a ,b ]上连续的函数f(x)在[a ,b ]上必有最大值与最小值.

(2)若函数f(x)在[a ,b ]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a ,b ]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. 三、导数常见题型:

一)函数的单调区间、极值、最值;不等式恒成立; 1、解决这类问题建议按以下三个步骤来解决:

第一步:令0)('

=x f 得到两个根;第二步:画两图或列表;第三步:由图表可知; 2、不等式恒成立问题的实质是函数的最值问题,常见处理方法有三种:

第一种:分离变量求最值-----用分离变量时要特别注意是否需要分类讨论(>0,=0,<0)

第二种:变更主元(即关于某字母的一次函数)-----(已知变量的范围就把这个变量作为主元); 例如:已知定义在R 上的函数3

2

()2f x ax ax b =-+)

(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;

(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 【解析】(Ⅰ)32'2

()2,()34(34)f x ax ax b f x ax ax ax x =-+∴=-=-Q 令'

()f x =0,得[]124

0,2,13

x x ==

?- 因为0>a ,所以可得下表:

因此)0(f 必为最大值,∴50=)(f 因此5=b , (2)165,(1)5,(1)(2)f a f a f f -=-+=-+∴>-Q ,

即11516)2(-=+-=-a f ,∴1=a ,∴ .52(2

3+-=x x x f )

(Ⅱ)∵x x x f 43)(2

-=',∴0(≤+'tx x f )等价于0432≤+-tx x x ,

令x x xt t g 43)(2

-+=,则问题就是0)(g ≤t 在]1,1[-∈t 上恒成立时,求实数x 的取值范围,

为此只需???≤≤-0)10)1((g g ,即???≤-≤-0

05322x x x x ,

解得10≤≤x ,所以所求实数x 的取值范围是[0,1]. 第三种:构造函数求最值.

二)已知函数在某个区间上的单调性求参数的范围

解法1:转化为0)(0)('

'

≤≥x f x f 或在给定区间上恒成立, 回归基础题型.

解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;

做题时一定要看清楚“在(m ,n )上是减函数”与“函数的单调减区间是(a ,b )”,要弄清楚两句话的区别:前者是后者的子集 例如:已知函数3211

()(2)(1)(0).32

f x x a x a x a =

+-+-≥ (I )求()f x 的单调区间;

(II )若()f x 在[0,1]上单调递增,求a 的取值范围。

【解析】(I )2

()(2)1(1)(1).f x x a x a x x a '=+-+-=++-

1、2

0,()(1)0,a f x x '==+≥当时恒成立

当且仅当1x =-时取“=”号,()(,)f x -∞+∞在单调递增。 2、12120,()0,1,1,,a f x x x a x x '>==-=-<当时由得且

单调增区间:(,1),(1,)a -∞--+∞ 单调增区间:(1,1)a --

(II )当()[0,1],f x Q 在上单调递增 则[]0,1是上述增区间的子集:

1、0a =时,()(,)f x -∞+∞在单调递增 符合题意

2、[]()0,11,a ?-+∞,10a ∴-≤ 1a ∴≤ 综上,a 的取值范围是[0,1]。

a-1

-1

()f x '

三)根的个数问题

函数f (x )与g (x )(或与x 轴)的交点======即方程根的个数问题: 解题步骤

第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;

第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系; 第三步:解不等式(组)即可;

例如:【2018全国卷Ⅱ】已知函数2

()e =-x f x ax .

(1)若1=a ,证明:当0≥x 时,()1≥f x ; (2)若()f x 在(0,)+∞只有一个零点,求a .

【解析】(1)当1=a 时,()1≥f x 等价于2(1)e 10-+-≤x

x .

设函数2()(1)1-=+-x g x x e ,则22()(21)(1)--=--+=--x x

g'x x x e x e .

当1≠x 时,()0

(2)设函数2()1e -=-x

h x ax .()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.

(i )当0≤a 时,()0>h x ,()h x 没有零点;(ii )当0a >时,()(2)e x

h'x ax x -=-. 当(0,2)∈x 时,()0h'x . 所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故2

4(2)1e =-

a

h 是()h x 在[0,)+∞的最小值. ①若(2)0>h ,即2

e 4

②若(2)0=h ,即2

e 4

=a ,()h x 在(0,)+∞只有一个零点;

③若(2)0

e 4

>a ,由于(0)1=h ,所以()h x 在(0,2)有一个零点,

由(1)知,当0>x 时,2

e >x

x ,所以3334224

1616161

(4)11110e (e )(2)=-=->-=->a a a a a h a a a

. 故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,

2

e 4

=a .

四)切线的条数问题====以切点0x 为未知数的方程的根的个数

例如:已知函数3

2

()f x ax bx cx =++在点0x 处取得极小值-4,使其导数'()0f x >的x 的取值范围为(1,3),求:(1)()f x 的解析式;(2)若过点(1,)P m -可作曲线()y f x =的三条切线,求实数m 的取值范围.

【解析】(1)由题意得:2

'()323(1)(3),(0)f x ax bx c a x x a =++=--<

∴在(,1)-∞上'()0f x <;在(1,3)上'()0f x >;在(3,)+∞上'()0f x <因此()f x 在01x =处取得极小值

4-.

∴4a b c ++=-①,'(1)320f a b c =++=②,'(3)2760f a b c =++=③

由①②③联立得:1

69a b c =-??=??=-?

,∴32

()69f x x x x =-+-

(2)设切点Q (,())t f t ,,

()()()y f t f t x t -=-

232(3129)()(69)y t t x t t t t =-+--+-+-222(3129)(3129)(69)t t x t t t t t t =-+-+-+--+ 22(3129)(26)t t x t t t =-+-+-过(1,)m -232(3129)(1)26m t t t t =-+--+- 32()221290g t t t t m =--+-=.令22'()66126(2)0g t t t t t =--=--=,

求得:1,2t t =-=,方程()0g t =有三个根。

需:(1)0(2)0g g ->??

???--+-

11

m m

>-? 故:1116m -<<;因此所求实数m 的范围为:(11,16)-.

五)已知()f x 在给定区间上的极值点个数则有导函数=0的根的个数.解法:根分布或判别式法.

例如.(2014山东)设函数())ln 2

(2x x

k x e x f x +-=(k 为常数, 2.71828e =L 是自然对数的底数).

(Ⅰ)当0k ≤时,求函数()f x 的单调区间;

(Ⅱ)若函数()f x 在()0,2内存在两个极值点,求k 的取值范围. 【解析】(Ⅰ)函数()y f x =的定义域为(0,)+∞

242221()()x x e x xe f x k x x x ?-'=--+3(2)()

(0)

x x e kx x x --=>

由0k ≤可得0x

e kx ->,所以当(0,2)x ∈时,()0

f x '<,函数()y f x =单调递减, 所以当(2,)x ∈+∞时,()0f x '>,函数()y f x =单调递增, 所以 ()f x 的单调递减区间为(0,2),()f x 的单调递增区间为(2,)+∞

(Ⅱ)由(Ⅰ)知,0k ≤时,()f x 在(0,2)内单调递减,故()f x 在(0,2)内不存在极值点; 当0k >时,设函数()x g x e kx =-,[0,)x ∈+∞,因此ln ()x

x

k

g x e k e e

=-=-.

当01k <≤时,(0,2)x ∈时()0x

g x e k '=->,函数()y g x =单调递增.故()f x 在(0,2)内不存在两个极值点;当1k >时,

函数在(0,2)内存在两个极值点

当且仅当(0)0(ln )0

(2)00ln 2

g g k g k >??

?>??<

综上函数()f x 在()0,2内存在两个极值点时,k 的取值范围为2

(,)2

e e .

【温馨提示】关于二次函数的不等式恒成立的主要解法:

1、分离变量;2变更主元;3根分布;4判别式法

5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系 .

(2)端点处和顶点是最值所在.

1. 【2019年高考全国Ⅲ卷】已知曲线e ln x

y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则( ) A .e 1a b ==-,

B .a=e ,b =1

C .1e 1a b -==,

D .1e a -=,1b =-

【解析】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考

题型.∵e ln 1,x

y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=,

将(1,1)代入2y x b =+,得21,1b b +==-.故选D . 【答案】D

2.已知过点(),0A a 作曲线:e x C y x =?的切线有且仅有两条,则实数a 的取值范围是( ) A .()(),40,-∞-+∞U B .()0,+∞ C .()(),11,-∞-+∞U

D .(),1-∞-

【解析】设切点为()

000,e x x x ,()1e x

y x '=+,∴00

01e x x x y x ='

=+?,

则切线方程为:()()00000e =1e x x y x x x x -+?-,切线过点(),0A a 代入得:()()00000e =1e x x

x x a x -+?-,∴

【真题分析】

2

001

x a x =+,即方程2000x ax a --=有两个解,则有2400a a a ?=+>?>或4a <-.故选A .

【答案】A

3.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )

A .10x y --π-=

B .2210x y --π-=

C .2210x y +-π+=

D .10x y +-π+=

【解析】2cos sin ,y x x '=-Q π

2cos πsin π2,x y =∴=-=-'

则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C . 【答案】C

4.【2019天津理8】已知a ∈R ,设函数222,1,

()ln ,

1,x ax a x f x x a x x ?-+=?->??若关于x 的不等式()0f x …在R 上

恒成立,则a 的取值范围为( )

A.[]0,1

B.[]0,2

C.[]0,e

D.[]1,e

【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,2

2

()22021

x f x x ax a a x =-+≥?≥

-恒成立,令2

()1

x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=-

---

112201x x ????

=--+-≤-= ? ? ?-????

, 当1

11x x

-=

-,即0x =时取等号,∴max 2()0a g x ≥=,则0a >. 当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤

恒成立,令()ln x

h x x

=,则2ln 1()(ln )x h x x -'=,

当e x >时,()0h x '>,函数()h x 单调递增,当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 【答案】C

5.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4

(0)y x x x

=+

>上的一个动点,则点P 到直线0x y +=的距离的最小值是 . 【解析】由4(0)y x x x =+

>,得241y x '=-,设斜率为1-的直线与曲线4

(0)y x x x

=+>切于000

4(,)x x x +

,由204

11x -=-

得0x =

0x =,

∴曲线4

(0)y x x x

=+>

上,点P 到直线0x y +=

4=.

故答案为4. 【答案】4

6.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 .

【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =.又1

y x '=

,当0x x =时,0

1y x '=,

则曲线ln y x =在点A 处的切线为0001()y y x x x -=

-,即00

ln 1x

y x x -=-, 将点()e,1--代入,得00

e

1ln 1x x ---=

-,即00ln e x x =, 考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()ln 1H x x '=+, 当1x >时,()()0,H x H x '>单调递增,注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =,故点A 的坐标为()e,1. 【答案】(e, 1)

7.【2018年高考江苏】若函数

在内有且只有一个零点,则在

上的最大值与最小值的和为________. 【解析】由()2

620f x x ax =-='得0x =或3

a

x =

,因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以0,

03

3a

a f ??>= ???因此3

2

210,33a a a ????

-+= ? ?????

解得3a =. 从而函数()f x 在[]1,0-上单调递增,在[]

0,1上单调递减,所以()()max 0,f x f =

()()(){}()min min 1,11f x f f f =-=-,则()()max min f x f x +=()()0+114 3.f f -=-=-

故答案为3-. 【答案】–3

8.【2019全国Ⅲ理20】已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性; (2)是否存在

,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;

若不存在,说明理由.

【解析】(1)2

()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3

a x =

. 若a >0,则当(,0),3a x ??∈-∞+∞

???U 时,()0f x '>;当0,3a x ??

∈ ???

时,()0f x '<.故()f x 在(,0),,3a ??-∞+∞ ???单调递增,在0,3a ??

???

单调递减;若a =0,()f x 在(,)-∞+∞单调递增;

若a <0,则当,

(0,)3a x ?

?∈-∞+∞ ???U 时,()0f x '>;当,03a x ??

∈ ???

时,()0f x '<.故()f x 在

,,(0,)3a ??-∞+∞ ?

??单调递增,在,03a ??

???

单调递减.

(2)满足题设条件的a ,b 存在.

(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.

(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.

(iii )当0

=-+ ???

,最大值为b 或2a b -+.

若3

127

a b -+=-,b =1,则a =,与0

若3

127

a b -+=-,21a b -+=,则a =a =-或a =0,与0

综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为–1,最大值为1.

9.【2019浙江22】已知实数0a ≠,设函数()=ln 0.f x a x x +>

(1)当3

4

a =-

时,求函数()f x 的单调区间;

(2)对任意2

1[

,)e x ∈+∞均有

()f x ≤ 求a 的取值范围.注:e=2.71828…为自然对数的底数.

【解析】(Ⅰ)当34a =-

时,3

()ln 04

f x x x =->.

3()

4f 'x x =-

+=

, 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).

(Ⅱ)由1

(1)2f a

≤,得0a <≤

当04a <≤时,()2f x a

≤等价于22ln 0x a a -

-≥.

令1

t a

=

,则t ≥.设()22ln ,g t t x t =≥,

则()2ln g t g x ≥=.

(i )当1,7x ??∈+∞????

≤()2ln g t g x ≥=.

记1

()ln ,

7p x x x =≥,则1()p'x x =-=故

所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.

(ii )当211,e 7x ??

∈??

??时,()g t g =….

211()(1),,e 7q x x x x ??

=++∈?

???

,则()10q'x =+>, 故()q x 在2

11,e 7??

?

???

上单调递增,所以1()7q x q ?? ???

?.

由(i )得11(1)07777q p p ????=-

<-= ? ???

??

.所以,()<0q x .

因此()0

g t g =>….

由(i )(ii )得对任意2

1,e x ??

∈+∞??

??

,),()0t g t ∈+∞…,

即对任意2

1,e x ??

∈+∞??

??

,均有()2f x a ?. 综上所述,所求a 的取值范围是04,? ??

.

10.【2018北京】设函数2

()[(41)43]x

f x ax a x a e =-+++.

(1)若曲线()y f x =在点(1,(1))f 处的切线与x 轴平行,求a ; (2)若()f x 在2x =处取得极小值,求a 的取值范围. 【解析】(1)因为2

()[(41)43]x

f x ax a x a e =-+++,

所以2

()[2(41)][(41)43]x

x

f x ax a e ax a x a e '=-++-+++(x ∈R )=2

[(21)2]x

ax a x e -++.

(1)(1)f a e '=-.由题设知(1)0f '=,即(1)0a e -=,解得1a =.

此时(1)30f e =≠.所以a 的值为1.

(2)由(1)得2

()[(21)2](1)(2)x

x

f x ax a x e ax x e '=-++=--. 若12a >

,则当1

(,2)x a

∈时,()0f x '<;当(2,)x ∈+∞时,()0f x '>.所以()0f x <在2x =处取得极小值. 若12a ≤

,则当(0,2)x ∈时,20x -<,1

1102

ax x --<≤,所以()0f x '>. 所以2不是()f x 的极小值点.综上可知,a 的取值范围是1

(,)2

+∞.

1.若2x =-是函数2

1

()(1)x f x x ax e

-=+-的极值点,则21

()(1)x f x x ax e

-=+-的极小值为( )

A .1-

B .3

2e -- C .3

5e - D .1 【解析】∵2

1

()[(2)1]x f x x a x a e -'=+++-,∵(2)0f '-=,∴1a =-,

所以2

1()(1)x f x x x e

-=--,21

()(2)x f x x x e -'=+-,

令()0f x '=,解得2x =-或1x =,所以当(,2)x ∈-∞-,()0f x '>,()f x 单调递增;当(2,1)x ∈-时,

()0f x '<,()f x 单调递减;当(1,)x ∈+∞,()0f x '>,()f x 单调递增,所以()f x 的极小值为

11(1)(111)1f e -=--=-,选A .

【答案】A

2. 函数2

||

2x y x e =-在[–2,2]的图象大致为( )

A .

B .

C .

D .

【解析】当0x ?时,令函数2

()2x

f x x e =-,则()4x

f x x e '=-,易知()f x '在[0,ln4)上单调递增, 在[ln4,2]上单调递减,又(0)10f '=-<,1

()202

f e '=->,(1)40f e '=->,2

(2)80f e '=->,

【模拟考场】

所以存在01(0,)2

x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增, 且该函数为偶函数,符合 条件的图像为D . 【答案】D

3.设函数()(21)x

f x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围

是( ) A .3[,1)2e -

B .33[,)24e -

C .33[,)24e

D .3[,1)2e

【解析】由题意可知存在唯一的整数0x ,使得000(21)-<-x

e x ax a ,

设()(21)=-x

g x e x ,()=-h x ax a ,由()(21)x

g x e x '=+,可知()g x 在1(,)2

-∞-

上单调递减,在1(,)2

-+∞上单调递增,作出()g x 与()h x 的大致图象如图所示,

-a

故(0)(0)(1)(1)>??--?h g h g ≤,即1

32

a a e ≤,所以312a e <≤.

【答案】D

4.若函数()ln f x kx x =-在区间(1,)+∞单调递增,则k 的取值范围是( )

A .(],2-∞-

B .(],1-∞-

C .[)2,+∞

D .[)1,+∞

【解析】∵()ln f x kx x =-,∴1

()f x k x

'=-

,∵()f x 在(1,)+∞单调递增,所以当1x > 时, 1()0f x k x '=-≥恒成立,即1k x ≥在(1,)+∞上恒成立,∵1x >,∴1

01x

<<,所以k ≥1,故选D .

【答案】D

5.如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),已知环湖弯曲路段为某三次函

数图像的一部分,则该函数的解析式为

(千米)

x -6

y =-

A .321122y x x x =

-- B .3211

322y x x x =+- C .314y x x =- D .32

11242

y x x x =+-

【解析】法一 由题意可知,该三次函数满足以下条件:过点(0,0),(2,0),在(0,0)处的切线方程为y x =-, 在(2,0)处的切线方程为36y x =-,以此对选项进行检验.A 选项,32

1122

y x x x =

--,显然过两个定 点,又2

312

y x x '=

--,则02|1,|3x x y y ==''=-=,故条件都满足,由选择题的特点知应选A . 法二 设该三次函数为3

2

()f x ax bx cx d =+++,则2

()32f x ax bx c '=++

由题设有(0)0(2)0

(0)1(2)3

f f f f =??=?

?'=-??'=?,解得11,,1,022a b c d ==-=-=.故该函数的解析式为321122y x x x =--,选A .

【答案】A

6.当[2,1]x ∈-时,不等式32

430ax x x -++≥恒成立,则实数a 的取值范围是( )

A .[5,3]--

B .9[6,]8

-- C .[6,2]-- D .[4,3]-- 【解析】当(0,1]x ∈时,得3

2

1113()4()a x

x

x --+

≥,令1

t x

=,则[1,)t ∈+∞, 3234a t t t --+≥,令()g t =3234t t t --+,[1,)t ∈+∞,则()2981(1)(91)g x t t t t '=--+=-+-,

显然在[1,)+∞上,()0g t '<,()g t 单调递减,所以max ()(1)6g t g ==-,因此6a -≥; 同理,当[2,0)x ∈-时,得2a -≤.由以上两种情况得62a --≤≤. 显然当0x =时也成立,故实数a 的取值范围为[6,2]--. 【答案】C

7.已知函数31

()2e e

x

x f x x x =-+-,其中e 是自然对数的底数.若(1)f a -+2(2)0f a ≤,则实数a 的取值范围是 .

【解析】因为3

1

()2e ()e

x x f x x f x x -=-++

-=-,所以函数()f x 是奇函数,

因为22()32e e 320x x f 'x x x -=-++≥-+≥,所以函数()f x 在R 上单调递增, 又2

1)02()(f f a a +-≤,即2

())2(1a a f f ≤-,所以221a a ≤-,即2120a a +-≤,解得112

a -≤≤, 故实数a 的取值范围为1[1,]2

-. 【答案】1[1,]2

- 8.已知函数()ln 2

a x f x x x =+

+. (1)求函数()f x 的单调区间;

(2)设函数()()ln 1g x x x f x =+-,若1,2x ??

∈+∞ ???

时,()0g x >恒成立,求实数a 的取值范围.

【解析】(1)()f x 的定义域为()0,+∞,()222112222a x x a

f x x x x +-'=-+=,

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

2020届高考数学导数的11个专题

目录 导数专题一、单调性问题 (2) 导数专题二、极值问题 (38) 导数专题三、最值问题 (53) 导数专题四、零点问题 (77) 导数专题五、恒成立问题和存在性问题 (118) 导数专题六、渐近线和间断点问题 (170) 导数专题七、特殊值法判定超越函数的零点问题 (190) 导数专题八、避免分类讨论的参变分离和变换主元 (201) 导数专题九、公切线解决导数中零点问题 (214) 导数专题十、极值点偏移问题 (219) 导数专题十一、构造函数解决导数问题 (227)

导数专题一、单调性问题 【知识结构】 【知识点】 一、导函数代数意义:利用导函数的正负来判断原函数单调性; 二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论, 讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤: 第一步、求函数的定义域、求导,并求导函数零点; 第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与 区间的位置关系(分类讨论); 第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域);第四步、(列表)根据第五步的草图列出f '(x),f (x)随x 变化的情况表,并写出函数的单调区间; 第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数 值比较得到函数的最值. 四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点: 1.最高次项系数是否为0; 2.导函数是否有极值点; 3.两根的大小关系; 4.根与定义域端点讨论等。 五、求解函数单调性问题的思路: (1)已知函数在区间上单调递增或单调递减,转化为f '(x) ≥ 0 或f '(x) ≤ 0 恒成立; (2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参 变量的范围; (3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于 零有解. 六、原函数单调性转化为导函数给区间正负问题的处理方法 (1)参变分离; (2)导函数的根与区间端点直接比较;

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

高考题汇编2010-全国高考数学真题--第21题导数

2017-2019年全国高考数学真题--第21题导数 2018年:设函数2 ()1x f x e x ax =---。 (1)若0a =, 求()f x 的单调区间; (2)若当0x ≥时()0f x ≥, 求a 的取值范围 2019年:已知函数ln ()1a x b f x x x = ++, 曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >, 且1x ≠时, ln ()1x k f x x x >+-, 求k 的取值范围. 2019年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(, 求b a )1(+的最大值.

2019: 一卷:已知函数()f x =2 x ax b ++, ()g x =()x e cx d +, 若曲线()y f x =和 曲线()y g x =都过点P (0, 2), 且在点P 处有相同的切线42y x =+ (Ⅰ)求a , b , c , d 的值; (Ⅱ)若x ≥-2时, ()f x ≤()kg x , 求k 的取值范围. 2019一卷:设函数1 ()ln x x be f x ae x x -=+, 曲线()y f x =在点(1, (1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ , ()ln g x x =-. (Ⅰ)当a 为何值时, x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m , n 中的最小值, 设函数{}()min (),()(0)=>h x f x g x x , 讨论()h x 零点的个数.

高考数学导数专题复习(基础精心整理)学生版

导数专题复习(基础精心整理)学生版 【基础知识】 1.导数定义:在点处的导数记作k = 相应的切线方程是))((000x x x f y y -'=- 2.常见函数的导数公式: ①;②;③;④; ⑤;⑥;⑦;⑧ 。 3.导数的四则运算法则: (1) (2) (3) 4.导数的应用: (1)利用导数判断函数单调性: ①是增函数;②为减函数;③为常数; (2)利用导数求极值:①求导数;②求方程的根;③列表得极值(判断零点两边的导函数的正负)。 (3)利用导数求最值:比较端点值和极值 【基本题型】 一、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ?=+?-;(2)求平均变化率 ()()00f x x f x y x x +?-?=?V ;(3)取极限,得导数()00lim x y f x x →?'=?V 。 例1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 4 1 D. -2 变式1:()()()为则设h f h f f h 233lim ,430 --='→( ) A .-1 B.-2 C .-3 D .1 二、导数的几何意义 ()f x 0x x x f x x f x f x x y x ?-?+='=='→?) ()(lim )(|000 00'0C ='1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()ln x x a a a =x x e e =')('1(log )ln a x x a =x x 1 )(ln '= )()()()(])()(['+'='x g x f x g x f x g x f 2)()()()()()()(x g x g x f x g x f x g x f ' -'=' ??? ? ??' ?'='x u u f x u f ))(()(0)(x f x f ?>')(0)(x f x f ?<')(0)(x f x f ?≡')(x f '0)(='x f

高考数学理科导数大题目专项训练及答案

高一兴趣导数大题目专项训练 班级 姓名 1.已知函数()f x 是定义在[,0)(0,]e e - 上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+(其中e 为自然对数的底,a ∈R ). (Ⅰ)求函数()f x 的解析式; (Ⅱ)试问:是否存在实数0a <,使得当[,0)x e ∈-,()f x 的最小值是3?如果存在,求出实数a 的值;如果不存在,请说明理由; (Ⅲ)设ln ||()||x g x x =([,0)(0,]x e e ∈- ),求证:当1a =-时,1 |()|()2 f x g x >+; 2. 若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足: ()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知 2()h x x =,()2ln x e x ?=(其中e 为自然对数的底数). (1)求()()()F x h x x ?=-的极值; (2) 函数()h x 和()x ?是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

3. 设关于x 的方程012 =--mx x 有两个实根α、β,且βα<。定义函数.1 2)(2+-= x m x x f (I )求)(ααf 的值;(II )判断),()(βα在区间x f 上单调性,并加以证明; (III )若μλ,为正实数,①试比较)(),( ),(βμ λμβ λααf f f ++的大小; ②证明.|||)()(|βαμ λλβ μαμλμβλα-<++-++f f 4. 若函数22()()()x f x x ax b e x R -=++∈在1x =处取得极值. (I )求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间; (II )是否存在实数m ,使得对任意(0,1)a ∈及12,[0,2]x x ∈总有12|()()|f x f x -< 21[(2)]1m a m e -+++恒成立,若存在,求出m 的范围;若不存在,请说明理由. 5.若函数()()2 ln ,f x x g x x x ==- (1)求函数()()()()x g x kf x k R ?=+∈的单调区间; (2)若对所有的[),x e ∈+∞都有()xf x ax a ≥-成立,求实数a 的取值范围.

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

2021年高考数学专题03 导数及其应用 (原卷版)

专题03 导数及其应用 易错点1 不能正确识别图象与平均变化率的关系 A , B 两机关单位开展节能活动,活动开始后两机关的用电量()()12W t W t ,与时间t (天)的关系如图 所示,则一定有 A .两机关单位节能效果一样好 B .A 机关单位比B 机关单位节能效果好 C .A 机关单位的用电量在0[0]t ,上的平均变化率比B 机关单位的用电量在0[0]t ,上的平均变化率大 D .A 机关单位与B 机关单位自节能以来用电量总是一样大 【错解】选C. 因为在(0,t 0)上,()1W t 的图象比()2W t 的图象陡峭,所以在(0,t 0)上用电量的平均变化率,A 机关单位比B 机关单位大. 【错因分析】识图时,一定要结合题意弄清图形所反映的量之间的关系,特别是单调性,增长(减少)的快慢等要弄清. 【试题解析】由题可知,A 机关单位所对应的图象比较陡峭,B 机关单位所对应的图象比较平缓,且用电量在0[0]t ,上的平均变化率都小于0,故一定有A 机关单位比B 机关单位节能效果好.故选B. 【参考答案】B 1.平均变化率

函数()y f x =从1x 到2x 的平均变化率为 2121 ()() f x f x x x --,若21x x x ?=-,2()y f x ?=-1()f x ,则平 均变化率可表示为y x ??. 2.瞬时速度 一般地,如果物体的运动规律可以用函数()s s t =来描述,那么,物体在时刻t 的瞬时速度v 就是物体在 t 到t t +?这段时间内,当t ?无限趋近于0时, s t ??无限趋近的常数. 1.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗? 【答案】见解析. 【解析】山路从A 到B 高度的平均变化率为h AB =1001 5005 -=-, 山路从B 到C 高度的平均变化率为h BC =15101 70504 -=-, ∴h BC >h AB , ∴山路从B 到C 比从A 到B 要陡峭的多. 易错点2 求切线时混淆“某点处”和“过某点” 若经过点P (2,8)作曲线3 y x =的切线,则切线方程为 A .12160x y --= B .320x y -+=

近3年2015-2017各地高考数学真题分类专题汇总--导数及其应用

2017年高考数学试题分类汇编及答案解析---导数及其应用 一、选择题(在每小题给出的四个选项中?只有一项是符合题目要求的) 1(2017北京文)已知函数1()3()3 x x f x =-?则()f x ( ) .A 是偶函数?且在R 上是增函数 .B 是奇函数?且在R 上是增函数 .C 是偶函数?且在R 上是减函数 .D 是奇函数?且在R 上是增函数 2.(2017新课标Ⅱ文)函数2()ln(28)f x x x =--的单调递增区间是( ) .A (,2)-∞- .B (,1)-∞ .C (1, )+∞ .D (4,)+∞ З.(2017山东文)设()()1 21,1x f x x x <<=-≥?? ,若()()1f a f a =+,则 1f a ?? = ??? ( )2.A 4.B 6.C 8.D 4.(2017山东文)若函数()e x f x 在()f x 的定义域上单调递增,则称函数()f x 具有M 性 质.下列函数中具有M 性质的是( ) x x f A -=2)(. .B ()2f x x = .C ()3x f x -= .D ()c o s f x x = 5.(2017新课标Ⅰ文数)函数sin21cos x y x = -的部分图像大致为( ) б.(2017新课标Ⅰ文数)已知函数()ln ln(2)f x x x =+-?则( ) .A )(x f y =在)2,0(单调递增 .B )(x f y =在)2,0(单调递减 .C )(x f y =的图像关于直线1=x 对称 .D )(x f y =的图像关于点)0,1(对称 7.(2017天津文)已知奇函数()f x 在R 上是增函数.若 0.8221 (log ),(log 4.1),(2)5a f b f c f =-==?则,,a b c 的大小关系为( ) .A a b c << .B b a c << .C c b a << .D c a b <<

(完整版)高中数学导数压轴题专题训练

高中数学导数尖子生辅导(填选压轴) 一.选择题(共30小题) 1.(2013?文昌模拟)如图是f(x)=x3+bx2+cx+d的图象,则x12+x22的值是() A.B.C.D. 考点:利用导数研究函数的极值;函数的图象与图象变化. 专题:计算题;压轴题;数形结合. 分析:先利用图象得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论. 解答:解:由图得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x, ∴f'(x)=3x2﹣2x﹣2 ∵x1,x2是原函数的极值点 所以有x1+x2=,, 故x12+x22=(x1+x2)2﹣2x1x2==. 故选D. 点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题. 2.(2013?乐山二模)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为() A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α 考点:导数的运算. 专题:压轴题;新定义. 分析:分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可. 解答: 解:∵g′(x)=1,h′(x)=,φ′(x)=3x2, 由题意得: α=1,ln(β+1)=,γ3﹣1=3γ2, ①∵ln(β+1)=, ∴(β+1)β+1=e, 当β≥1时,β+1≥2, ∴β+1≤<2, ∴β<1,这与β≥1矛盾, ∴0<β<1; ②∵γ3﹣1=3γ2,且γ=0时等式不成立,

高考理科数学数学导数专题复习考试

高考数学导数专题复习 考试内容 导数的背影.导数的概念.多项式函数的导数. 利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立考试要求: (1)了解导数概念的某些实际背景. (2)理解导数的几何意义. (3)掌握常用函数导数公式,会求多项式函数的导数. (4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值. (5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点

1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值 x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注: ①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时,1-=??x y ,故x y x ??→?0lim 不存在. 注: ①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义和物理意义: (1)几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点

导数文科高考数学真题

2012-2017导数专题 1.(2014大纲理)曲线1x y xe- =在点(1,1)处切线的斜率等于( C ) A.2e B.e C.2 D.1 2.(2014新标2理) 设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= ( D ) A. 0 B. 1 C. 2 D. 3 3.(2013浙江文) 已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如右图所示, 则该函数的图象是(B) 4.(2012陕西文)设函数f(x)= 2 x +lnx 则( D ) A.x= 1 2 为f(x)的极大值点B.x= 1 2 为f(x)的极小值点 C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点 5.(2014新标2文) 函数() f x在 x x =处导数存在,若 :()0 p f x=: :q x x =是() f x的极值点,则A.p是q的充分必要条件 B. p是q的充分条件,但不是q的必要条件 C. p是q的必要条件,但不是q的充分条件 D. p既不是q的充分条件,也不是q的必要条件 【答案】C 6.(2012广东理)曲线在点处的切线方程为___________________. 【答案】2x-y+1=0 7.(2013广东理)若曲线在点处的切线平行于轴,则 【答案】-1 8.(2013广东文)若曲线在点处的切线平行于轴,则. 【答案】 1 2 9.(2014广东文)曲线53 x y e =-+在点(0,2) -处的切线方程为. 【答案】5x+y+2=0 10.(2013江西文)若曲线y=xα+1(α∈R)在点(1,2)处的切线经过坐标原点,则α=。 33 y x x =-+() 1,3 ln y kx x =+(1,)k x k= 2ln y ax x =-(1,)a x a=

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

高考数学——导数大题精选

高考数学——导数大题精选 6.已知两曲线ax x y +=3和c bx x y ++=2都经过点P (1,2),且在点P 处有公切线,试求a,b,c 值。 例2 求下列函数的导数: (1)y=(2x 2-1)(3x+1) (2)x x y sin 2= (3))1ln(2x x y ++= (4)1 1-+=x x e e y (5)x x x x y sin cos ++= (6)x x x y cos sin 2cos -= 1.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求a 、b 的值; (Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围 2.设a ≥0,f (x )=x -1-ln 2 x +2a ln x (x >0). (Ⅰ)令F (x )=xf '(x ),讨论F (x )在(0.+∞)内的单调性并求极值; (Ⅱ)求证:当x >1时,恒有x >ln 2x -2a ln x +1. 3.设函数22()21(0)f x tx t x t x t =++-∈>R ,. (Ⅰ)求()f x 的最小值()h t ; (Ⅱ)若()2h t t m <-+对(02)t ∈, 恒成立,求实数m 的取值范围 4.设函数2()ln(23)f x x x =++ (Ⅰ)讨论()f x 的单调性; (Ⅱ)求()f x 在区间3144??-???? ,的最大值和最小值 6.已知函数2221()()1 ax a f x x x -+=∈+R ,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值.

相关主题
文本预览
相关文档 最新文档