当前位置:文档之家› 功率密度的计算2

功率密度的计算2

功率密度的计算2
功率密度的计算2

电加热设备设计参考资料:

备注:以下数据,由盐城市兴唐电加热设备有限公司提供,仅供参考。

计量单位

1.功率:W、kW 1kW=3.412BTU/hr英热单位/小时=1.36(马力)=864Kcal/hr

2.重量:kg 1kg=2.204621b(磅)

3.流速:m/min

4.流量:m3/min、kg/h

5.比热:Kcal/(kg℃)1Kcal/(Kg℃)=1BTU/hr.°F=418

6.8J/(Kg℃)

6.功率密度:W/cm2 1W/cm2=6.4516 W/in2

7.压力:Mpa

8.导热系数:W/(m℃) 1 W/(m℃)=0.01J/(cm s℃)=0.578Btu/(ft.h.F)

9.温度:℃1o F=9/5℃+32 1R=9/5℃+491.67 1K=1℃+273.15 电加热功率计算

加热功率的计算有以下三个方面:

运行时的功率启动时的功率系统中的热损失

所有的计算应以最恶劣的情况考虑:

最低的环境温度最短的运行周期

设计电加热器系统的步骤

根据工艺过程,画出加热的工艺流程图(不涉及材料形式及规格)。

计算工艺过程所需的热量。

计算系统起动时所需的热量及时间。

重画加热工艺流程图,考虑合适的安全系数,确定加热器的总功率。

决定发热元件的护套材料及功率密度。

决定加热器的形式尺寸及数量。

决定加热器的电源及控制系统。

有关加热功率在理想状态下的计算公式如下:

系统起动时所需要的功率:

系统运行时所需要的功率:

加热系统的散热量

管道

平面

式中符号,含义如下:

P功率:kW Q散热量:管道为W/m;平面为W/m2 m1介质重量:kg λ保温材料的导热数:W/mk

c1介质比热:kcal/kg℃δ保温材料厚度:mm

m2容器重量:kg d管道外径:mm

c2介质比热:kcal/kg℃L管道长度:m

m3每小时增加的介质重量或流量:kg/h S系统的散热面积:m2

c3介质比热:kcal/kg℃△T介质和环境温度之差或温升:℃h加热时间:h

有关加热功率计算的参考数据(如需更多数据,请来电、来函咨询)

各种物质的比热(25℃)cal/(g℃) Kcal/(kg℃)

各种气体和蒸汽的定容定压比热Cal/(g℃) Kcal/(kg℃)

各种物质的密度

各种物质的溶点溶解热沸点和汽化热

各种保温材料的导热系数和最高使用温度

常用的设计图表

在工程的计算和电加热器的选型中,经常要涉及到一些常用数据,如介质表面的热损失、介质在不同工况下的温度变化等。为了防止在电加热器工作的同时,对介质的性能和加热元件产生不必要的损伤,下面列出了部分图表,供选型参考。

1. 强迫对流下加热器功率密度的选择(空气,环境温度20℃)

出口温度℃

出口流速m/min 2. 水表面的热损失(环境温度20℃)

热损失kW/m2

表面温度℃3. 油或蜡表面的热损失(环境温度20℃)

热损失kW/m2

表面温度℃4. 溶融金属表面的热损失(铝、巴氏合金、锡,环境温度20℃)

热损失kW/m2

表面温度℃5. 陶瓷纤维绝热层表面的热损失(64kg/m3,环境温度20℃

热损失kW/m2

表面温度℃6. 未保温的钢表面的热损失(环境温度20℃)

热损失kW/m2

表面温度℃7. 自然对流下环境温度和管表面温度的变化曲线(¢12管径)

管表面温度℃

出口流速m/min

功率及功率谱计算

功率谱定义 从确定性信号功率计算开始 ()()221 11lim lim 222T T T T T P x t dt X d T T ωωπ∞--∞→∞→∞==?? ()()21lim 2T T S X T ωω→∞= S(w)为功率谱密度,简称功率谱 则 ()12P S d ωωπ+∞-∞= ? 随机信号的功率谱密度 (1)样本功率谱与功率谱密度 ()()21,lim ,2X T T S X T ωξωξ→∞= 针对一个具体的样本而言,其是一个确定性的信号 (2) 随机信号的平均功率及平均功率谱密度 ()X X P E P ξ=???? 需要对具体的样本取概率均值才能计算出功率 ()()()21,lim ,2X X T T S E S E X T ωωξωξ→∞??==?????? 故功率谱密度是对所有概率取期望的反应。 (3)自相关函数与功率谱密度 ()()R S τω? (4)信号的自相关函数计算 分为确定信号和随机信号 确定信号 02002*0 1()lim ()()T T x T R x t x t dt T ττ-→∞=-? 周期信号 0202*0 1()()()T T x R x t x t dt T ττ-=-? 随机信号 *()[()()]x R E x t x t ττ=- 2 功率计算 (1)根据定义来计算

(2)周期信号如何计算 0cos()A t ω的计算 200()()1()[]2 A A s d T πσωωπσωωωω+∞-∞-++==?不好算因此放弃,但是应该可以类推得出结论 (3)自相关函数计算 0cos()A t ω的计算 /2 200/2 /222000/2201()cos()cos(())cos()cos(2)1[]2 cos()2 T T T T r A t t d T A A t d T A τωωτωωτωωτωωτ+-+-=-+-==?? 所以其功率谱为 200()2 A πσωωσωω(-)+(+) 0j t Ae ω的计算 0000/2()2/2 /22/2 21()1T j t j t T T j T j r A e e dt T A e dt T A e ωωτωτωτ τ+---+-===?? 总结:因此周期函数,首先转换成傅里叶级数,然后再通过自相关函数的定义计算自相关函数,得到其功率谱密度。

功率谱密度

t=0:0.0001:0.1; %时间间隔为0.0001,说明采样频率为10000Hz x=square(2*pi*1000*t); %产生基频为1000Hz的方波信号 n=randn(size(t)); %白噪声 f=x+n; %在信号中加入白噪声 figure(1); subplot(2,1,1); plot(f); %画出原始信号的波形图 ylabel('幅值(V)'); xlabel('时间(s)'); title('原始信号'); y=fft(f,1000); %对原始信号进行离散傅里叶变换,参加DFT采样点的个数为1000 subplot(2,1,2); m=abs(y); f1=(0:length(y)/2-1)'*10000/length(y);%计算变换后不同点对应的幅值plot(f1,m(1:length(y)/2)); ylabel('幅值的模'); xlabel('时间(s)'); title('原始信号傅里叶变换'); %用周期图法估计功率谱密度 p=y.*conj(y)/1000; %计算功率谱密度 ff=10000*(0:499)/1000; %计算变换后不同点对应的频率值 figure(2); plot(ff,p(1:500)); ylabel('幅值'); xlabel('频率(Hz)'); title('功率谱密度(周期图法)'); 功率谱估计在现代信号处理中是一个很重要的课题,涉及的问题很多。在这里,结合matlab,我做一个粗略介绍。功率谱估计可以分为经典谱估计方法与现代谱估计方法。经典谱估计中最简单的就是周期图法,又分为直接法与间接法。直接法先取N点数据的傅里叶变换(即频谱),然后取频谱与其共轭的乘积,就得到功率谱的估计;间接法先计

功率谱估计真实验

功率谱估计仿真实验 选题条件:对于给定的一个信号()()()t t f t f t x ?ππ++=212sin 2)2sin(,其中1f =50Hz , 2f =100Hz ,()t ?为白噪声,采样频率Fs 为1000Hz ,对其进行功率谱估 计。 仿真目标:采用多种方法对该指定信号进行功率谱估计,计算其功率谱密度,比较 各种估计方法的优劣。 设计思路:本仿真实验采用经典谱估计中的周期图法对给定信号进行谱估计。但是 由于其自身的缺陷,使得频率分辨率较低。为了不断满足需要,找到恰 当的估计法,实验使依次使用了周期图法的改进型方法如分段周期图法、 窗函数法以及修正的周期图法进行功率谱估计,对四种方法得出的谱估 计波形进行比较分析,得出估计效果最好的基于周期图法的谱估计方法。 仿真指标:频率分辨率、估计量的方差、频谱光滑度 平台说明:本实验采用MATLAB7.0仿真软件,基于WINDOWS-XP 系统。Matlab 是 一个集数值分析、矩阵运算、信号处理和图形显示于一体的工程分析处理软件。它提供的部分算法函数为功率谱估计提供了一条可行的方便途径,如PSD 和CSD 可以自动实现Welch 法估计,而不需要自己编程。但是较为有限,大部分需要自己编写相应的M 文件来实现。 实现方法: 一、周期图法 周期图法是直接将信号的采样数据()n x 进行傅立叶变换求功率谱密度估计。假设有限长随机信号序列()n x ,将它的功率谱按定义写出如下: ()()??? ?????+=∑-=-∞→2121lim N N n n j N j xx e n x N E e P ωω 如果忽略上式中求统计平均的运算,观测数据为:()n x 10-≤≤N n ,便得到了周期图法的定义: ()()2 10 ^ 1n j N n j xx e n x N e P ωω--=∑=, 式中的绝对值符号内的部分可以用FFT 计算,这样就可得到周期图法的计算框图如下所示: () ω j xx e ^ 图1 周期图法计算功率谱框图 采用周期图法时,可以分取不同的信号长度256、512和1024,分别进行功率谱

matlab实现功率谱密度分析psd

matlab实现功率谱密度分析psd及详细解说 功率谱密度幅值的具体含义?? 求信号功率谱时候用下面的不同方法,功率谱密度的幅值大小相差很大! 我的问题是,计算具体信号时,到底应该以什么准则决定该选用什么方法啊? 功率谱密度的幅植的具体意义是什么??下面是一些不同方法计算同一信号的matlab 程序!欢迎大家给点建议! 直接法: 直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗 nfft=1024; [Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx)); 间接法: 间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024; cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数 CXk=fft(cxn,nfft); Pxx=abs(CXk);

FFT在功率谱密度计算中的应用

F F T在功率谱密度计算 中的应用 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

FFT在功率谱密度计算中的应用 一、FFT算法理论依据和编程思想 FFT算法的基本思想: 考察DFT与IDFT的运算发现,利用以下两个特性可减少运算量: Ⅰ)系数是一个周期函数,它的周期性和对称性可利用来改进运算,提高计算效率。如: 因此 利用这些周期性和对称性,DFT运算中有些项可合并; Ⅱ)利用W N nk的周期性和对称性,把长度为N点的大点数的DFT运算分解为若干个小点数的DFT。因为DFT的计算量正比于N2,N小计算量也就小。 FFT算法正是基于这样的基本思想发展起来的。它有多种形式,下面是按时间抽取的FFT(N点DFT运算的分解) 先从一个特殊情况开始,假定N是2的整数次方,N=2M,M:正整数 1.将N点的DFT分解为两个N/2点的DFT: 首先将序列x(n)分解为两组,一组为偶数项,一组为奇数项 r=0,1,…,N/2-1 将DFT运算也相应分为两组: 其中X 1(k)和X 2 (k)分别是x 1 (r)和x 2 (r)的N/2点DFT。 可见,一个N点的DFT可以分解为两个N/2点的DFT,这两个N/2点的DFT再按照上面 (1)式合成为一个N点DFT,注意到,X 1(k),X 2 (k)有N/2个点,即k=0,1,…, N/2-1,由(1)式得到X(k)只有N/2点,而实际上X(k)有N个点,即k=0, 1,…,N-1,要用X 1(k),X 2 (k)表示全部X(K)值,还必须应用系数w的周期性和 对称性。 (k)的(N/2)~N-1点表示: 由X(k)= X 1(k)+w k N X 2 (k), k=0,1,2,…,N/2-1

功率谱图应用

1.基本方法 周期图法是直接将信号的采样数据x(n)进行Fourier变换求取功率谱密度估计的方法。假定有限长随机信号序列为x(n)。它的Fourier变换和功率谱密度估计存在下面的关系: 式中,N为随机信号序列x(n)的长度。在离散的频率点f=kΔf,有: 其中,FFT[x(n)]为对序列x(n)的Fourier变换,由于FFT[x(n)]的周期为N,求得的功率谱估计以N为周期,因此这种方法称为周期图法。下面用例子说明如何采用这种方法进行功率谱 用有限长样本序列的Fourier变换来表示随机序列的功率谱,只是一种估计或近似,不可避免存在误差。为了减少误差,使功率谱估计更加平滑,可采用分段平均周期图法(Bartlett法)、加窗平均周期图法(Welch 法)等方法加以改进。 2. 分段平均周期图法(Bartlett法) 将信号序列x(n),n=0,1,…,N-1,分成互不重叠的P个小段,每小段由m个采样值,则P*m=N。对每个小段信号序列进行功率谱估计,然后再取平均作为整个序列x(n)的功率谱估计。 平均周期图法还可以对信号x(n)进行重叠分段,如按2:1重叠分段,即前一段信号和后一段信号有一半是重叠的。对每一小段信号序列进行功率谱估计,然后再取平均值作为整个序列x(n)的功率谱估计。这两种方法都称为平均周期图法,一般后者比前者好。程序运行结果为图9-5,上图采用不重叠分段法的功率谱估计,下图为2:1重叠分段的功率谱估计,可见后者估计曲线较为平滑。与上例比较,平均周期图法功率谱估计具有明显效果(涨落曲线靠近0dB)。 3.加窗平均周期图法 加窗平均周期图法是对分段平均周期图法的改进。在信号序列x(n)分段后,用非矩形窗口对每一小段信号序列进行预处理,再采用前述分段平均周期图法进行整个信号序列x(n)的功率谱估计。由窗函数的基本知识(第7章)可知,采用合适的非矩形窗口对信号进行处理可减小“频谱泄露”,同时可增加频峰的宽度,从而提高频谱分辨率。 其中上图采用无重叠数据分段的加窗平均周期图法进行功率谱估计,而下图采用重叠数据分段的加窗平均周期图法进行功率谱估计,显然后者是更佳的,信号谱峰加宽,而噪声谱均在0dB附近,更为平坦(注意采用无重叠数据分段噪声的最大的下降分贝数大于5dB,而重叠数据分段周期图法噪声的最大下降分贝数小于5dB)。 4. Welch法估计及其MATLAB函数 Welch功率谱密度就是用改进的平均周期图法来求取随机信号的功率谱密度估计的。Welch 法采用信号重叠分段、加窗函数和FFT算法等计算一个信号序列的自功率谱估计(PSD如上例中的下半部分的求法)和两个信号序列的互功率谱估计(CSD)。 MATLAB信号处理工具箱函数提供了专门的函数PSD和CSD自动实现Welch法估计,而不需要自己编程。 (1)函数psd利用Welch法估计一个信号自功率谱密度,函数调用格式为: [Pxx[,f]]=psd(x[,Nfft,Fs,window,Noverlap,’dflag’]) 式中,x为信号序列;Nfft为采用的FFT长度。这一值决定了功率谱估计速度,当Nfft采用2的幂时,程序采用快速算法;Fs为采样频率;Window定义窗函数和x分段序列的长度。窗函数长度必须小于或等于Nfft,否则会给出错误信息;Noverlap为分段序列重叠的采样

功率谱密度 的估计

功率谱密度的估计 原始波=余弦波+白噪声 这个实验采用了两个输入,一个是白噪声,一个是有用信号和噪声信号作为输入时,他们的功率谱密度的仿真图像,并将他们进行对比。 平稳随机信号的功率谱密度(PSD )是相关序列的离散傅里叶变换: ()()jw m XX x P w r m e ∞ --∞=∑ 采用间接法计算噪声信号的功率谱。 间接法,又称自相关法或者BT 法,在1985年由布莱克曼与图基首先开拓。间接法的理论基础是维纳-辛钦定理。他是由N 个观察值x(0),x(1),……,x(N-1),估计出自相关函数R (m ),然后再求R (m )的傅里叶变换作为功率谱密度的估计。 ()(),||1M jw jw m N m M S e R m e M N -=-=<=-∑ clear all; randn('state',0) NFFT=1024; %采样点数 Fs=1000; %取样频率(单位为Hz ) t=0:1/Fs:.2;

y1=cos(t*20*pi); %余弦序列 figure(1) plot(t,y1); ylabel('余弦序列'); grid on; %余弦序列的图像: %白噪声 m=(0:NFFT-1)/Fs; y=0.1*randn(size(m)); %产生高斯白噪声。 figure(2); plot(m,y); title('白噪声波形'); grid on;

%白噪声的自相关函数 [cory,lags]=xcorr(y,200,'unbiased'); %计算白噪声的自相关函数 figure(3) plot(lags,cory); %自相关函数(无偏差的),其中,cory为要求的自相关函数,lag为自相关函数的长度。 title('白噪声相关函数'); grid on;

照度、照明功率密度计算法

照度(Eav)、照明功率密度(LPD)简易计算法 中国建筑设计研究院胥正详T8,T5,荧光灯管技术参数见表1。 表1 荧光灯管技术参数

2.镇流器 气体放电灯的镇流器主要分两大类,电感镇流器和电子镇流器,电感式镇流器包括普通型和节能型。荧光灯用的交流镇流器包括可控式电子镇流器和应急照明用交流/直流电子镇流器。 直管荧光灯镇流器的选用:依GB50034-2004《建筑照明设计标准》规定:“直管荧光灯应配电子镇流器或节能型电感镇流器”。不应选用普通电感镇流器。 应采取有效措施限制小于25W(包括T8、T5灯管和紧凑型荧光灯)镇流器的谐波含量。25W 以下灯管的谐波限制非常宽松,在建筑物内大量应用,将导致严重的波形畸变,中性线电流过大以及功率因数降低的不良后果。 节能型电感镇流器的应用:通过优化铁芯材料和改进工艺等措施,降低自身功耗,一般可降低20%~50%,灯具总的功率之和可降5%~10%。 灯具补偿:由于电感镇流器自然功率因数低,要考虑单灯末端补偿措施。包括单灯补偿或线路集中补偿等方式。 荧光灯镇流器性能对比表2 3.照度计算: 照明设计时,应逐个房间或场所按使用条件确定照度标准,选择光源、灯具、镇流器类型、

规格、计算平均照度,使之符合规定的照度标准值,并使计算照度偏差不超过±10%的规定。最常用,也是最基本的利用系统法计算平均照度计算公式如下: Eav = N·φ·U·K (1) A N = Eav·A (2) φ·U·K 式中: Eav —工作面上的平均照度(Lx); φ—光源光通量(Lm); N —光源数量; U —利用系数,其值见厂商样本资料,一般取0.4~0.6;也可参照民用建筑不同功能房间和常用灯具对应的值(利用系数),见表3; K —灯具的维护系数,其值见《建筑照明设计标准》GB50034-2004,表4.1.6; A —房间面积(m2)。 表3 民用建筑不同功能房间和常用灯具对应的值(利用系数)

滤波与功率谱估计

清华大学 《数字信号处理》期末作业 2013 年 1 月

第一题掌握去噪的方法 1.1 题目描述 MATLAB 中的数据文件noisdopp 含有噪声,该数据的抽样频率未知。调出该数据,用你学过的滤波方法和奇异值分解的方法对其去噪。要求:1.尽可能多地去除噪声,而又不损害原信号; 2.给出你去噪的原理与方法;给出说明去噪效果的方法或指标; 3.形成报告时应包含上述内容及必要的图形,并附上原程序。 1.2 信号特性分析 MATLAB所给noisdopp信号极其频域特征如图1.1、图1.2。 图1.1含有噪声的noisdopp信号

图1.2 noisdopp 信号频域特性 其中横坐标f 采用归一化频率,即未知抽样频率Fs 对应2(与滤波器设计时参数一致)。信号基本特性是一个幅值和频率逐渐增加的正弦信号叠加噪声,噪声为均匀的近似白噪声,没有周期等特点。 因为噪声信号能量在全频带均匀分布,滤波器截止频率过低则信号损失大,过高则噪声抑制小,认为频谱中含有毛刺较多的部分即为信噪比较小的部分,滤除这部分可以达到较好的滤波效果。 先给定去噪效果的评定指标。信号开始阶段频率较高(如图1.3,红圈为信号值),一周期内采样点4~5个,即信号归一化频率达到0.4~0.5(Fs=2),难以从频域将这部分信号同噪声分离,滤波后信号损失较大,故对前128点用信噪比考察其滤波效果,定义: 2 2 () 10lg (()())k k x k SNR y k x k =-∑∑ 其中,()x k 为原nosidopp 信号,()y k 为滤波后信号。SNR 越大表示滤除部分能力越小,可以反映滤波后信号对原信号的跟踪能力,对前128点主要考察SNR ,越大滤波器性能越好。

计算功率谱密度

功率谱密度幅值的具体含义?? 求信号功率谱时候用下面的不同方法,功率谱密度的幅值大小相差很大! 我的问题是,计算具体信号时,到底应该以什么准则决定该选用什么方法啊? 功率谱密度的幅植的具体意义是什么??下面是一些不同方法计算同一信号的matlab 程序!欢迎大家给点建议! 一、直接法: 直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗 nfft=1024; [Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx)); 二、间接法: 间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024; cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数 CXk=fft(cxn,nfft); Pxx=abs(CXk); index=0:round(nfft/2-1); k=index*Fs/nfft; plot_Pxx=10*log10(Pxx(index+1)); plot(k,plot_Pxx); 三、改进的直接法: 对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。

FFT在功率谱密度计算中的应用

FFT在功率谱密度计算中的应用 一、FFT算法理论依据和编程思想 FFT算法的基本思想: 考察DFT与IDFT的运算发现,利用以下两个特性可减少运算量: Ⅰ)系数是一个周期函数,它的周期性和对称性可利用来改进运算,提高计算效率。如: 因此 利用这些周期性和对称性,DFT运算中有些项可合并; Ⅱ)利用W N nk的周期性和对称性,把长度为N点的大点数的DFT运算分解为若干个小点数的DFT。因为DFT的计算量正比于N2,N小计算量也就小。FFT算是基于这样的基本思想发展起来的。它有多种形式,下面是按时间抽取的FFT(N点DFT运算的分解)先从一个特殊情况开始,假定N是2的整数次方,N=2M,M:正整数 1.将N点的DFT分解为两个N/2点的DFT: 首先将序列x(n)分解为两组,一组为偶数项,一组为奇数项 r=0,1,…,N/2-1 将DFT运算也相应分为两组: 其中X1(k)和X2(k)分别是x1(r)和x2(r)的N/2点DFT。 可见,一个N点的DFT可以分解为两个N/2点的DFT,这两个N/2点的DFT再按照上面(1)式合成为一个N点DFT,注意到,X1(k),X2(k)有N/2个点,即k=0,1,…,N/2-1,由(1)式得到X(k)只有N/2点,而实际上X(k)有N个点,即k=0,1,…,N-1,要用X1(k),X2(k)表示全部X(K)值,还必须应用系数w的周期性和对称性。

2.X(k)的(N/2)~N-1点表示: 由X(k)= X1(k)+w k N X2(k), k=0,1,2,…,N/2-1 (2a) 得: , 因为 , 且 同样 。 考虑到W N k对称性:。 故(2b) (2a)式表示了X(k)前半部分k=0~N/2-1时的组成方式,(2b)式则表示了后半部分k=N/2~N-1时的组成方式。这两式所表示的运算过程可用一个称作蝶形的信号流图来表示。 3.蝶形信号流图:

(完整word版)自己编写算法的功率谱密度的三种matlab实现方法

功率谱密度的三种matlab 实现方法 一:实验目的: (1)掌握三种算法的概念、应用及特点; (2)了解谱估计在信号分析中的作用; (3) 能够利用burg 法对信号作谱估计,对信号的特点加以分析。 二;实验内容: (1)简单说明三种方法的原理。 (2)用三种方法编写程序,在matlab 中实现。 (3)将计算结果表示成图形的形式,给出三种情况的功率谱图。 (4)比较三种方法的特性。 (5)写出自己的心得体会。 三:实验原理: 1.周期图法: 周期图法又称直接法。它是从随机信号x(n)中截取N 长的一段,把它视为能量有限x(n)真实功率谱)(jw x e S 的估计)(jw x e S 的抽样. 认为随机序列是广义平稳且各态遍历的,可以用其一个样本x(n)中的一段)(n x N 来估计该随机序列的功率谱。这当然必然带来误差。由于对)(n x N 采用DFT ,就默认)(n x N 在时域是周期的,以及)(k x N 在频域是周期的。这种方法把随机序列样本x(n)看成是截得一段)(n x N 的周期延拓,这也就是周期图法这个名字的来历。

2.相关法(间接法): 这种方法以相关函数为媒介来计算功率谱,所以又叫间接法。这种方法的具体步骤是: 第一步:从无限长随机序列x(n)中截取长度N 的有限长序列列 )(n x N 第二步:由N 长序列)(n x N 求(2M-1)点的自相关函数)(m R x ∧ 序列。 )()(1)(1 m n x n x N m R N n N N x += ∑-=∧ (2-1) 这里,m=-(M-1)…,-1,0,1…,M-1,M N ,)(m R x 是双边序列,但是由自相关函数的偶对称性式,只要求出m=0,。。。,M-1的傅里叶变换,另一半也就知道了。 第三步:由相关函数的傅式变换求功率谱。即 jwm M M m X jw x e m R e S ----=∧∧ ∑= )()(1) 1( 以上过程中经历了两次截断,一次是将x(n)截成N 长,称为加数据窗,一次是将x(n)截成(2M-1)长,称为加延迟窗。因此所得的功率谱仅是近似值,也叫谱估计,式中的)(jw x e S 代表估值。一般取M<

照度、照明功率密度计算法

照度(Eav)、照明功率密度(LPD简易计算法 中国建筑设计研究院胥正详T8,T5,荧光灯管技术参数见表1。 表1

2.镇流器 气体放电灯的镇流器主要分两大类,电感镇流器和电子镇流器,电感式镇流器包括普通型和节能型。荧光灯用的交流镇流器包括可控式电子镇流器和应急照明用交流/直流电子镇流器。 直管荧光灯镇流器的选用:依GB50034-2004《建筑照明设计标准》规定:“直管荧光灯应配电子镇流器或节能型电感镇流器”。不应选用普通电感镇流器。 应采取有效措施限制小于25W(包括T8、T5灯管和紧凑型荧光灯)镇流器的谐波含量。25W 以下灯管的谐波限制非常宽松,在建筑物内大量应用,将导致严重的波形畸变,中性线电流过大以及功率因数降低的不良后果。 节能型电感镇流器的应用:通过优化铁芯材料和改进工艺等措施,降低自身功耗,一般可降 低20%~50%灯具总的功率之和可降5%~10% 灯具补偿:由于电感镇流器自然功率因数低,要考虑单灯末端补偿措施。包括单灯补偿或线路集中补偿等方式。荧光灯镇流器性能对比表2 3 照明设计时,应逐个房间或场所按使用条件确定照度标准,选择光源、灯具、镇流器类型、 规格、计算平均照度,使之符合规定的照度标准值,并使计算照度偏差不超过土10%勺规定 最常用,也是最基本的利用系统法计算平均照度计算公式如下: N ? ? ? U ?K Eav = ⑴

A Eav-A N = ⑵ ? ? U -K 式中: Eav —工作面上的平均照度(Lx); ? —光源光通量(Lm); N —光源数量; U —利用系数,其值见厂商样本资料,一般取0.4~0.6 ;也可参照民用建筑不同功能房 间和常用灯具对应的值(利用系数),见表3; K —灯具的维护系数,其值见《建筑照明设计标准》GB50034-2004表4.1.6 ; A —房间面积(m)° 表3 民用建筑不同功能房间和常用灯具对应的值(利用系数) 公式(1)是当布置了灯具后,计算房间的照度。但开始时往往是需要确定房间中究竟需要多少个灯具,可以采用公

FFT在功率谱密度计算中的应用

FFT 在功率谱密度计算中的应用 一、FFT 算法理论依据和编程思想 FFT 算法的基本思想: 考察DFT 与IDFT 的运算发现,利用以下两个特性可减少运算量: Ⅰ)系数 是一个周期函数,它的周期性和对称性可利用来改进运算, 提高计算效率。 如: 因此 利用这些周期性和对称性,DFT 运算中有些项可合并; Ⅱ)利用W N nk 的周期性和对称性,把长度为N 点的大点数的DFT 运算分解为若干个小点数的DFT 。因为DFT 的计算量正比于N 2,N 小计算量也就小。 FFT 算法正是基于这样的基本思想发展起来的。它有多种形式,下面是按时间抽取的FFT (N 点DFT 运算的分解) 先从一个特殊情况开始,假定N 是2的整数次方,N=2M ,M :正整数 1.将N 点的DFT 分解为两个N/2点的DFT : 首先将序列x (n )分解为两组,一组为偶数项,一组为奇数项 r=0,1,…,N/2-1 将DFT 运算也相应分为两组: 其中X 1(k )和X 2(k )分别是x 1(r )和x 2(r )的N/2点DFT 。 可见,一个N 点的DFT 可以分解为两个N/2点的DFT ,这两个N/2点的DFT 再按照上面(1)式合成为一个N 点DFT ,注意到,X 1(k ),X 2(k )有N/2个点,即k=0,1,…,

N/2-1,由(1)式得到X(k)只有N/2点,而实际上X(k)有N个点,即k=0,1,…, N-1,要用X 1(k),X 2 (k)表示全部X(K)值,还必须应用系数w的周期性和对称性。 2.X(k)的(N/2)~N-1点表示: 由X(k)= X 1(k)+w k N X 2 (k), k=0,1,2,…,N/2-1 得: , (2a) 因为 , 且 同样 。 考虑到W N k对称性:。 故(2b) (2a)式表示了X(k)前半部分k=0~N/2-1时的组成方式,(2b)式则表示了后半部分k=N/2~N-1时的组成方式。这两式所表示的运算过程可用一个称作蝶形的信号流图来表示。

功率密度的计算1

循环式电加热器的设计和选择注意事项 循环式电加热器的设计和选择注意事项 为了使循环式电加热器能安全原形和确保其使用寿命,对于循环式电加热器的正确设计和选择都是很重要的下面就这问题谈一谈其注意事项: 1、功率密度的设计 功率密度的设计一直被认为是电加热器设计的最重要的参数,但是我这里想谈一谈另一重要的技术参数,这也是很多客户忽略的地方,此参数就是流量,我们和客户交谈中经常要问到的一个问题就是请客户提供介质的最大流量和最小流量,因为此两个参数对我们设计人员来说是很重要的,我们将根据最大流量设计加热器的设计负荷(即功率的大小,也就是说确保在最大流量下,也能达到客户所需要的出口温度),最小流量是我们设计加热器功率密度的主要参数来源,也就是说,在最低流量下,也能确保加热器表面不结焦或碳化,确保加热器的使用寿命。 另一方面,我们考虑的必须使加热器在加热过程中始终并尽可能保持在冷的状态,说得通俗一些:我们可以把加热器看作为一个发热体,为使加热器能处在“冷却” 状态,我们最理想的是用大量的或足够水去冲它,也就是说要有足够的介质流量去带走加热器所发出来的热量。我们可以见下图,介质流量的降低,将会导致加热器表面的温度按指数函数的曲线急剧上升,从反过来我们可以理解,如果加热器中的流量提高,加热器的功率密度的主要参数来源,也就是说,在最底流量下,也能确保加热器表不结焦或碳化,确保加热器的使用寿命。 另一方面,我们考虑的必须使加热器在加热过程中始终并尽可能保持在“冷”的状态,说的通俗一些,我们可以把加热器看作为一个发热体,为使加热器能处在“冷却” 状态我们最理想是的用大量的或足够水去冲它,也就是说要有足够的介质流量去带走加热器所发出的热量。我们可以见下图,介质流量的降低,将会导致加热器表面的温度按指数函数的曲线急剧上升,从反过来我们可以理解,如果加热器中的流量的提高,加热器的功率密度的选择可以成倍的增加。 图示为某海洋平台的原油加热系统,出口处管壁温度,功率密度和流量的关系图

功率密度的计算2

电加热设备设计参考资料: 备注:以下数据,由盐城市兴唐电加热设备有限公司提供,仅供参考。 计量单位 1.功率:W、kW 1kW=3.412BTU/hr英热单位/小时=1.36(马力)=864Kcal/hr 2.重量:kg 1kg=2.204621b(磅) 3.流速:m/min 4.流量:m3/min、kg/h 5.比热:Kcal/(kg℃)1Kcal/(Kg℃)=1BTU/hr.°F=418 6.8J/(Kg℃) 6.功率密度:W/cm2 1W/cm2=6.4516 W/in2 7.压力:Mpa 8.导热系数:W/(m℃) 1 W/(m℃)=0.01J/(cm s℃)=0.578Btu/(ft.h.F) 9.温度:℃1o F=9/5℃+32 1R=9/5℃+491.67 1K=1℃+273.15 电加热功率计算 加热功率的计算有以下三个方面: 运行时的功率启动时的功率系统中的热损失 所有的计算应以最恶劣的情况考虑: 最低的环境温度最短的运行周期 最高的运行温度加热介质的最大重量(流动介质则为最大流量) 设计电加热器系统的步骤 根据工艺过程,画出加热的工艺流程图(不涉及材料形式及规格)。 计算工艺过程所需的热量。 计算系统起动时所需的热量及时间。 重画加热工艺流程图,考虑合适的安全系数,确定加热器的总功率。 决定发热元件的护套材料及功率密度。 决定加热器的形式尺寸及数量。 决定加热器的电源及控制系统。 有关加热功率在理想状态下的计算公式如下: 系统起动时所需要的功率: 系统运行时所需要的功率:

加热系统的散热量 管道 平面 式中符号,含义如下: P功率:kW Q散热量:管道为W/m;平面为W/m2 m 介质重量:kg λ保温材料的导热数:W/mk 1 介质比热:kcal/kg℃δ保温材料厚度:mm c 1 容器重量:kg d管道外径:mm m 2 c 介质比热:kcal/kg℃L管道长度:m 2 kg/h S系统的散热面积:m2 m 3每小时增加的介质重量或流量: 介质比热:kcal/kg℃△T介质和环境温度之差或温升:℃c 3 h加热时间:h 有关加热功率计算的参考数据(如需更多数据,请来电、来函咨询) 各种物质的比热(25℃)cal/(g℃) Kcal/(kg℃) 各种气体和蒸汽的定容定压比热Cal/(g℃) Kcal/(kg℃)

电振动台的振动功率谱密度计算

电振动台在使用中经常运用的公式 1、 求推力(F )的公式 F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) 2.2 V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“2.1”中同义 D —位移(mm 0-p )单峰值 2.3 A=ω2 D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为: A= D f ?250 2 式中:A 和D 与“2.3”中同义,但A 的单位为g 1g=9.8m/s 2 所以: A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 3.3 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??2 3 )2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“3.3”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、 扫描时间和扫描速率的计算公式 4.1 线性扫描比较简单: S 1= 1 1 V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 4.2 对数扫频: 4.2.1 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 4.2.2 扫描速率计算公式 R= T Lg f f Lg L H 2/ ……………………………公式(10) 式中:R —扫描速率(oct/min 或)

照明功率密度表及照度要求

建筑照明设计标准 中华人民共和国国家标准 建筑照明设计标准 Standard for lighting design of buildings GB 50034-2004 前言 本标准系在原国家标准《民用建筑照明设计标准》GBJl33---90和《工业企业照明设计标准》GB 50034---92的基础上,总结了居住、公共和工业建筑照明经验,通过普查和重点实测调查,并参考了国内外建筑照明标准和照明节能标准经修订、合并而成。其中照明节能部分是由国家发展和改革委员会环境和资源综合利用司组织主编单位完成的。 本标准由总则、术语、一般规定、照明数量和质量、照明标准值、照明节能、照明配电及控制、照明管理与监督共八章和二个附录组成。主要规定了居住、公共和工业建筑的照明标准值、照明质量和照明功率密度。 2 术语 3 一般规定 3.1 照明方式和照明种类 3.1.1 按下列要求确定照明方式: 1 工作场所通常应设置一般照明; 2 同一场所内的不同区域有不同照度要求时,应采用分区一般照明; 3 对于部分作业面照度要求较高,只采用一般照明不合理的场所,宜采用混合照明; 4 在一个工作场所内不应只采用局部照明。 3.1.2 按下列要求确定照明种类: 1 工作场所均应设置正常照明 2 工作场所下列情况应设置应急照明; 1)正常照明因故障熄灭后,需确保正常工作或活动继续进行的场所,应设置备用照明; 2)正常照明因故障熄灭后,需确保人员安全疏散的出口和通道,应设置疏散照明。 3 大面积场所宜设置值班照明。 4 有警戒任务的场所,应根据警戒范围的要求设置警卫照明。 5 有危及航行安全的建筑物、构筑物上,应根据航行要求设置障碍照明。 4 照明数量和质量 4.1 照度 4.1.1 照度标准值应按0.5、1、3、5、10、15、20、30、50、75、100、150、200、300、500、750、1000、1500、2000、3000、5 0001x分级。 4.1.2 本标准规定的照度值均为作业面或参考平面上的维持平均照度值。各类房间或场所的维持平均照度值应符合第5章的规定。 4.1.3 符合下列条件之一及以上时,作业面或参考平面的照度,可按照度标准值分级提高一级。 1 视觉要求高的精细作业场所,眼睛至识别对象的距离大于500mm时; 2 连续长时间紧张的视觉作业,对视觉器官有不良影响时; 3 识别移动对象,要求识别时间短促而辨认困难时; 4 视觉作业对操作安全有重要影响时; 5 识别对象亮度对比小于0.3时; 6 作业精度要求较高,且产生差错会造成很大损失时; 7 视觉能力低于正常能力时; 8 建筑等级和功能要求高时。 4.1.4 符合下列条件之一及以上时,作业面或参考平面的照度,可按照度标准值分级降低一级。 1 进行很短时间的作业时; 2 作业精度或速度无关紧要时; 3 建筑等级和功能要求较低时。 4.1.5 作业面邻近周围的照度可低于作业面照度,但不宜低于表4.1.5的数值。 4.1.7 在一般情况下,设计照度值与照度标准值相比较,可有—10%—+10%的偏差。 5 照明标准值 5.1 居住建筑

谱密度,功率谱密度,能量谱密度

谱密度, 功率谱密度, 能量谱密度 在应用数学和物理学中,谱密度、功率谱密度和能量谱密度是一个用于信号的通用概念,它表示每赫兹的功率、每赫兹的能量这样的物理量纲。 解释 在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。 尽管并非一定要为信号或者它的变量赋予一定的物理量纲,下面的讨论中假设信号在时域内变化。 定义 能量谱密度 能量谱密度描述的是信号或者时间序列的能量或者变化如何随着频率分布。如 果是一个有限能量信号,即平方可积,那么信号的谱密度就是信号连续傅里叶变换幅度的平方。 其中是角频率(循环频率的倍),是的连续傅里叶变换。是的共轭函数。 如果信号是离散的,经过有限的元素之后,仍然得到能量谱密度: 其中是的离散时间傅里叶变换。如果所定义的数值个数是有限 的,这个序列可以看作是周期性的,使用离散傅里叶变换得到离散频谱,或者用零值进行扩充从而可以作为无限序列的情况计算谱密度。

乘数因子经常不是绝对的,它随着不同傅里叶变换定义的归一化 常数的不同而不同。 功率谱密度 上面能量谱密度的定义要求信号的傅里叶变换必须存在,也就是说信号平方可积或者平方可加。一个经常更加有用的替换表示是功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。此瞬时功率(平均功率的中间值)可表示 为: 由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。 属性 ? 的谱密度和 的自相关组成一个傅里叶变换对(对于功率谱密度和能量谱密度来说,使用着不同的自相关函数定义)。 ?通常使用傅里叶变换技术估计谱密度,但是也可以使用如Welch法(Welch's method)和最大熵这样的技术。 ?傅里叶分析的结果之一就是Parseval定理(Parseval's theorem),这个定理表明能量谱密度曲线下的面积等于信号幅度平方下的面积,总的能量是: :上面的定理在离散情况下也是成立的。另外的一个结论是功率谱密度下总的功率与对应的总的平均信号功率相等,它是逐渐趋近于零的自相关函数。 相关概念 ?大多数“频率”图实际上仅仅表示了谱密度。有时完整的频率要用两部分来表示,一部分是对应于频率的“幅度”(它就是谱密度),另外一部分是

相关主题
文本预览
相关文档 最新文档