当前位置:文档之家› 石油催化裂化装置烟气污染物治理技术

石油催化裂化装置烟气污染物治理技术

石油催化裂化装置烟气污染物治理技术
石油催化裂化装置烟气污染物治理技术

石油催化裂化装置烟气污染物治理技术

摘要:在我国发展节能减排规划的过程中,需要重点解决烟气污染的问题,因为烟气污染对于环境的破坏是极为严重的,要想实现环境的有效治理,这是其中十分重要的一个环节,采用催化裂化装置对烟气污染物进行治理是当前应用比较普遍的一种治理技术,这一技术已经引起了相关人士的重视,但是在应用之前,需要对现行的标准进行有效的规划,本文主要对这方面的内容展开了阐述,并且对当前烟气脱硫设备在运行过程中的情况进行了研究,对脱硫脱硝除尘技术进行了综合性的比对,希望在今后的社会发展过程中,可以全面的对烟气污染物进行治理,让环境变得更加清新。

关键词:催化裂化装置;污染源;烟气污染物治理

随着社会的发展建设,我国当前对城市污染问题变得愈发看重,加强节能减排的建设是目前工作的重点内容,对于社会发展具有重要的现实意义。在节能减排实施的过程中,尤其是要重视对炼油企业的关注,炼油企业在当前的工作中主要是通过脱硫除尘的方式降低对环境造成的不良污染,在今后的发展过程中,应该进一步研究催化裂化装置在烟气污染物中的治理问题,这样才能起到良好的治理效果。因此,

本文主要对当前催化裂化装置的烟气污染物排放情况展开了探讨,并且进一步规范污染物的排放标准,将烟气脱硫脱硝除尘技术展开比选,希望可以对今后的工作带来一定的帮助。

1 我国催化裂化污染物排放标准

在我国当前的催化裂化污染物排放过程中,是需要遵循一定标准的,这些标准在实施的过程中主要遵循的是综合性与行业性不交叉的原则,也就是说各个标准都具有不同的适用范围。以在锅炉大气污染物的排放标准为例的,其主要适用的范围是在65t/h以下的发电锅炉以及其他容量的非发电锅炉,在火电厂应用的大气污染物排放标准中,主要是应用在65t/h以上的发电锅炉中等等。而在炼油厂中,不同省市所执行的标准也会有所差异,但是他们都需要满足对于大气污染物的综合排放标准,这一标准中对于颗粒物、二氧化硫等排放情况都具有详细的要求,某公司在应用催化裂化装置并且对其进行改造以后,满足了排放标准的要求,但是需要重视的问题是在当前的很多企业中,因为忽视了对二氧化硫排放指标的执行,所以催化裂化的效果并不严格,这需要引起反思,并且进一步的强化排放标准,这样才能保证实际工作的顺利开展。

2 催化裂化装置烟气污染物治理现状

采用催化裂化装置降低硫化物的排放,主要是通过三个

途径得以实现的,首先是要对催化原料进行预处理,采用蜡油和氢或者是渣油和氢的方式是比较常见的装置,这样可以将装置中原料的含油量加以降低。其次是采用再生烟气脱硫装置。第三个方法是应用降硫助剂。在烟气中的硫化物质与原料中的含硫量具有密切的联系,如果在原料中含硫量达到5%以上,并且不足10%,那么在进入焦炭状态以后,就会产生硫化物质,通常来说,在催化裂化装置中的含硫量都不超过0.2%,所以在进行优化操作的基础上,就能将烟气中的含硫量加以进一步的控制,保证处于550mg/m3之中。

在烟气中,硝化物中的主要物质是NO,在出现焦炭以后,其中很大一部分原料都集中在其中,并且在经过完全燃烧以后,就会将焦炭中的10%进行转化,最终转化为硝化物,通过研究可以得出原料中的含氮量与烟气中含氧量具有密

切的关系,通常情况下,在采用三级旋风分离器以后,就会对浓度进行一定的控制,将其处在100mg/m3的范围以内。随着我国近几年对成品油的有效的控制,其质量得到了有效的提升,在应用催化裂化装置以后,得到了一定的控制。

3 催化裂化烟气脱硫技术

3.1 可再生烟气脱硫技术

Labsorb技术。该技术为BELCO公司的可再生烟气脱硫技术,采用磷酸氢二钠缓冲溶液作为吸收剂,包括预洗涤系统、二氧化硫吸收塔、再生蒸发以及硫酸钠脱除系统等。高

技术成熟可靠,回收的二氧化硫纯度高达90%~95%,可以作为硫磺回收或硫酸装置的原料,与EDV工艺相比,该工艺操作费用低35%,但投资为EDV工艺的2.4倍。该技术在意大利某炼厂工业化,目前应用业绩较少。

RASOC可再生胺法技术。该技术采用中国石化洛阳石化工程公司研发的LAS吸收剂,吸收剂为特殊官能团的有机胺衍生物,具有吸收容量大!再生效果好!蒸发损失少等特点,在烟气二氧化硫含量1000-10000mg/Nm3范围内,净化烟气SO2含量达到100-400mg/m3,二氧化硫脱除率达到92%以上。该技术副产较高纯度的二氧化硫,可以作为硫磺或硫酸装置的原料,也可以干燥后直接作为产品出厂。采用该工艺的装置主要由烟气急冷、吸收、再生、热稳定盐处理和酸性水中和等系统组成。由于吸收剂循环使用,基本不消耗吸收剂,但是吸收剂再生需消耗蒸汽;该技术的防腐要求相对其他技术更高,在设备材料选择和生产维护上需要重视;此外SO4-热稳定盐要时常去除,防止积累影响脱硫剂的吸收容量,该技术目前正在工业化应用。

其它技?g:为避免采用NaOH的EDV钠法烟气脱硫技术带来的碱耗成本高的问题,亦可选择成本更低的Mg(OH)2作为脱硫剂,但Mg(OH)2比NaOH更难溶,需要妥善应对泵、阀门、管道等设备的腐蚀结垢问题。此外,国外一些临海炼厂,在脱硫要求不甚严格的情况下,选择带有弱碱

性的海水作为脱硫剂,以降低操作成本。

3.2 催化裂化烟气脱硝技术

催化裂化烟气脱硝技术主要通过各种物理化学过程使

烟气中的NOx还原为氮气或者氧化成N2O5,等去除NOx,主要包括催化脱硝技术、非催化脱硝技术和低温氧化技术。

催化脱硝技术(SCR):该技术采用氨气被稀释到空气或水蒸气中,然后注人到烟气中脱硝。氨与NOx反应生成氮气和水。所用催化剂一般是TiO2为载体的V2O5/WO3及MoO3等金属氧化物,该催化剂在300-400℃范围内对NO转化有很高的活性。SCR的脱硝效率一般在70%-90%,是脱硝效率最高的技术。该技术存在投资较高、占地较大、系统复杂等特点。

相对于电厂烟气脱硝,催化裂化烟气脱硝有一些特殊要求:一是烟气含催化剂粉尘,二是满足催化裂化长周期运行要求,三是高粉尘环境运行下保持低压降,为此,需要精心选择催化剂类型,确保催化剂耐磨蚀提高使用的可靠性,尽可能大的催化反应表面积以实现高的NO!还原率,合理地装填和床层设计实现低压降国外催化裂化烟气脱硝运行较多,国内目前还没有工业应用。

结束语

在今后的社会发展过程中,应该对此加以一定的重视,尤其是应该关注核心技术的研发工作,这样才能对成本加以

有效的控制,与此同时,还能起到降低运营成本的作用,通常情况下,应该对脱硝催化的投资情况控制在30%左右,并且我国一些催化剂公司也应该重视对相关催化剂的研发与推广,使其能够应用在催化裂化装置中,对今后的环境建设与保护做出重要的贡献。

参考文献

[1]美国石油化工与炼制者协会年会报告译文集[R],2010.

[2]A企业RFCC烟气脱硫除尘装置运行总结.2010.

[3]胡松伟.炼油厂催化裂化装置烟气污染物的治理与建议[J].石油化工安全环保技术,2011-04.

石油污染土壤的微生物修复原理

石油污染土壤的微生物修复 一、降解石油烃类化合物的微生物种类 自然界中能够降解石油烃类污染物的微生物种类有数百种,70多属,主要是细菌、真菌和藻类三大类型的生物。 表1 石油烃降解微生物种属 细菌真菌藻类 无色杆菌属枝顶孢属双眉藻属 不动杆菌属曲霉属鱼腥藻属 芽孢杆菌属金色担子菌数小球藻属 色杆菌属假丝酵母属衣藻属 诺卡氏菌属镰刀霉属念珠藻属 放线菌属青霉菌属紫球藻属 ……… 按照分子生物学和遗传学分类,可将降解石油污染物的微生物分为土著微生物和基因工程菌两大类。 二、产生表面活性剂的微生物 生物表面活性剂是微生物在一定培养条件下产生的一类集亲水基和疏水基于一体、具有表面活性的代谢产物。 分类典型产物 中性脂类甘油单脂、聚多元醇、其他蜡脂 磷脂/脂肪酸磷脂酰乙醇胺 糖脂糖酯、糖醇酯、糖苷 含氨基酸脂类脂氨基酸、脂多肽、脂蛋白 聚合型脂多糖、脂-糖-蛋白复合物 特殊型全胞、膜载体、Fimbriae 生物表面活性剂优点:1较低的表面张力和界面张力;2无毒或低毒,对环境友好;3可生物降解;4极端环境(温度、pH、盐浓度)下具有很好的专一性和选择性;5不致敏、可消化、可作为化妆品和食品的添加剂;6结构多样,可用于特殊领域 三、微生物降解石油的机制

1.微生物吸收疏水性有机物的机理 图1 微生物吸收疏水性有机污染物的4种摄取途径微生物吸收疏水性有机物的模式有4种:1微生物吸收其附近溶解于水相中的烃类;2细胞直接与石油烃接触。这种作用可以通过改变菌毛或细胞表面的疏水性部分的改造进行调控,提高对有机物的吸附;3通过细胞直接与分散在水相中的石油烃的微米或亚微米液滴接触来吸收;4强化吸收模式,即由于细胞产生的表面活性剂或乳化剂使烃的水溶性增强,微生物表面的疏水性更强,使细胞与烃接触。 丝状真菌主要通过菌丝的吸收作用摄取石油烃。 2.微生物细胞膜转运烃机理 微生物对有机化合物的降解作用是由细胞酶引起,整个过程可分为3个步骤。首先化合物在微生物细胞膜表面吸附(动态平衡过程);其次吸附在细胞膜表面的化合物进入细胞内;最后化合物进入细胞膜内与降解酶结合发生酶促反应(快速过程)。 参与第1个步骤还有表面活性剂。 石油进入细胞方式:非特异性接触,被动运输方式。 3.微生物降解石油的机制 石油类物质+微生物+O 2+营养物质→CO 2 +H 2 O+副产物+微生物细胞生物量 微生物利用石油烃类作为碳源和能源,经过一系列氧化、还原、分解、合成等生化作用,将石油污染物最终矿化为无害的无机物的过程。 途径:烷烃→醇→醛→脂肪酸→β氧化乙酸盐→CO 2+H 2 O+生物量 四、典型石油烃的降解途径

几种催化裂化烟气脱硫技术的比较

湿式气体洗涤系统对比关键指标(KPI) BELCO 贝尔格 CANSOLV 康世富 HAMON 哈曼 NORTON 诺顿关键设备 容器类吸收塔 低pH冷却器 分离器/吸收塔分离器胺吸收器 NaOH吸收器 再生器 (蒸汽气体塔) SO2脱除NaOH溶液 多层喷淋 第一填料部分使用胺 溶液NaOH溶液 外部文丘里洗涤 NaOH溶液 外部文丘里洗涤第二填料部分使用 NaOH溶液 粉尘颗粒物脱除 滤清模块中喷淋 (安装在吸收塔内部 的文丘里) 无外部文丘里洗涤外部文丘里洗涤 NOx脱除LoTOx无WGS+多种处理方案 NOx脱除反应试剂氧气/臭氧亚氯酸钠/ 次氯酸钠 SNCR:氨 CoNOx:氧气 催化添加剂 洗涤液循环泵有有有特殊设计/最好的质量 及可靠性 紧急情况下 液体排泄设施 需要需要不需要不需要净化处理需要需要需要需要 颗粒物脱除沉淀及过滤CANSOLV不提供沉淀及过滤沉淀及过滤 硫的脱除氧化为Na2SO4湿SO2被送至 硫磺车间 氧化为Na2SO4氧化为Na2SO4 热稳定性盐脱除不需要需要离子交换树脂不需要不需要 公用工程 补水新鲜水新鲜水及去离子水多种多种 碱新鲜碱新鲜碱新鲜碱新鲜碱或废碱氨试剂补充无每天需补充1%无无 Nox反应试剂氧气消耗量为O3加入 速率的10倍 无 亚氯酸钠/ 次氯酸钠 消耗量最低 能耗 SO2及颗粒物脱除能耗一般一般一般最低NOx脱除能耗高无Nox脱除技术一般最低蒸汽消耗无高无无

湿式气体洗涤系统对比关键指标(KPI) BELCO 贝尔格 CANSOLV 康世富 HAMON 哈曼 NORTON 诺顿关键性能因素 设备高可靠性√有引起FCC运行不稳定的风险√√√ 对系统进行定制化设计√最优化的能源消耗√公用工程消耗-补充水√√√√补充水选择高灵活性√碱消耗量最低√ 界区内设备安装成本最低√界区外设备安装成本最低√脱除效率√√√√占地面积最小√系统复杂√√ 运行简单√√曾经引起FCC装置停车√√ 净化处理系统√√√增加硫磺车间载荷√ 需安装的设备数量多√ 设备安装之后提供技术支持√√√√为FCC提供优化,检修等服务√FCC再生器烟气回路工程服务√燃烧设备工程服务(CO锅炉及 其他加热器)√在FCC污染物控制领域拥有最丰 富的从业经验√

土壤石油污染物生物通风修复的研究进展

土壤石油污染物生物通风修复的研究进展 隋红1,茹旭2,黄国强1,李鑫钢1 1:天津大学化工学院,天津300072;2:锦州石化设计院,辽宁锦州121001 摘要:生物通风是一种去污效果好、操作费用低的土壤原位修复技术。文章概述了生物通风系统的结构、设计目的、适用范围和优缺点,详细论述了生物通风的国内外研究现状,包括现场应用、影响因素和强化技术及理论研究,并展望了生物通风在我国的应用前景。 关键词:土壤;石油污染;原位修复;土壤气相抽提;生物通风;生物降解 中图分类号:X53 文献标识码:A 文章编号:1672-2175(2003)02-0216-04 土壤是人类赖以生存的基础资源。土壤中最严重的污染是石油类污染。由于输油管道、储油罐泄露,落地油、含油污水排放等原因,大量石油类污染物进入土层,不仅破坏了土壤本身的生态系统,而且对地下水资源构成威胁。至90年代中期,美国就有1/3的地下储油罐被确认存在不同程度的渗漏,使地下水受到污染。我国目前大部分油田区地下水也因受到污染而达不到饮用标准,对人类健康造成潜在的致命危害。国外最近20年加强了土壤修复计划,通常解决的办法有异位(ex situ)修复和原位(in situ)修复两种形式,异位修复在多方面存在明显不足,已基本被原位修复所取代。美国于90年代投入大量资金以鼓励一些新兴的革命性土壤原位修复技术,土壤气相抽提法(soil vapor extraction,SVE)应用而生,随后其衍生技术____生物通风(bioventing,BV),结合了土壤通风的物理过程和增强的生物降解过程,而成为一种应用广泛的革新性原位修复技术[1]。 1 生物通风概述 SVE技术是一种通过强制新鲜空气流经污染区域,将挥发性有机污染物从土壤中解吸至空气流并引至地面上处理的原位土壤修复技术,该技术被认为是一个“革命性”的修复技术[2]。BV是在SVE 基础上发展起来的,实际上是一种生物增强式SVE 技术。因利用外界驱动力向地下输送气流,使得受污染土壤中的有机物挥发速率和生物降解速率都有可能增加,注射井和抽提井可去除气相污染物,也可以向污染区提供氧源增加微生物活性,当其首要目标是增强氧气的传送和使用效率来促进生物降解时,通常称之为生物通风[3]。 BV技术的出现直接源于SVE的发展,使用了与SVE相同的基本设施:鼓风机、真空泵、抽提井、注入井和供营养渗透至地下的管道等。其中井所在位置的结构依现场而定,并与空气是被注入还是从土壤中抽出有关。BV技术还可与修复地下水的空气搅拌(air sparging,AS)或生物曝气(biosparging, BAS)技术相结合[4],将空气注入含水层来提供氧支持生物降解,并且将污染物从地下水传送到渗流区,在渗流区污染物便可用BV或SVE法处理。SVE 和BV虽然系统组分相同,但系统的适用情况、结构和设计目的有很大不同:SVE将注射井和抽提井放在被污染区域的中心,而在BV系统中,注射井和抽提井放在被污染区域的边缘往往更有效。SVE 的目的是在修复污染物时使空气抽提速率达到最大,利用挥发性去除污染物;而BV的目的是优化氧气的传送和氧的使用效率,创造好氧条件来促进原位生物降解。因此,BV使用相对较低的空气速率,以使气体在土壤中的停留时间增长,促进微生物降解有机污染物[5]。 生物通风应用范围较宽,Michael[6]已经通过实验研究证明了,生物通风不仅能成功用于轻组分有机物,如汽油和柴油,还能用于重组分有机物,如燃料油等,另外也可用于其它的挥发或半挥发组分。生物通风的另一个显著优点是,与SVE比较它的操作费用更低[7]。在SVE操作中抽出的废气不能直接放入空气中,需要后续处理工艺(一般是活性碳吸附和催化燃烧),这有时甚至要占整个费用的50%左右,生物通风省去了此步骤,因此操作成本下降。生物通风与其它土壤修复技术比较,其主要缺点是操作时间长,受到土著微生物种类的限制[8]。 2 生物通风国内外研究进展 2.1 现场应用

催化裂化装置脱硫脱硝环保措施及效果分析

催化裂化装置脱硫脱硝环保措施及效果分析 摘要现在社会空气污染问题相当严重,催化裂化装置在排放烟气过程当中会出现不可避免的粉尘浓度超标问题。为在真正意义上实现对上述现象的解决,我们需要从催化装置烟气脱硫设置应用方面着手,实现对合适烟气脱硝技术的选择。本文主要针对催化裂化装置脱硫脱硝环保措施以及结果进行进一步探究。主要是在选择适合本装置脱硝技术的基础,实现对预期效果的满足,这不仅可实现对空气污染问题的有效解决,同时也可将更为良好的生存环境提供给人们。 关键词催化裂化;烟气脱硫;烟气脱硝 这些年来气候恶劣问题日益严重,全球面对的主要环境问题集中在温室效应、酸雨以及臭氧层破坏几个方面,这会对人类长期发展目标的实现造成制约。很多因素对环境造成污染,天然气及石油和煤等燃料的大规模使用都会在一定程度上加剧環境污染的程度。从催化裂化装置脱硫脱硝环保措施着手可实现对上述问题的不断改善,这可充分说明催化裂化装置脱硫脱硝环保措施的重要性。 1 FP-DNSNOx催化裂化烟气多效净化剂 FP-DNSNOx催化裂化烟气多效净化剂由北京某公司生产,为独家产品,已经得到相关质量管理体系的认证。其活性组分为金属氧化物,在助燃以及降低NOx排放的功能过程中都起着较为重要的作用。 1.1 技术原理NOx FP-DNSNOx催化裂化烟气多效净化剂有大量的金属氧化物存在,这也是其活性组分,金属氧化物在高温水热环境以及两器中会发生不可避免的还原反应。反应的主要对象为NOx,这是导致N2出现的主要原因。对烟气中NOx含量的降低有积极作用。 1.2 实施过程NOx 我们主要分为两个阶段对FP-DNSNOx催化裂化烟气多效净化剂进行加入,第一阶段速度较快,进而保障其在最短的时间内实现在自身作用与价值的发挥。第二阶段的加入较为平稳,在衡量其是否进入平稳阶段时,可借助助剂在系统总藏量中所占据的比例。快速阶段的助剂加入次数为每天三次,60kg,平稳阶段加入次数依旧为每天三次,但是每次加入次数有所改变,为10kg。催化剂小型加料器是FP-DNSNOx催化裂化烟气多效净化剂过程当中所借助的主要工具,然后在再生器密相床上进行直接补充。 1.3 烟气多效净化剂实施效果 烟气多效净化剂实施效果可通过以下数据进行直观体现。NOx在烟气多效

催化裂化装置的主要设备

催化裂化装置的主要设备 百克网:2008-5-30 14:50:14 文章来源:本站 催化裂化装置设备较多,本节只介绍几个主要设备。 一、提升管反应器及沉降器 (一)提升管反应嚣 提升管反应器是进行催化裂化化学反应的场所,是本装置的关键设备。随装置类型不同 提升管反应器类型不同,常见的提升管反应器类型有两种: (1)直管式:多用于高低并列式提升管催化裂化装置。 (2)折叠式:多用于同轴式和由床层反应器改为提升管的装置。 图5—8是直管式提升管反应器及沉降器示意图 提升管反应器是一根长径比很大的管子,长度一般为30~36米,直径根据装置处理量决 定,通常以油气在提升管内的平均停留时间1~4秒为限确定提升管内径。由于提升管内自下而上油气线速不断增大,为了不使提升管上部气速过高,提升管可作成上下异径形式。 在提升管的侧面开有上下两个(组)进料口,其作用是根据生产要求使新鲜原料、回炼 油和回炼油浆从不同位置进入提升管,进行选择性裂化。

进料口以下的一段称预提升段(见图5—9),其作用是:由提升管底部吹入水蒸气(称预 提升蒸汽),使由再生斜管来的再生催化剂加速,以保证催化剂与原料油相遇时均匀接触。 这种作用叫预提升。 为使油气在离开提升管后立即终止反应, 提升管出口均设有快速分离装置,其作用是使 油气与大部分催化剂迅速分开。快速分离器的 类型很多,常用的有:伞帽型,倒L型、T型、 粗旋风分离器、弹射快速分离器和垂直齿缝式 快速分离器(分州如图5—10中a、b、c、d、e、f所示)。 为进行参数测量和取样,沿提升管高度还 装有热电偶管、测压管、采样口等。除此之外,提升管反应器的设计还要考虑耐热,耐磨 以及热膨胀等问题。 (二)沉降器 沉降器是用碳钢焊制成的圆筒形设备,上段为沉降段,下段是汽提段。沉降段内装有数 组旋风分离器,顶部是集气室并开有油气出口。沉降器的作用是使来自提升管的油气和催化剂分离,油气经旋风分离器分出所夹带的催 化荆后经集气室去分馏系统;由提升管快速分 离器出来的催化剂靠重力在沉降器中向下沉 降,落入汽提段。汽提段内设有数层人字挡板 和蒸汽吹入口,其作用是将催化剂夹带的油气用过热水蒸气吹出(汽提),并返回沉降段,以便减少油气损失和减小再生器的负荷。 沉降器多采用直筒形,直径大小根据气体(油气、水蒸气)流率及线速度决定,沉降段线速一般不超过0.5~0.6米/秒。沉降段高度由旋风分离器科腿压力平衡所需料腿长度和所 需沉降高度确定,通常为9~12米。 汽提段的尺寸一般由催化剂循环量以及催化剂在汽提段的停留时间决定,停留时间一般 是1.5~3分钟。 二、再生器

大气污染物治理工艺汇总

大气污染物治理工艺

目录 一、大气污染物的相关介绍 (3) 二、大气污染物治理工艺 (4) 2.1、除尘装置 (4) 2.1.1、机械除尘装置 (4) 2.1.2、电除尘器 (6) 2.1.3、袋式除尘器 (7) 2.1.4、湿式除尘器 (9) 2.1.5、颗粒层除尘器 (10) 2.1.6、除尘器的选择 (11) 2.2、硫氧化物的控制 (13) 2.2.1、燃烧前燃料脱硫 (13) 2.2.2、高浓度SO?尾气的回收和净化 (13) 2.2.3、低浓度SO?烟气脱硫 (14) 2.3、固定源氮氧化物的控制 (20) 2.3.1、低NOx燃烧技术(源头控制) (20) 2.3.2、烟气脱硝技术(末端治理) (21) 2.4、除汞 (22)

一、大气污染物的相关介绍 1.大气污染 大气污染是指由于人类活动或自然过程引 起某些物质进入大气中,呈现出足够的浓度, 达到了足够的时间,并因此而危害了人体的舒 适、健康和福利或危害了生态环境。所谓人类 活动不仅包括生产活动,而且也包括生活活动, 如做饭、取暖、交通等。自然过程,包括火山 活动、森林火灾、海啸、土壤和岩石的风化及 大气圈中空气运动等。一般来说,由于自然环 境的自净作用,会使自然过程造成的大气污染, 经过一段时间后生态平衡能自动恢复。所以可以说,大气污染主要是人类活动造成的。 2.大气污染物 大气污染物是指由于人类活动或自然过程排入大气的,并对人和环境产生有害影响的物质。 大气污染物按其存在状态可分为气溶胶状态污染物和气体状态污染物。气溶胶(气体介质和悬浮在其中的分散粒子所组成的系统)状态污染物可分为: 粉尘:悬浮于气体介质中的小固体颗粒,受重力作用能发生沉降,但在一段时间内能保持悬浮状态。 烟:一般指由冶金过程形成的固体颗粒的气溶胶。 飞灰:随燃料燃烧产生的烟气排出的分散得较细的灰分。 黑烟:一般指由燃料燃烧产生的能见气溶胶。 霾(或灰霾):霾天气是大气中悬浮的大量微小尘粒使 空气浑浊,能见度降低到10km以下的天气现象。 雾:是气体中液体悬浮体的总称。 总悬浮颗粒物(TSP):能悬浮在空气中,空气动力学当 量直径≤100μm的颗粒物。 可吸入颗粒物(PM10):能悬浮在空气中,空气动力学 当量直径≤10μm的颗粒物。 细颗粒物(PM2.5):环境空气中空气动力学当量直径≤ 2.5μm的颗粒物.

几种催化裂化烟气脱硫技术

几种催化裂化烟气脱硫技术 一、主要技术简介 目前催化裂化烟气污染物排放控制技术可分别为干法、湿法两大类,进一步又可分为采添加脱SOx、NOx助剂,催化原料预处理技术,增设烟气脱SOx、脱NOx设施三类。国外工业运行的催化裂化烟气脱SOx技术以湿法为主,吸收剂(洗涤液)有钠碱、氢氧化镁Mg(OH)2和海水等。湿法洗涤脱SOx设施一般由吸收(洗涤)单元和废液净化处理单元组成,前者是烟气脱硫技术的核心。应用较多的有诺顿公司的VSS技术,DuPont BELCO公司的EDV和LABSORBTM 技术、Hamon公司的WGS技术、Shell公司的CANSOLV技术等。 1.1 ExxonMobil公司WGS技术 1974年,当时在Exxon公司工作的John Cunic先生(先就职于美国诺顿公司)开发了第一套FCCU烟气洗涤技术,将喷射式文丘里管JEV应用到催化裂化烟气脱硫装置上。也就是现在由Hamon公司出售的WGS技术(ExxonMobil 授权Hamon工程公司进行WGS技术的出售及设计工作)。 优点:采用JEV(喷射式文丘里管)时压降低。 缺点:采用HEV(高性能文丘里管)时压降高。 1.2 DuPont BELCO公司的EDV技术 该技术于1994年完成第一套商业应用。EDV由急冷喷嘴、多层吸收喷嘴及滤清模块(滤清模块有多个文丘里组成)水珠分离器组成。上世纪90年代,诺顿公司主要给ExxonMobil公司升级维护WGS系统,ExxonMobil公司又不允许将其WGS洗涤技术推广到其他石化企业,造成90年代到2000年,DuPont BELCO 公司销售了多套EDV系统。 优点:业绩较多 缺点:系统在添加滤清模块的情况下压降会升高,可达4-7Kpa 1.3 CANSOLV公司的CANSOLV技术 CANSOLV公司1997年成立于加拿大,CANSOLV再生脱硫2002年开始第一套工业化商业运行。CANSOLV再生胺法脱硫系统有两部分组成洗涤-吸收和再生-净化,在炼油厂成功业绩全世界只有1套,它主要由以下几点

催化裂化装置生产方法及基本原理

催化裂化装置生产方法及基本原理 第一节主要控制方案 一、主要控制方案 1. 重油提升管(R22101A)出口温度(TRCA22101A)是通过重油再生滑阀(TV22101A)调节催化剂循环量来控制的,接力管滑阀控制重油提升管起始温度;芳烃提升管(R22101B)出口温度是通过芳烃再生滑阀(TRCA22101B)调节催化剂循环量来控制的,循环立管滑阀调节轻燃油提升管起始温度。 2. 反应沉降器(R22101)的藏量(WRCA22101)是通过调节待生塞阀的开度来控制的。 3.再生器温度(TRCA22102/1)通过串级调节外取热器的提升风的风量(FRCA22109)来调节。 4. 反应沉降器压力正常由气压机C22301转速调节;气压机停运或压力高时可通过压缩机入口大小放火炬阀的开度大小控制。 5. 再生压力是通过分程调节烟机入口蝶阀(PV22101C)和烟机旁路双动滑阀(PV22101A、PV22101B)、来控制的。 6. 分馏塔(T22201A、B)液位和温度选择器切换控制塔底循环泵上返塔流量调节阀来达到控制液位和温度的目的。 7. 重油分馏塔顶油气分离器(V22203A)的液位与粗轻燃油去吸收塔流量阀(FV22218)实行串级调节,保持粗轻燃

油进提升管反应器流量的稳定;芳烃分馏塔顶油气分离器(V22203B)的液位与粗轻燃油去吸收塔流量阀(FV22221)实行串级调节。 8. 气压机出口油气分离器(V22302)的液位与脱吸塔(T22302)进料量实行串级调节。 9. 稳定塔(T22304)塔顶压力实行热旁路与卡脖子相结合的方法进行调节。 10. 余热锅炉实行三冲量调节。 第二节质量控制 一、轻燃油质量的控制 (一). 轻燃油的质量标准 轻燃油规格见表6-1。 表 6-1 轻燃油规格 分析项目单 位 GB17930-2006 试验方法 93号 研究法辛烷值(RONC)--- ≥93 GB/T5487 馏程10%温度 ℃ ≤70 GB/T6536 50%温度≤120 90%温度≤190 终馏点≤205 残留量%(v/v)≤2 GB/T6536

催化裂化装置的主要设备催化裂化装置的主要设备

催化裂化装置的主要设备 催化裂化装置的主要设备 百克网:2008-5-30 14:50:14 文章来源:本站 催化裂化装置设备较多,本节只介绍几个主要设备。 一、提升管反应器及沉降器 (一)提升管反应嚣 提升管反应器是进行催化裂化化学反应的场所,是本装置的关键设备。随装置类型不同提升管反应器类型不同,常见的提升管反应器类型有两种: (1)直管式:多用于高低并列式提升管催化裂化装置。 (2)折叠式:多用于同轴式和由床层反应器改为提升管的装置。 图5—8是直管式提升管反应器及沉降器示意图 提升管反应器是一根长径比很大的管子,长度一般为30~36米,直径根据装置处理量决定,通常以油气在提升管内的平均停留时间1~4秒为限确定提升管内径。由于提升管内自下而上油气线速不断增大,为了不使提升管上部气速过高,提升管可作成上下异径形式。 在提升管的侧面开有上下两个(组)进料口,其作用是根据生产要求使新鲜原料、回炼油和回炼油浆从不同位置进入提升管,进行选择性裂化。

进料口以下的一段称预提升段(见图5—9),其作用是:由提升管底部吹入水蒸气(称预提升蒸汽),使由再生斜管来的再生催化剂加速,以保证催化剂与原料油相遇时均匀接触。这种作用叫预提升。 为使油气在离开提升管后立即终止反应,提升管出口均设有快速分离装置,其作用是使油气与大部分催化剂迅速分开。快速分离器的类型很多,常用的有:伞帽型,倒L型、T型、粗旋风分离器、弹射快速分离器和垂直齿缝式快速分离器(分州如图5—10中a、b、c、d、e、f所示)。 为进行参数测量和取样,沿提升管高度还装有热电偶管、测压管、采样口等。除此之外,提升管反应器的设计还要考虑耐热,耐磨以及热膨胀等问题。 (二)沉降器 沉降器是用碳钢焊制成的圆筒形设备,上段为沉降段,下段是汽提段。沉降段内装有数组旋风分离器,顶部是集气室并开有油气出口。沉降器的作用是使来自提升管的油气和催化剂分离,油气经旋风分离器分出所夹带的催化荆后经集气室去分馏系统;由提升管快速分离器出来的催化剂靠重力在沉降器中向下沉降,落入汽提段。汽提段内设有数层人字挡板和蒸汽吹入口,其作用是将催化剂夹带的油气用过热水蒸气吹出(汽提),并返回沉降段,以便减少油气损失和减小再生器的负荷。 沉降器多采用直筒形,直径大小根据气体(油气、水蒸气)流率及线速度决定,沉降段线速一般不超过0.5~0.6米/秒。沉降段高度由旋风分离器科腿压力平衡所需料腿长度和所需沉降高度确定,通常为9~12米。汽提段的尺寸一般由催化剂循环量以及催化剂在汽提段的停留时间决定,停留时间一般是1.5~3分钟。 二、再生器

气态污染物控制技术基础习题及答案

第七章 气态污染物控制技术基础 习题 7.1 某混合气体中含有2%(体积)CO 2,其余为空气。混合气体的温度为30。C ,总压强为500kPa 。从手 册中查得30。C 时在水中的亨利系数E=1.88×10-5kPa ,试求溶解度系数H 及相平衡常数m ,并计算每100g 与该气体相平衡的水中溶有多少gCO 2。 7.2 20。C 时O 2溶解于水的亨利系数为40100atm ,试计算平衡时水中氧的含量。 7.3 用乙醇胺(MEA )溶液吸收H 2S 气体,气体压力为20atm ,其中含0.1%H 2S (体积)。吸收剂中含0.25mol/m 3的游离MEA 。吸收在293K 进行。反应可视为如下的瞬时不可逆反应: +-+→+3 222222NH CHCH CH HS NH CHCH CH S H 。 已知:k Al a=108h -1,k Ag a=216mol/m 3.h.atm ,D Al =5.4×10-6m 2/h ,D Bl =3.6×10-6m 2/h 。 试求单位时间的吸收速度。 7.4 在吸收塔内用清水吸收混合气中的SO 2,气体流量为5000m 3N /h ,其中SO 2占5%,要求SO 2的回收率为95%,气、液逆流接触,在塔的操作条件下,SO 2在两相间的平衡关系近似为Y *=26.7X ,试求: 1)若用水量为最小用水量的1.5倍,用水量应为多少? 2)在上述条件下,用图解法求所需的传质单元数。 7.5 某吸收塔用来去除空气中的丙酮,吸收剂为清水。入口气体流量为10m 3/min ,丙酮含量为11%(摩尔),要求出口气体中丙酮的含量不大于2%(摩尔)。在吸收塔操作条件下,丙酮-水的平衡曲线(1atm 和299.6K )可表示为2)1(95.133.0x xe y -=。 1)试求水的用量,假设用水量取为最小用水量1.75倍; 2)假设气相传质单元高度(以m 计)33.033.003.3-=L G H y 。 其中G 和L 分别为气、液相的流量(以kg/m 2.h 表示),试计算所需要的高度。 7.6 某活性炭填充固定吸附床层的活性炭颗粒直径为3mm ,把浓度为0.15kg/m 3的CCl 4蒸汽通入床层,气体速度为5m/min ,在气流通过220min 后,吸附质达到床层0.1m 处;505min 后达到0.2m 处。设床层高1m ,计算吸附床最长能够操作多少分钟,而CCl 4蒸汽不会逸出? 7.7 在直径为1m 的立式吸附器中,装有1m 高的某种活性炭,填充密度为230kg/m 3,当吸附CHCl 3与空气混合气时,通过气速为20m/min ,CHCl 3的初始浓度为30g/m 3,设CHCl 3蒸汽完全被吸附,已知活性炭对CHCl 3的静活性为26.29%,解吸后炭层对CHCl 3的残留活性为1.29%,求吸附操作时间及每一周期对混合气体的处理能力。 7.8 在温度为323K 时,测得CO 2在活性炭上吸附的实验数据如下,试确定在此条件下弗罗德里希和朗格谬尔方程的诸常数。

催化裂化烟气脱硫工艺及污水处理方案

烟气脱硫污水处理方案 目前国催化裂化装置湿法烟气脱硫工艺有美国BELCO?公司的EDV工艺、德国GEA-Bischoff公司的EP-Absorber工艺、美国诺顿(NORTON)公司的文丘里洗涤脱硫工艺(VSS),所有烟气脱硫装置运行过程中排放的脱硫后废水为COD高的含盐污水,主要污染物为硫酸钠、亚硫酸钠溶液及固体颗粒物,成熟的烟气脱硫工艺都有配套的污水处理单元(PTU)来处理脱硫废水,经处理后的脱硫废水直接进入外排污水管网。 现总结几个公司烟气脱硫主要工艺和污水处理工艺。 德国GEA-Bischoff公司的EP-Absorber工艺——昌邑石化烟气脱硫介绍:

昌邑石化烟气脱硫除尘工艺流程图 外部氧化喷射系统图 昌邑石化烟气脱硫除尘单元采用德国GEA-Bischoff 公司 EP-Absorber 脱硫除尘一体化技术对烟气中的二氧化硫和粉尘处理,由二氧化硫吸收系统、静电除尘系统和烟囱三部分组成。废水处理单元采用德国 GEA Bischoff 公司专用的排液处理技术(PTU)处理脱硫除尘废水,主要有澄清器、汽提塔、砂滤几部分组成。 为使排出废液COD 更低,从吸收器底部池中抽取液体至外部氧吸收器

化系统氧化,再回流至吸收器池中。外部氧化系统由空气喷射器和高压泵等组成,液体被高压泵输送至动力喷嘴,通过喷嘴喷射后,体变成液滴,随后与喷射空气充分混合,使溶解在循环液中的亚硫酸盐与空气发生氧化反应。在空气喷射器之后,含有非常细微分散气泡的循环液回流至吸收器池内,在这些气泡上升至池面的过程中,残余的氧进一步与循环液发生氧化反应。 经PTU单元后外排废水排放指标 脱硫除尘进入PTU单元处理,悬浮的颗粒催化剂经压滤成饼作为固体排放物进行处理,清液经处理后外排至市政污水管网。 固体废物排放主要为脱硫除尘塔外排废液经脱水后产生的泥渣以及脱硝产生的废催化剂。脱硫废渣产生量1693t/a,主要成分为硫酸钠、亚硫酸钠、亚硫酸氢钠,经过滤后,进行无害化填埋。废催化剂属于危险固体废物,送至具有危险固体废物回收资质的单位进行回收。

催化裂化装置工艺流程及设备简图

催化裂化装置工艺流程及设备简图 “催化裂化”装置简单工艺流程 “催化裂化”装置由原料预热、反应、再生、产品分馏等三部分组成~其工艺流程见下图~主要设备有:反应器、再生器、分馏塔等。 1、反应器,又称沉降器,的总进料由新鲜原料和回炼油两部分组成~新鲜原料先经换热器换热~再与回炼油一起分为两路进入加热炉加热~然后进入反应器底部原料集合管~分六个喷嘴喷入反映器提升管~并用蒸汽雾化~在提升管中与560,600?的再生催化剂相遇~立即汽化~约有25,30%的原料在此进行反应。汽油和蒸汽携带着催化剂进入反应器。通过反应器~分布板到达密相段~反应器直径变大~流速降低~最后带着3,4?/?的催化剂进入旋风分离器,使其99%以上的催化剂分离,经料腿返回床层,油汽经集气室出沉降器,进入分馏塔。 2、油气进入分馏塔是处于过热状态,同时仍带有一些催 化剂粉末,为了回收热量,并洗去油汽中的催化剂,分馏塔入口上部设有挡板,用泵将塔底油浆抽出经换热及冷却到 0200,300C,通过三通阀,自上层挡板打回分馏塔。挡板以上为分馏段,将反应 物根据生产要求分出气体、汽油、轻柴油、重柴油及渣油。气体及汽油再进行稳定吸收,重柴油可作为产品,也可回炼,渣油从分馏塔底直接抽出。

3、反应生焦后的待生催化剂沿密相段四壁向下流入汽提段。此处用过热蒸汽提出催化剂,颗粒间及表面吸附着的可汽提烃类,沿再生管道通过单动滑阀到再生器提升管,最后随增压风进入再生器。在再生器下部的辅助燃烧室吹入烧焦用的空气,以保证床层处于流化状态。再生过程中,生成的烟通过汽密相段进入稀相段。再生催化剂不断从再生器进入溢流管,沿再生管经另一单动滑阀到沉降器提升管与原料油汽汇合。 4、由分馏塔顶油气分离出来的富气,经气压机增压,冷却后用凝缩油泵打入吸收脱吸塔,用汽油进行吸收,塔顶的贫气进入二级吸收塔用轻柴油再次吸收,二级吸收塔顶干气到管网,塔底吸收油压回分馏塔。 5、吸收脱吸塔底的油用稳定进料泵压入稳定塔,塔顶液态烃一部分作吸收剂,另一部分作稳定汽油产品。 设备简图 反应器、再生器和分馏塔高、重、大。具体如:分馏塔高41.856m,再生器塔高31m,反应器安装后塔顶标高达57m。再生器总重为390t,反应器总重为177t,分馏塔总重为175t。 3再生器最大直径9.6m,体积为2518m。 1(两器一塔的主要外型尺寸及参数 再生器的外型尺寸参数见下图。

环境水中石油类污染物的含量反应说明

环境水中石油类污染物的含量反应说明 摘要:环境水中石油类污染物的含量是反映水质的指标之一,本文采用三波长定量测试水中油含量,样品测试方便,数据准确。 环境中水中的石油类来自工业废水和生活污水的污染。油类物质在水面形成油膜,影响了空气和水的气体交换;分散于水中以及吸附于颗粒上或以乳化状态存在于水中的油,被微生物分解时,将消耗水中溶氧,容易使水质恶化。 矿物油是由烷烃、环烷烃及芳香烃组成的混合物红外碳硫分析仪。本文参照“GB/T16488-1996《水质石油类和动植物油的测定红外光度法》”选择三波长红外光谱法测定地表水,测定结果准确,避免使用“标准油”。 原理: 水中油类物质是由烷烃、环烷烃及芳香烃组成的混合物,可用四氯化碳萃取,测定总萃取物。然后将萃取液用硅酸镁吸附其中动植物油等极性物质后,测定石油类含量。石油类和动植物油的红外谱图在2930cm-1、2960cm-1或3030cm-1处有吸收,可根据上述三个波数位置的吸光度值计算其含量。 实验条件: 仪器及附件: FTIR-650傅里叶变换红外光谱仪 1cm 石英比色皿 试剂: 四氯化碳(CCl4):环保用,天津基准试剂有限公司; 正十六烷[CH3(CH2)14CH3] 分析纯:成都市科龙化工试剂厂; 姥鲛烷(2,6,10,14-四甲基十五烷)分析纯:北京百灵威科技有限公司; 甲苯(C6H5CH3)分析纯:天津市江天化工技术有限公司; 无水硫酸钠(Na2SO4)分析纯:北京化工厂; 氯化钠(NaCl)分析纯:天津化学试剂有限公司; 盐酸(HCl)分析纯:天津化学试剂一厂。 样品前处理: 将水样全部转移至分液漏斗中,用20ml四氯化碳洗涤采样瓶,洗涤液并入分液漏斗中,调PH≤2,加入20g氯化钠,充分震荡2min充分静置,将萃取液流经铺有10mm无水硫酸钠的玻璃砂芯漏斗,用容量瓶收集滤液。取20ml四氯化碳再次萃取、用适量四氯化碳洗涤玻璃砂芯漏斗,将萃取液、洗涤液一并放入容量瓶中。用四氯化碳标至刻线、摇匀。 测定结果: 1、校正系数的测定: 以四氯化碳为溶剂,红外碳硫分析仪分别配置浓度为100mg/L正十六烷、100mg/L姥鲛烷、400mg/L甲苯溶液,用四氯化碳作参比溶液,采用10mm×10mm比色皿,分别测量三种溶液在2930cm-1、2960 cm-1和3030cm-1处的吸光度A2930、A2960、A3030。这三种溶液在上述波数处的吸光度满足公式: C=X·A2930 Y·A2960 Z (A3030- A2930/F), 式中: C-萃取溶剂中化合物的含量,mg/L; A2930、A2960、A3030-各对应波数下测得的吸光度值; X、Y、Z-与各C-H键吸光度对应的校正系数; F-脂肪烃对芳香烃的校正因子,即正十六烷在2930 cm-1和3030 cm-1处的吸光度之比; 对于正十六烷(H)和姥鲛烷(P),由于其芳香烃含量为零,即A3030- A2930/F =0,则

石油降解研究

石油污染物生物降解的机理研究 李会爽1,周磊2,柳青2,张端2,张景来2 (1第二炮兵工程设计研究院六室北京100011,2中国人民大学环境学院北京100872) 摘要:通过测定石油生物降解过程中的产物,分析探寻假单胞菌属的Pseudomonas sp. Strain SY2对石油的降解机理,为解决海洋石油污染问题提供理论依据。本文利用色质谱分析手段,通过测定假单胞菌属的Pseudomonas sp. Strain SY2对石油和正十四烷降解产物,对菌株SY2的降解机理进行分析研究。实验(分析)结果表明:菌株SY2对石油中的正烷烃有较好的降解效果,其中正十四烷、正十五烷和正十六烷的降解率较高,分别为:73.4%、49.3%、48.9%;根据正十四烷降解产物推测:菌株SY2对正十四烷的降解有单末端氧化、双末端氧化、次末端氧化和直接脱氢等多种途径,产生酯类、烯烃类、烷烃类及羧酸类等物质,与文献报道的烷烃降解途径相符合。 关键词:石油污染,生物降解,降解途径 Study on Theory of Biodegradation of Oil Contamination LI Hui-shuang, ZHOU Lei, LIU Qing, ZHANG Duan, ZHANG Jing-lai (1Sixth Chamber of Second Artillery Engineering Design Institute, Beijing 100011, China, 2 Environment School of Renmin University of China, Beijing 100872, China) Abstract:, In order to find the theories of biodegradation about crude oil and tetradecane by Pseudomonas sp. Strain SY2 and provides a theoretical basis for the solution of oil contamination, the research analyses the structure of the substances from biodegradation of crude oil.In this paper, through analyzing structure of the substances from biodegradation of crude oil and tetradecane by Pseudomonas sp. Strain SY2, which detecting by GC/MS, the author studied the theories of biodegradation. The results indicate that the ability of SY2 for degrading n-alkanes is best; in which the degradation rate of pentadecane 49.3%, hexadecane 48.9% and tetradecane 73.4% are highest. According to the substances from process of tetradecane biodegradation, the author inferred that tetradecane biodegraded to esters, olefins, alkanes and carboxylic acids by a variety of biodegradation pathways, such as monoterminal oxidation, diterminal oxidation, dehydrogenation and so on, which tallies with alkane degeneration way repoted by the documents. Key Words:Oil contamination, Biodegradation, Biodegradationpathway

催化裂化装置工艺流程

催化裂化装置工艺流程 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应?再生系统、分馏系统和吸收稳定系统。其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: 一反应––再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370?左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650?~700?)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650?~68 0?)。再生器维持0.15MPa~0.25MPa (表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10% CO,为了利用其热量,不少装置设有CO 锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。 二分馏系统

石油污染土壤修复技术(总3页)

石油污染土壤修复技术 (总3页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

【前言】随着经济的发展,人类对能源的需求也在不断扩大,石油是最重要的能源之一,被成为“工业的血液”。近些年来各国都加快了对油气资源的开发利用,从沙漠到海洋、从无人区到人口稠密区,越来越多的油气井出现在世界各地。随之土壤污染问题日益突出,石油对土壤的污染危害大,潜伏期厂,涉及面广,有研究者将其比喻为“化学定时炸弹”,已经成为不容忽视的环境问题。 石油主要是由烃类化合物组成的一种复杂化合物,其组成复杂,含有致畸、致癌、致突变的物质(如卤代烃、苯系物、苯胺类、菲、苯并[a]芘等)。土壤作为人类、动植物和微生物赖以生存的重要环境基础,是自然界物质和能量参与转化、迁移和积累等循环过程的重要场所,土壤安全事关人类食品安全。石油一旦进人土壤,将对人类健康和生态环境造成严重危害。根据已公布的环境保护部和国土资源部发布的《全国土壤污染状况调查公告》显示,我国土壤总超标率高达16.1%。其中,有机类污染物,尤其是石油污染物已成为导致土壤安全问题的重要因素之一。据报道在我国,勘探和开发的油气田有4 0 0多个,覆盖面积达 3. 2 X 105 km2,其中约4. 8 X 106 hm2 的土壤受到不同程度的污染。为我国部分油田周边石油污染状况,其周边土壤中的总石油烃( TPH ) 质量分数已经远远超过临界值500 mg/kg,对人居安全和生态环境造成了严重的威胁。由此可见,石油污染土壤形势严峻,修复工作迫在眉睫。 土壤石油污染:是指原油和石油产品在开采、运输、储存以及使用过程中,进入到土壤环境,其数量和速度超多土壤自净作用的速度,打破了它在土壤环境中的自然动态平衡,使其累积过程占据优势,导致土壤环境正常功能的失调和土壤质量的下降,并通过食物链,最终影响到人类健康的现象。 石油进入土壤的途径: ?石油的泄露和溢油:陆地采油大量的生产设施如油井、集输站、转输站和联合站等,原油会 被直接或间接的倾泻与这些设施附件的地面;产品的开采和运输业会使石油类物质进入土壤环境中;另外发生井喷或泄露,也会污染周围土壤环境。 ?含油固、液体废气无的随意处置:油气的开采和运输过程会产生大量含油、天然气的开采过 程中会产生大量含油废水、有害的废泥浆以及其他的一些污染物,如果处理不好就会污染周边土壤、河流甚至地下水。 ?含油污水的灌溉和农用药剂的使用:一些工业企业产生的含油废水如果不加以回收处理,直 接排入河流、湖泊或海湾,会污染水体,该水体用于农业灌溉,则会导致土壤污染,另外某些农用药剂也会污染土壤。 ?汽车尾气的排放:汽车尾气排放导致交通干线两侧土壤的有机物污染,另外大气沉降也会导 致土壤污染。 石油污染土壤修复技术 石油污染土壤的物理修复方法:

2019咨询师继续教育《大气污染治理工程技术导则》解读92分试卷

1.单选题【本题型共5道题】 1.脱硫塔的防腐材料不宜使用以下哪种材料。() A.陶瓷 B.玻璃钢 C.树脂鳞片 D.合金 2.所谓挥发性有机化合物废气生物净化法不包括以下哪项() A.生物过滤法 B.生物消化法 C.生物滴滤法 D.生物滴滤法 3.除尘器输灰不采用以下哪个装置()。 A.皮带输送机 B.气力输送 C.埋刮板输送机

D.螺旋输送机 4.以下列举的除尘器中哪个除尘器净化效率最高()。 A.电除尘器 B.袋式除尘器 C.旋风除尘器 D.湿式除尘器 5.脱附气源一般不包括以下哪种工质()。 A.热空气 B.热烟气 C.高压蒸汽 D.低压水蒸汽 2.多选题【本题型共4道题】 1.当热力燃烧系统的燃烧室、蓄热室温度过低或火焰熄灭时,应该如何操作() A.立即发出报警信号

B.关闭有机废气进气阀门 C.启动安全放散装置 D.风机停机 E.加大燃料供应 2.工业上常用吸附剂有哪些()。 A.活性炭 B.分子筛 C.焦炭 D.硅胶 E.活性氧化铝 3.关于挥发性有机废气处理方案阐述,以下观点正确的是哪些() A.吸附法适用于低浓度挥发性有机废气的分离与去除 B.吸收法宜用于废气流量较大、浓度较高、温度较低和压力较高的挥发性有机废气的处理 C.冷凝法宜用于高浓度的挥发性有机废气回收,可作为降低废气有机负荷的前处理

D.膜分离法宜用于较高浓度挥发性有机化合物废气的分离与回收 E.吸附、吸收、冷凝和膜分离法主要用于不回收挥发性有机化合物的场合 4.无机卤化物废气包括哪些() A.氟化氢 B.四氟化硅 C.硫化氢 D.溴气和溴化氢 E.氯气和氯化氢(盐酸酸雾) 3.判断题【本题型共4道题】 1.烟气旋转喷雾法脱硫是湿法脱硫工艺。() Y.对 N.错 2.在过滤器后、热力燃烧室或蓄热室前,应设置阻火器。() Y.对

相关主题
文本预览
相关文档 最新文档