当前位置:文档之家› 第四章 随机信号与线性系统

第四章 随机信号与线性系统

第四章 随机信号与线性系统
第四章 随机信号与线性系统

第四章 随机信号与线性系统

4.1 引言

确定系统、系统输入、系统输出三者之间的关系是信号与系统分析的中心任务。如果线性系统的输入是随机信号,其输出也是随机信号。此时,对系统输出的测量结果只是随机信号的一次实现,并且随机信号的傅氏变换(如果存在)也是随机信号。因此,随机信号与线性定常系统之间的关系通常是用输入、输出的一、二阶统计特性和系统的特性来表示。

线性系统(因果的)对确定信号的响应分为稳态响应和暂态响应(过渡过程)。类似地,线性系统(因果的)对随机信号的响应可分为平稳情况和非平稳情况。 1.随机信号的渐近平稳性

定义:假设随机信号)(t Y 的一、二阶矩存在(二阶矩过程),若极限

{}==∞→∞

→)()(lim lim t Y E t t y

t μ

常数 (4-1)

lim ∞

→t {})()()(),(lim τττy t y

R t Y t Y E t t R

=+=+∞

→ (4-2)

成立,则称该随机信号是渐近平稳的。

换句话说,对于渐近平稳的随机信号)(t Y ,存在充分大的T ,在T t >以后,)(t Y 是平稳

的。

2.线性系统响应的渐近平稳性

根据系统理论,线性系统的响应)(t Y 为系统单位冲激响应)(t g 和输入)(t X 的卷积,即

)()()()()(t X t g d t X g t Y *=-=?∞

-τττ (4-3)

【对于因果系统: )()()()()()()(0

t X t g d t X g d t X g t Y t

*=-=-=

??

-ττττττ

对于连续单输入-单输出线性系统,如果输入信号)(t X 是随机的,则输出信号)(t Y 也是随机信号,)(t Y 的每一个样本)(t y 由)(t X 的样本)(t x 与所给定系统的冲激响应)(t g 的卷积求得,即

)()()()()(t x t g d t x g t y *=-=?∞

-τττ (4-3)

将式(4-3)两边求数学期望值,得

{}{}??∞

-∞∞

-*=-=-==)()()()()()()()(t t g d t g d t X E g t Y E t x x y μττμττττμ

由此可见,系统输出)(t Y 的期望值)(t y μ等于输入)(t X 的期望值)(t x μ与系统单位冲激响应

)(t g 的卷积,即

)()()(t t g t x y μμ*= (4-4)

系统输出)(t Y 的自相关函数),(τ+t t R y 为

{})()(),(ττ+=+t Y t Y E t t R y {}))()(())()((ττ+*+?*=t X t g t X t g E

{

}

))()(())()((222111??∞

-∞∞

--+?-=τττττττd t X g d t X g E

{}??∞∞-∞

∞--+-=

1

22121()()()(τττττττd d t X t X E g g

??+

-+-=t t x d d t t R g g 00

1

22121),()()(τ

τττττττ (4-5)

1)当)(t X 为平稳随机信号时,由(4-3)得

x x y G t g t μμμ?=*=)0()()(=常数 (4-6)

其中,?

-=

ττd g G )()0(;并且由(4-5)得

),(τ+t t R y ??

++-=t t x d d R g g 00

121221)()()(τ

τττττττ (4-7)

2)如果系统)(t g 是渐近稳定的,则

0)(lim =∞

→t g t ,即存在充分大的0>T ,使

0)(=t g ,T t > (4-8)

因此,当t 充分大时,),(τ+t t R y 与起点t 无关,即

)(),(ττy y R t t R =+,T t > (4-9)

例1,当系统输入为白噪声时,)()(2

τδστ?=x x R ,代入(4-5)得

),(τ+t t R y ??++-?

=t t x d d g g 001

2

1

2

2

1

2

)()()(τ

τττττδττσ

??+

+-?=t

t x

d d g g 0

1

2

1

2

2

1

2])()()[(τττττδττσ

τ

?+?=t x

d g g 0

1

1

1

2

)()(ττττσ

当)(t g 渐近稳定,存在充分大的T ,使

),(τ+t t R y ?

--+?=),min()

,0max(1112

)()(T T x d g g ττττττσ)(τy R =

例2,设离散系统1

1

5.011)(---=z

z H ,输入)(n X 为白噪声序列,)()(2

n R x x δστ?=,则输出)()()(1

n X z H n Y -=)())5.0((

n X z i i

i

∑∞

=-=)()5.0((0

i n X n i i

-=∑= {})()(),(m n Y n Y E m n n R y +=+{}∑∑=+=-+-=n i j m

n j i j m n X i n X E 00

)()()5.0()5.0(

∑∑=+=+-=n i j

m

n j i

x

i j m 00

2

)()

5.0()5.0(δσ

∑=+=n

i i

m i

x

2)

5.0()5.0(σ

∑==n

i i

m

x

2)

25.0()

5.0(.σ

=+)0,0(m R y m x )5.0(.2σ,=+)1,1(m R y )25.01()5.0(.2

+m x σ

=+)5,5(m R y )0009765.00039062.0015625.00625.025.01()5.0(.2+++++=m

x σ

对于任

意的

>ε,

存在

>N ,使得当

N

n >,

-+),(|m n n R y |)

25.0()

5.0(.0

2∑=N

i i

m

x

σε<

例如,取2

001.0x σε=,只需取5=N 。

定理:对于线性定常因果系统,若系统输入)(t X 是平稳的,则系统输出)(t Y 是渐近平稳

的。

[ 定理:如果线性系统)(1

-z H 是渐近稳定的,)(n w 是零均值方差为2

w σ的白噪声序列,则过程的输出

)()()(1m w z H m y ?=- (4-10)

是渐近平稳的,即存在0>N ,当N m >以后,)(m y 是平稳的。

证明:由于

∑∞

=--?=0

1

)()(n n z n h z H

若)(1-z H 是渐近稳定的,即)(1

-z H 的极点都在z 平面单位园内,则存在充分大的N ,使得

0)(=n h ,N n >

因此

)())(()(0

m w z n h m y n

n ??=-∞=∑∑∞=-?=0

)()(n n m w n h ∑=-?=

),min(0

)()(N m n n m w n h

)(m y 的均值:

{})()(m y E m y =μ?

?????-?=∑=),min(0)()(N m n n m w n h E {})()()

,min(0n m w E n h N m n -?=∑=0=

对于任意的01>m ,02>m ,012>=-r m m ,)(m y 的自相关函数:

{})()(),(2121m y m y E m m R y ?=?

??

???-??-?=∑∑==),min(0)

,min(02112)()()()(N m i N m j j m w j h i m w i h E

{}∑

∑==--),min(0

)

,min(0

2

1

12)()()()(N m i N m j j m

w i m w E j h i h

∑=+=+-?

=),min(0

)

,min(0

2

1)()()(N m i N i r j w

i j r j h i h δσ

∑=+?

=)

,min(0

21)()(N m i w

i r h i h σ

当N m >1时,)(),(21r R m m R y y =∑=+?=N

i w

i r h i h 0

2)()(σ,与起点1

m 无关。

]

3.系统随机响应的非平稳情况

1)输入是平稳的,暂态过程中的输出是非平稳的; 2)输入是非平稳的; 3)系统本身是时变的; 4)系统是不稳定的。

以后各节,仅考虑线性稳定系统对随机信号的响应,即渐近平稳情况下的稳态响应,且是各态遍历的。不再区分随机信号)(t X (或)(n X )与它的样本函数)(t x (或)(n x )。

信号与线性系统分析_(吴大正_第四版)习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε=

(5)) f= r t ) (sin (t (7)) t = (k f kε ( 2 ) (10)) f kε k = (k + - ( ( ] )1 ) 1[

1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8) )]5()([)(--=k k k k f εε (11) )]7()()[6 sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f

(5) )2()2()(t t r t f -=ε (8) )]5()([)(--=k k k k f εε (11) )]7()()[6 sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε

信号与线性系统分析_(吴大正_第四版)习题答案第六章

. 下载可编辑 . 第六章 6.4 根据下列象函数及所标注的收敛域,求其所对应的原序列。 (1)1)(=z F ,全z 平面 (2)∞<=z z z F ,)(3 (3)0,)(1>=-z z z F (4)∞<<-+=-z z z z F 0,12)(2 (5)a z az z F >-= -,11 )(1 (6)a z az z F <-=-,11 )(1

. 下载可编辑 . 6.5 已知1)(?k δ,a z z k a k -? )(ε,2)1()(-?z z k k ε,试利用z 变换的性质求下列序列的z 变换并注明收敛域。

. 下载可编辑 . (1))(])1(1[2 1k k ε-+ (3))()1(k k k ε- (5))1()1(--k k k ε (7))]4()([--k k k εε (9))()2 cos( )2 1(k k k επ

. 下载可编辑 . 6.8 若因果序列的z 变换)(z F 如下,能否应用终值定理?如果能,求出)(lim k f k ∞ →。 (1))3 1)(21(1)(2+-+=z z z z F (3))2)(1()(2 --=z z z z F

. 下载可编辑 . 6.10 求下列象函数的双边逆z 变换。 (1)31 ,)31)(21(1)(2<--+= z z z z z F (2)21 ,)3 1)(21()(2>--= z z z z z F (3)2 1,) 1()2 1 ()(23 < --= z z z z z F

. 下载可编辑 . (4)2131,)1()2 1()(23 <<--= z z z z z F

信号与线性系统五六章自测题(标准答案)

第五、六章自测题标准答案 1. 判断题 (1) 当且仅当一个连续时间线性时不变系统的阶跃响应是绝对可积的,则该系统是稳定的。 ( × ) (2) 若h (t )是一个线性时不变系统的单位冲激响应,并且h(t)是周期的且非零,则系统是非稳定的。 ( √ ) (3) 对于一个因果稳定的系统,可以利用ωωj s s H j H ==|)()( 求系统的频率响应。 ( √ ) (4) 一个稳定的连续时间系统,其系统函数的零极点都必定在s 平面的左半平面。 ( × ) 2.填空题 (1)某二阶系统起始状态为2_)0(',1_)0(=-=r r ;初始条件为,1)0(',3)0(==++r r 则确定零输入响应待定系数的初始条件为)0(+zi r = -1 ,)0('+zi r = 2 ;而确定零状态响应待定系数的初始条件为 )0(+zs r = 4 ,)0('+zs r = -1 。 (2)2 3)(2++=-s s e s F s 的逆变换为 )(][ )1(2)1(t e e t t ε-----。 (3))()sin( )(t t t f εφα+=的拉普拉斯变换为2 22 2sin cos )(αφαα φ+? ++?=s s s s F 。 3.求图5-1中所示单边周期信号的拉氏变换。 图5-1 解: +---+- -=)2 3()()2()()(T t T t T t t t f εεεε 4.一个单位冲激响应为h (t )的因果LTI 系统有下列性质: (1)当系统的输入为t e t x 2)(=时,对所有t 值,输出t e t y 26 1)(= 。 (2)单位冲激响应h(t)满足微分方程 )()()(2) (4t b t e t h dt t dh t εε+=+-。这里b 为一个未知常数。 确定该系统的系统函数。 解:本题中用到了特征函数的概念。一个信号,若系统对该信号的响应仅是一个常数(可能是复数)乘以输入,则该信号为系统的特征函数。(请注意:上面所指的系统必须是线性时不变系统。) 因为t e t x 2)(=是因果LTI 系统的特征函数,所以t t s e e s H t y 2226 1|)()(= ?==。即

信号与线性系统七八章习题答案

第七、八章习题答案 7.1 绘出下列离散信号的图形。 (2)2()()k k δε- 解: 7.5 判断下列信号是否是周期性信号,如果是则其周期为多少? (2)0.4j k e π (3)sin(0.2)cos(0.3)k k ππ+ 解: (2) 0.40.4cos(0.4)sin(0.4) cos[0.4()]cos(0.4)0.42515sin(0.4)55j k j k e k j k k T k T n T n n T k e πππππππππ=++=?=?=?==因为当时,同理的周期为。所以的周期为。 (3) s i n [0.2()] s i n (0.2)0.2210 120 [0.3]cos(0.3)0.323 3sin[0.2()][0.3]20k T k T n T n n k T k T n T n n k T k T ππππππππππ+=?=?==+=?=?= =+++因为当时,T=10。 cos ()当时,T=20。 所以,cos ()是周期信号,周期为。 7.6一个有限长连续时间信号,时间长度为2分钟,频谱包含有直流至100Hz 分量的连续时间信号。为便于计算机处理,对其取样以构成离散信号,求最小的理想取样点。 解: min max min 10011200200 260224000 1200 m s m s s f Hz f sf Hz T s f ===?==?==min 由采样定理可知采样周期最大值所以在分钟内最小的理想采样点数: n

7.7设一连续时间信号,其频谱包含有直流、1kHz 、2kHz 、3kHz 四个频率分量,幅度分别为0.5、1、0.5、0.25;相位谱为0,试以10kHz 的采样频率对该信号取样,画出取样后所得离散序列在0到25kHz 频率范围内的频谱。 解:由采样定理可知采样后的频谱为原序列频谱以采样频率为周期进行周期延拓。故在0~25kHz 范围内有三个周期。其频谱如下图所示: 1 0.50.25 7.12一初始状态不为零的离散系统。当激励为()e k 时全响应为 11()[()1]()2k y k k ε=+,当激励为()e k -时全响应为21 ()[()1]()2 k y k k ε=--,求当初 始状态增加一倍且激励为4()e k 时的全响应。 解:设初始状态不变,当激励为()e k 时,系统的零输入响应为()zi y k ,零状态响应为()zs y k 。按题意得到: 1111 ()()()[()1]()(1) 2 ,(),1 ()()()[()1]()(2) 2 (1),(2),11 ()[()()]() 2211 ()[()()1]() 22 ,4(),()k zi zs k zi zs k k zi k k zs y k y k y k k e k y k y k y k k y k k y k k e k y k εεεε+++=+=+-=-=--=--=+-+=根据线性非时变系统的性质当激励为时全响应为联立两式可解得 所以当初始状态增加一倍且激励为时11 2()4()[43()()]() 22 k k zi zs y k y k k ε+=+-- 7.13试列出图P7-13所示系统的差分方程。 (a )

信号与线性系统 答案

实验一 信号的MATLAB 表示 三、 实验内容: 1. 用MA TLAB 表示连续信号:t Ae α,)cos(0?ω+t A ,)sin(0?ω+t A 。 t Ae α t=0:001:10; A=1; a=-0.4; ft=A*exp(a*t); plot(t,ft) )cos(0?ω+t A t=0:0.1:10; A=1; a=1; b=pi/4; ft=A*sin(a*t+b); plot(t,ft)

)sin(0?ω+t A t=0:0.1:10; A=1; a=1; b=pi/4; ft=A*cos(a*t+b); plot(t,ft)

2. 用信号处理工具箱提供的函数表示抽样信号、矩形脉冲信号及三角脉冲信号。y=sinc(t) y=sinc(t); plot(t,y) y=rectpuls(t, width) t=0:0.01:4; T=1; y=rectpuls(t-2*T, 2*T); plot(t,y)

y=tripuls(t , width, skew) t=-5:0.01:5; width=2;skew=0.6; y=tripuls(t, width, skew); plot(t,y) 3. 编写如图所示的MA TLAB 函数,并画出)5.0(t f ,)5.02(t f 的图形。 )(t f t=-2:0.01:3; ft=rectpuls(t+0.5, 1)+(1-t).*rectpuls(t-0.5,1)-rectpuls(t-1.5, 1); plot(t,ft)

f 5.0(t ) function ft=f(t) ft=rectpuls(t+0.5, 1)+(1-t).*rectpuls(t-0.5,1)-rectpuls(t-1.5, 1); plot(t,ft) t=-5:0.01:5; y=f(0.5*t); plot(t,y)

信号与线性系统习题答案西安交大版阎鸿森编-10页精选文档

第六章习题答案 1. 用定义计算下列信号的拉氏变换及其收敛域,并画出零极点图和收敛域。 (a) (),0at e u t a > (b) (),0at te u t a > (c) (),0at e u t a --> (d) [cos()]()c t u t Ω- (e) [cos()]()c t u t Ω+θ- (f) [sin()](),0at c e t u t a -Ω> (g) (),b at b a δ-和为实数 (h) 23,0 (),0 t t e t x t e t -?>?=?-,见图(a) (b) 2 1 ,Re{}() s a s a >-, 见图(a) (c) 1 ,Re{}s a s a -<-+,见图(b) (d) 22 ,Re{}c s s a s - <-+Ω, 见图(c) (e) 22 cos sin ,Re{}0c c s s s θθ -Ω>+Ω,见图(d) (f) 22 ,Re{}()c c s a a s Ω>-++Ω,见图(e) (g) 2 1|| sb a e a - ,整个s 平面 (h) 11,2Re{}332s s s +-<<-+,见图(f) (a) (b) (c) (d) (e) (f) 2. 用定义计算图P6.2所示各信号的拉氏变换式。 (a) (b) (c) (d) (e)

(f) 解: (a) (b) (c) 20111(1)T st sT sT te dt e e T s Ts ---=-+-? (d) (e) 2222221212()(1)[(1)]sT sT sT s X s e e e e s Ts s Ts ----=-+-+-- (f) s 222sin 111sin [()()]111 st sT st s te dt e t u t u t e dt e s s s π --+∞ --π -∞-=--π=-?=+++? ? 3. 对图P6.3所示的每一个零极点图,确定满足下述情况的收敛域。 (a) x(t)的傅立叶变换存在。 (b) 2()t x t e 的傅立叶变换存在 (c) ()0,0x t t => (d) ()0,5x t t =< 解:(a) x(t)的傅立叶变换存在,则j s =Ω应在()X s 的收敛域内 图(a) 1Re{}1s -<< 图(b) 3Re{}3s -<< 图(c) Re{}1s >- (b) 2()t x t e 的傅立叶变换存在,则s =-2轴一定在()x s 的收敛域内 图(a), Re{}1s <- 图(b), 3Re{}3s -<< 图(c), 3Re{}1s -<<- (c) x(t)=0,t>0,则x(t)为左边信号 图(a),Re{}1s <- 图(b),Re{}3s <- 图(c), Re{}3s <- (d) x(t)=0, t<5,则x(t)为右边信号

信号与线性系统分析_(吴大正_第四版)第一章习题答案

专业课习题解析课程 第1讲 第一章信号与系统(一)

专业课习题解析课程 第2讲 第一章 信号与系统(二) 1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+=

解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε=

(5)) t f= r ) (sin (t (7)) f kε = t ) ( 2 (k

(10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f

(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11) )]7()()[6 sin( )(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f

信号与线性系统分析习题答案-(吴大正-第四版--高等教育出版社)

第一章 信号与系统(二) 1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)(

(3)) ()sin()(t t t f επ= ( 4))(sin )(t t f ε=

(5)) t f= r ) (sin (t (7)) f kε = t ) ( 2 (k

(10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε

(11))]7()()[6 sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f

(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε

信号与线性系统分析-(吴大正-第四版)习题答案 (1)

下载可编辑复制 第一章 信号与系统(一) 1-1画出下列各信号的波形【式中)() (t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=

下载可编辑复制 (4))(sin )(t t f ε= (5))(sin )(t r t f =

下载可编辑复制 (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+=

下载可编辑复制 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6 sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为 (1) )2()1(3)1(2)(-+--+=t t t t f εεε

下载可编辑复制 (2) )2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε

信号与线性系统分析习题答案吴大正_第四版__高等教育出版社

第一章 信号与系统(二) 1-1画出下列各信号的波形【式中)() (t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε (8) )]5()([)(--=k k k k f εε (11))]7()()[6 sin( )(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε

(8) )]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 1-3 写出图1-3所示各波形的表达式。 1-4 写出图1-4所示各序列的闭合形式表达式。 1-5 判别下列各序列是否为周期性的。如果是,确定其周期。 (2))6 3cos()443cos()(2 π πππ+++=k k k f (5))sin(2cos 3)(5t t t f π+= 解: 1-6 已知信号 )(t f 的波形如图1-5所示,画出下列各函数的波形。 (1))()1(t t f ε- (2))1()1(--t t f ε (5))21(t f - (6) )25.0(-t f (7)dt t df ) ( (8)dx x f t ?∞-)( 解:各信号波形为 (1))()1(t t f ε- (2))1()1(--t t f ε (5))21(t f - (6) )25.0(-t f (7)dt t df )(

信号与线性系统分析习题答案

1 / 257 信号与线性系统课后答案 第一章 信号与系统(一) 1-1画出下列各信号的波形【式中)() (t t t r ε=】为斜升函数。 (2)∞<<-∞=- t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3)) ()sin()(t t t f επ=

2 / 257 (4))(sin )(t t f ε= (5)) (sin )(t r t f =

3 / 257 (7))(2)(k t f k ε= (10)) (])1(1[)(k k f k ε-+=

4 / 257 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6 sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为 (1) ) 2()1(3)1(2)(-+--+=t t t t f εεε

5 / 257 (2) )2()1(2)()(-+--=t r t r t r t f (5) ) 2()2()(t t r t f -=ε

《信号与线性系统》试题与答案

1.下列信号的分类方法不正确的是( A ): A 、数字信号和离散信号 B 、确定信号和随机信号 C 、周期信号和非周期信号 D 、因果信号与反因果信号 2.下列说法正确的是( D ): A 、两个周期信号x (t ),y (t )的和x (t )+y(t )一定是周期信号。 B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y(t ) 是周期信号。 C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y(t )是周期信号。 D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y(t )是周期信号。 3.下列说法不正确的是( D )。 A 、一般周期信号为功率信号。 B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。 C 、ε(t )是功率信号; D 、e t 为能量信号; 4.将信号f (t )变换为( A )称为对信号f (t )的平移或移位。 A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (-t ) 5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换。 A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t ) 6.下列关于冲激函数性质的表达式不正确的是( B )。 A 、)()0()()(t f t t f δδ= B 、()t a at δδ1 )(= C 、 )(d )(t t εττδ=? ∞ - D 、)()-(t t δδ= 7.下列关于冲激函数性质的表达式不正确的是( D )。 A 、?∞ ∞ -='0d )(t t δ B 、)0(d )()(f t t t f =? +∞ ∞ -δ C 、 )(d )(t t εττδ=? ∞ - D 、?∞∞ -=')(d )(t t t δδ 8.下列关于冲激函数性质的表达式不正确的是( B )。 A 、)()1()()1(t f t t f δδ=+ B 、)0(d )()(f t t t f '='? ∞ ∞-δ C 、 )(d )(t t εττδ=? ∞ - D 、)0(d )()(f t t t f =?+∞ ∞ -δ 9.下列基本单元属于数乘器的是( A ) 。

信号与线性系统分析-(吴大正-第四版)第六章习题答案

6.4根据下列象函数及所标注的收敛域,求其所对应的原序列。 (1)F(z) 1,全z平面 (2)F(z) z3,z (3)F(z) z 1,z 0 (4)F(z) 2z 1 z2,0 z 1 (5)F(z) a 1 (6) F(z) 一, z |a 1 az 解⑴冲I F(z) =1 可1知 fib、— 1 M — H 0 即得f(k)==肌切(2)由F(iri =它和I盘:< X可知 f(k)=.1 *k ――3 即潯/( k) = S 由F(.z")=f[和丨迸丨> 0 .可知 /鮒= 1上=1 仏心1 即得f(k)-枫必一1) t4) = 2r-|-l —i*-3. 0 < | r 展为机I的彳变换为1 ?听以有f(k)=为4- 1) +讯於)一汛上一2)e (5) 1> “I 町知_/W 为因果吊列,则町得 Xf QG _L T = = y * 富t 1—Z k= -X 即得/(^)= U k E(.k) (冊由< u可知」(力〕为反因果序列,rti常用存列的丫变换可知 则可得f(k)= 3T J _F<^>2 =一

6.5已知(k) 1,a k (k) ,k (k) 2,试利用z变换的性质求下列序 z a (z 1)

列的z 变换并注明收敛域。 (9) (1)k cos(k-) (k) 解 (1) + (— 一 / ~ — p —打 收敛域为辽>1 (3) f (k ) = (- 1)绩£(为) T (一 1)1 煙(小一 -_T 其收敛域为I >1 ⑸ JXk) = k(k- l)e(k- 1) = $魏一 1)£(方) 收敛域为丨琴丨> 1 <7) f (k ) — k_^(k ) 一匹(良 一 4)] =fe :(一 (k 一 4)疋(向 一 4) 一 4亡(冷 一 4) _ x 4 — iz — 3 z a (J ? — 1 )£ 收敛域为c >1 (1)2口 ( 1)k ] (k) (3) ( 1)k (k) (5) k(k 1) (k 1) (7) k[ (k) (k 4)]

信号与线性系统分析(第四版)习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=

(4)) fε t = (sin ) (t (5)) t r f= (sin ) (t

(7)) t (k f kε = ) ( 2 (10)) f kε k - = (k + ( ] )1 ( 1[ )

1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε

(2) )2 ( )1 ( 2 )( )(- + - - =t r t r t r t f (5) ) 2( ) 2( )(t t r t f- =ε

信号与线性系统分析报告习题问题详解

信号与线性系统课后答案 第一章 信号与系统(一) 1-1画出下列各信号的波形【式中)() (t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=

(4)) fε t = (sin ) (t (5)) t r f= (sin ) (t

(7)) t (k f kε = ) ( 2 (10)) f kε k - = (k + ( ] )1 ( 1[ )

1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6 sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为 (1) )2()1(3)1(2)(-+--+=t t t t f εεε

(2) )2 ( )1 ( 2 )( )(- + - - =t r t r t r t f (5) ) 2( ) 2( )(t t r t f- =ε

信号与线性系统分析复习题及答案

信号与线性系统复习题 单项选择题。 1. 已知序列3()cos( )5 f k k π =为周期序列,其周期为 ( C ) A . 2 B. 5 C. 10 D. 12 2. 题2图所示()f t 的数学表达式为 ( B ) 图题2 A .()10sin()[()(1)]f t t t t πεε=+- B. ()10sin()[()(1)]f t t t t πεε=-- C. ()10sin()[()(2)]f t t t t πεε=-- D. ()10sin()[()(2)]f t t t t πεε=+- 3.已知sin() ()()t f t t dt t πδ∞ -∞= ?,其值是 ( A ) A .π B. 2π C. 3π D. 4π 4.冲激函数()t δ的拉普拉斯变换为 ( A ) A . 1 B. 2 C. 3 D. 4 5.为了使信号无失真传输,系统的频率响应函数应为 ( D ) A . ()d jwt H jw e = B. ()d jwt H jw e -= C. ()d jwt H jw Ke = D. ()d jwt H jw Ke -= 6.已知序列1()()()3 k f k k ε=,其z 变换为 ( B ) A . 13 z z + B. 13 z z - C. 14 z z + D. 14 z z - 7.离散因果系统的充分必要条件是 ( A ) A .0,0)(<=k k h B. 0,0)(>=k k h C. 0,0)(<>k k h 8.已知()f t 的傅里叶变换为()F jw ,则(3)f t +的傅里叶变换为 ( C ) A .()jw F jw e B. 2()j w F jw e C. 3()j w F jw e D. 4()j w F jw e 9.已知)()(k k f k εα=,)2()(-=k k h δ,则()()f k h k *的值为( B )

信号与线性系统分析-(吴大正-第四版)第六章习题答案

信号与线性系统分析-(吴大正-第四版)第六章习题答案

6.4 根据下列象函数及所标注的收敛域,求其所对应的原序列。 (1)1)(=z F ,全z 平面 (2)∞<=z z z F ,)(3 (3)0 ,)(1 >=-z z z F (4)∞ <<-+=-z z z z F 0,12)(2 (5)a z az z F >-=-,11 )(1 (6)a z az z F <-=-,11 )(1

6.5 已知1)(?k δ,a z z k a k -?)(ε,2 )1()(-?z z k k ε,试利用z 变换的性质求下列序列的z 变换并注明收敛域。 (1))(])1(1[2 1k k ε-+ (3))()1(k k k ε- (5))1()1(--k k k ε (7))]4()([--k k k εε (9)) ()2 cos() 2 1(k k k επ

6.8 若因果序列的z 变换)(z F 如下,能否应用终值定理?如果能,求出)(lim k f k ∞ →。 (1) ) 3 1 )(21(1 )(2+-+= z z z z F (3) ) 2)(1()(2 --= z z z z F

6.10 求下列象函数的双边逆z 变换。 (1)31 ,)31)(21(1)(2< -- +=z z z z z F (2) 21 ,)3 1)(21()(2> --=z z z z z F (3)2 1,) 1()2 1 ()(23 < --=z z z z z F (4)2131,)1()2 1()(23 < <--= z z z z z F

信号与线性系统题解第四章

第四章习题答案 收集自网络 4.1 由于复指数函数是LTI 系统的特征函数,因此傅里叶分析法在连续时间LTI 系统分析 中具有重要价值。在正文已经指出:尽管某些LTI 系统可能有另外的特征函数,但复指数函数是唯一..能够成为一切..LTI 系统特征函数的信号。 在本题中,我们将验证这一结论。 (a) 对单位冲激响应()()h t t δ=的LTI 系统,指出其特征函数,并确定相应的特征值。 (b) 如果一个LTI 系统的单位冲激响应为()()h t t T δ=-,找出一个信号,该信号不具有st e 的形式,但却是该系统的特征函数,且特征值为1。再找出另外两个特征函数,它们的特征值分别为1/2和2,但不是复指数函数。 提示:可以找出满足这些要求的冲激串。 (c) 如果一个稳定的LTI 系统的冲激响应()h t 是实、偶函数,证明cos t Ω和sin t Ω实该系统的特征函数。 (d) 对冲激响应为()()h t u t =的LTI 系统,假如()t φ是它的特征函数,其特征值为λ,确定()t φ应满足的微分方程,并解出()t φ。 此题各部分的结果就验证了正文中指出的结论。 解:(a) ()()h t t δ=的LTI 系统是恒等系统,所以任何函数都是它的特征函数,其特征值 为1。 (b) ()()h t t T δ=-,∴()()x t x t T →-。如果()x t 是系统的特征函数,且特征值为 1,则应有()()x t x t T =-。满足这一要求的冲激序列为()()k x t t kT δ∞ =-∞ = -∑。 若要找出特征值为1/2或2的这种特征函数,则可得: 1 ()()()2 k k x t t kT δ∞ =-∞=-∑, 特征值为1/2。 ()2()k k x t t kT δ∞ =-∞ = -∑, 特征值为2。 (c) 1cos ()2 j t j t t e e ΩΩ-Ω= +

信号与线性系统

《信号与线性系统》课程教学大纲 课程编号:28121008 课程类别:学科基础课程 授课对象:信息工程、电子信息工程、通信工程等专业 指定教材:管致中,《信号与线性系统》(第4版),高等教育出版社,2004年 教学目的: 《信号与线性系统》课程讨论确定信号经过线性时不变系统传输与处理的基本理论和基本分析方法。掌握连续时间信号分析,连续时间系统的时域、频域、复频域的分析方法,通过连续时间系统的系统函数,描述系统的频率特性及对系统稳定性的判定;连续时间信号转换到离散时间信号的采样理论及转换不失真的条件。 第一章绪论 课时:1周,共4课时 第一节引言 信号的概念 系统的概念 思考题: 1、什么是信号?举例说明。 2、什么是系统?举例说明。 第二节信号的概念 信号的分类 周期信号与非周期信号、连续时间信号与离散时间信号、能量信号与功率信号。 二、典型信号 指数信号、复指数信号、三角信号、抽样信号。 思考题: 1、复合信号的周期是如何判定的?若复合信号是周期信号,其周期如何计算? 2、如何判定一个信号是能量信号还是功率信号,或者两者都不是? 第三节信号的简单处理 信号的运算 信号的相加、相乘、时移、尺度变换等。 二、信号的分解 一个信号可以分解成奇分量与偶分量之和。 思考题: 若信号由转换至,说明转换的分步次序。 若信号由转换至,说明转换的分步次序。 3、说明信号的奇偶分解的方法。 第四节系统的概念 一、系统的分类 线性系统和非线性系统、时不变系统和时变系统、连续时间系统和离散时间系统、因果系统和非因果系统。

二、系统的性质 线性:满足齐次性与叠加性 时不变:系统的性质不随时间而改变 思考题: 1、举例说明时不变系统和时变系统。 2、若一个系统是线性的,系统的零输入响应与零状态响应具有什么特性?第五节线性非时变系统的分析 线性时不变系统的重要特性 微分特性、积分特性、频率保持特性。 思考题: 若要分析线性时不变系统的特性,说明分析的步骤。 第二章连续时间系统的时域分析 引言 一、线性连续时间系统的时域分析方法 二、线性连续时间系统的输出数学模型------输入输出方程(微分方程)思考题: 对一个RC电路模型,给出输入输出方程(微分方程)。 对一个RLC电路模型,给出输入输出方程(微分方程)。 系统方程的算子表示方法 一、算子的基本规则 二、转移算子 思考题: 对一个RC电路模型,给出输入输出方程(微分方程),并求其转移算子。对一个RLC电路模型,给出输入输出方程(微分方程),并求其转移算子。系统的零输入响应 零输入响应的概念 二、零输入响应的计算方法 1、当分解为单次根: 其中由及其各阶导数决定;为系统的自然频率。 2、当分解为n次重根: 其中由及其各阶导数决定。 思考题: 1、当分解为单次根或n次重根时,说明系统的零输入响应的求解方法。 2、零输入响应的特性是什么? 奇异函数 单位阶跃函数 二、单位冲激函数 门函数 符号函数 斜变函数

信号与线性系统分析答案

信号与线性系统分析答案 第一部分考试说明 一、考试性质 全国硕士研究生入学考试是为高等学校招收硕士研究生而设置的。其中,《信号与线性系统》实行按一级学科统考。它的评价标准是高等学校优良本科毕业生能达到的及格或及格以上水平,以保证被录取者具有基本的专业水平,并有利于各高等学校的择优选拔。 考试对象为参加2018年全国硕士研究生入学考试的本科应届毕业生,或具有同等学历的在职人员。 科学学位硕士研究生和专业学位硕士研究生招生考试中的《信号与线性系统》均采用本考试大纲。 二、考试形式与试卷结构 (一)答卷方式:闭卷,笔试。

(二)答题时间:180分钟。 (三)各部分内容的考试比例(满分150分)基本概念及技能:25分 傅里叶级数及傅里叶变换:40分 拉普拉斯变换:35分 Z变换:35分 状态模型分析:15分 (四)题型比例 填空题:30分 选择题:20分 画图题:10分

计算题:90分 第二部分考查要点 一、信号与系统 1.单位冲激信号和单位阶跃信号的概念及性质 2.信号的波形图、基本运算与奇、偶分解 3.离散正弦、指数的周期性 4.计算信号的能量与功率 5.确定信号的基波周期 6.判断系统的线性、时不变、因果、稳定、可逆等性质 二、线性时不变系统 1. 线性时不变系统的卷积积分(卷积和)特性

2.线性时不变系统的零输入响应、零状态响应3. 卷积积分(卷积和)的性质及计算 4.单位冲激响应和单位阶跃响应 5. 根据单位冲激响应判断系统的因果性和稳定性6.线性常系数微分方程的时域解法 7.线性常系数差分方程的时域解法 三、周期信号的傅里叶级数表示 1. 线性时不变(LTI)系统的特征函数 2. 连续时间周期信号的傅里叶级数表示 3. 连续时间傅里叶级数的性质 4. 离散时间周期信号的傅里叶级数表示

相关主题
文本预览
相关文档 最新文档