当前位置:文档之家› 线性回归方程题型.docx

线性回归方程题型.docx

线性回归方程题型.docx
线性回归方程题型.docx

线性回归方程

1. 【 2014 高考全国 2 第 19题】某地区2007 年至2013 年农村居民家庭纯收入y(单位:千元)的数据如下表:

年份2007200820092010201120122013年份代号 t1234567

人均纯收入y

(Ⅰ)求y 关于 t 的线性回归方程;

(Ⅱ)利用(Ⅰ)中的回归方程,分析 2007 年至 2013 年该地区农村居民家庭人均纯收入的

变化情况,并预测该地区 2015 年农村居民家庭人均纯收入 .

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

n

t i t y i y

?

b i 1, ?

n a y bt

t i2

t

i1

2.【 2016 年全国 3】下图是我国2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图 .

注:年份代码1– 7 分别对应年份 2008– 2014.

(Ⅰ)由折线图看出,可用线性回归模型拟合y 与 t 的关系,请用相关系数加以说明;

(Ⅱ)建立 y 关于 t 的回归方程(系数精确到),预测 2016 年我国生活垃圾无害化处理量 .附注:

777

参考数据:y i9.32 ,t i y i 40.17 ,( y i y ) 20.55 ,≈.

i 1i 1i 1

n

参考公式: r

(t i t )( y i y )

i 1,n n

(t i t )2(y i y) 2 i 1i 1

)))

回归方程 y a bt 中斜率和截距的最小二乘估计公式分别为:

n

)

(t i t )( y i y )

) i 1) )

b n,a=y bt .

(t i t )2

i 1

3.【 2015 全国 1】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位: t )和年利润z(单位:千元)的影响,对近8 年的宣传费x i和

年销售量 y i i 1,2,L ,8 数据作了初步处理,得到下面的散点图及一些统计量的值.

(I )根据散点图判断,y a bx 与 y c d x ,哪一个适宜作为年销售量y 关于年宣传费 x 的回归方程类型(给出判断即可,不必说明理由);

(II (III )根据( I )的判断结果及表中数据,建立y 关于

)已知这种产品的年利润z 与 x, y 的关系为z

x 的回归方程;

0.2 y x ,根据(II)的结果回答

下列问题:

(i)当年宣传费x =49 时,年销售量及年利润的预报值时多少(i i )当年宣传费x为何值时,年利润的预报值最大

线性回归方程的求法(需要给每个人发)

耿老师总结的高考统计部分的两个重要公式的具体如何应用 第一公式:线性回归方程为???y bx a =+的求法: (1) 先求变量x 的平均值,既1231()n x x x x x n = +++???+ (2) 求变量y 的平均值,既1231()n y y y y y n =+++???+ (3) 求变量x 的系数?b ,有两个方法 法112 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆)[]112222212()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--=??-+-++-?? (需理解并会代入数据) 法21 2 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆) []1122222212...,...n n n x y x y x y nx y x x x nx ++-?=??+++-??(这个公式需要自己记忆,稍微简单些) (4) 求常数?a ,既??a y bx =- 最后写出写出回归方程???y bx a =+。可以改写为:??y bx a =-(?y y 与不做区分) 例.已知,x y 之间的一组数据: 求y 与x 的回归方程: 解:(1)先求变量x 的平均值,既1(0123) 1.54x = +++= (2)求变量y 的平均值,既1(1357)44 y =+++= (3)求变量x 的系数?b ,有两个方法

法1?b = []11223344222212342222()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--=??-+-+-+-??--+--+--+--==??-+-+-+-?? 法2?b =[][]11222222222212...011325374 1.5457 ...0123n n n x y x y x y nx y x x x nx ++-??+?+?+?-??==????+++-+++???? (4)求常数?a ,既525??4 1.577a y bx =-=-?= 最后写出写出回归方程525???77 y bx a x =+=+ 第二公式:独立性检验 两个分类变量的独立性检验: 注意:数据a 具有两个属性1x ,1y 。数 据b 具有两个属性1x ,2y 。数据c 具有两个属性2x ,2y 数据d 具有两个属性2x ,2y 而且列出表格是最重要。解题步骤如下 第一步:提出假设检验问题 (一般假设两个变量不相关) 第二步:列出上述表格 第三步:计算检验的指标 2 2 ()()()()()n ad bc K a b c d a c b d -=++++ 第四步:查表得出结论 例如你计算出2K =9大于表格中7.879,则查表可得结论:两个变量之间不相关概率为0.005,或者可以肯定的说两个变量相关的概率为0.995.或095.50 例如你计算出2K =6大于表格中5.024,则查表可得结论:两个变量之间不相关概率为0.025,或者可以肯定的说两个变量相关的概率为0.995.或097.50 上述结论都是概率性总结。切记事实结论。只是大概行描述。具体发生情况要和实际联系!! !!

(典型题)高考数学二轮复习-知识点总结-统计与统计案例

统计和统计案例 1.该部分常考内容:样本数字特征的计算、各种统计图表、线性回归方程、独立性检验等;有时也会在知识交汇点处命题,如概率和统计交汇等. 2.从考查形式上来看,大部分为选择题、填空题,重在考查基础知识、基本技能,有时在知识交汇点处命题,也会出现解答题,都属于中低档题. 1. 随机抽样 (1)简单随机抽样特点为从总体中逐个抽取,适用范围:总体中的个体较少. (2)系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取,适用范围:总体中的个体数较多. (3)分层抽样特点是将总体分成几层,分层进行抽取,适用范围:总体由差异明显的几部分组成. 2. 常用的统计图表 (1)频率分布直方图 ①小长方形的面积=组距× 频率 组距 =频率; ②各小长方形的面积之和等于1; ③小长方形的高=频率组距,所有小长方形的高的和为1 组距. (2)茎叶图 在样本数据较少时,用茎叶图表示数据的效果较好. 3. 用样本的数字特征估计总体的数字特征 (1)众数、中位数、平均数 数字特征 样本数据 频率分布直方图 众数 出现次数最多的数据 取最高的小长方形底边中点的横坐标 中位数 将数据按大小依次排列,处在最 中间位置的一个数据(或最中间两个数据的平均数) 把频率分布直方图划分左右两个面积相等的分界线和x 轴交点的横坐标 平均数 样本数据的算术平均数 每个小矩形的面积乘以小矩形底边中点的横坐标之和 (2)方差:s 2=n [(x 1-x )2+(x 2-x )2+…+(x n -x )2 ]. 标准差:

s = 1n [ x 1-x 2 +x 2-x 2 +…+x n -x 2 ]. 4. 变量的相关性和最小二乘法 (1)相关关系的概念、正相关和负相关、相关系数. (2)最小二乘法:对于给定的一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),通过求Q = i =1 n (y i -a -bx i )2 最小时,得到线性回归方程y ^ =b ^ x +a ^ 的方法叫做最小二乘法. 5. 独立性检验 对于取值分别是{x 1,x 2}和{y 1,y 2}的分类变量X 和Y ,其样本频数列联表是: y 1 y 2 总计 x 1 a b a +b x 2 c d c +d 总计 a +c b +d n 则K 2 = n ad -bc 2a +b c + d a +c b +d (其中n =a +b +c +d 为样本容量). 考点一 抽样方法 例1 (2012·山东)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为 ( ) A .7 B .9 C .10 D .15 答案 C 分析 由系统抽样的特点知:抽取号码的间隔为 960 32 =30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n 项,显然有729=459+(n -1)×30,解得n =10.所以做问卷B 的有10人. 在系统抽样的过程中,要注意分段间隔,需要抽取几个个体,样本就需要分 成几个组,则分段间隔即为N n (N 为样本容量),首先确定在第一组中抽取的个体的号码数,再从后面的每组中按规则抽取每个个体.解决此类题目的关键是深刻理解各种抽样

线性回归方程公式证明

112233^ ^^^2 211(,),(,),(,)(,)1,2,3),()()n n i i i i i i n i i i i i i n x y x y x y x y y bx a x i n y bx a y y y a b Q y y bx a y ===+==+-=-=+-∑L L 设有对观察值,两变量符合线生回归设其回归方程为:,把自变量的某一观测值代(入入回归方程得:,此值与实际观测值存在一个差值,此差值称为剩余或误差。现要决定取何值时,才能够使剩余的平方和有最小值,即求11 2 21122 221 1111 22111:,()[()()()]()()()2()()2()()2()() ()2n n n i i i i n n i i i i i i n n n i i i i i i n n i i i i i n i i x x y y n n Q bx a y a bx y y y b x x n a bx y y y b x x a bx y y y a bx y x x b x x y y b x x =============+-=+---+-=+-+-+--+---+-----=--∑∑∑∑∑∑∑∑∑∑∑的最小值知又22 111 122211()()()()()()()()n n i i i i i n n i i i i i i n n i i i i b x x y y n a bx y y y b x x y y x y nx y b x x x n x a y bx ======--++-+----==--=-∑∑∑∑∑∑此式为关于的一元二次方程,当

(完整)高中数学知识点:线性回归方程,推荐文档

高中数学知识点:线性回归方程 1.回归直线方程 (1)回归直线:观察散点图的特征,发现各个大致分布在通过散点图中心的一条直线附近。如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。求出的回归直线方程简称回归方程。 2.回归直线方程的求法 设与n 个观测点(,i i x y )()1,2,,i n =???最接近的直线方程为$ ,y bx a =+,其中a 、b 是待定系数. 则$,(1,2,,)i i y bx a i n =+=L .于是得到各个偏差 μ(),(1,2,,)i i i i y y y bx a i n -=-+=L . 显见,偏差$i i y y -的符号有正有负,若将它们相加会造成相互抵 消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和. 2222211)()()(a bx y a bx y a bx y Q n n --++--+--=Λ 表示n 个点与相应直线在整体上的接近程度. 记21()n i i i Q y bx a ==--∑. 上述式子展开后,是一个关于a 、b 的二次多项式,应用配方法,可求出使Q 为最小值时的a 、b 的值.即 1122211()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====?---??==??--??=-??∑∑∑∑, ∑==n i i x n x 11,∑==n i i y n y 11

相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析 上述求回归直线的方法是使得样本数据的点到回归直线的距离的平方和最小的方法,叫做最小二乘法。 要点诠释: 1.对回归直线方程只要求会运用它进行具体计算a、b,求出回归直线方程即可.不要求掌握回归直线方程的推导过程. 2.求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性. 3.求回归直线方程,关键在于正确地求出系数a、b,由于求a、b的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误. 4.回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识.

线性回归方程题型

线性回归方程 1.【2014高考全国2第19题】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表: (Ⅰ)求y关于t的线性回归方程; (Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为: ()() () 1 2 1 n i i i n i i t t y y b t t ∧ = = -- = - ∑ ∑ ,? ?a y bt =- 2.【2016年全国3】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图. 注:年份代码1–7分别对应年份2008–2014. (Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;

(Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据: 7 1 9.32i i y ==∑,7 1 40.17i i i t y ==∑ 0.55=,≈2.646. 参考公式:()() n i i t t y y r --= ∑ 回归方程y a bt =+ 中斜率和截距的最小二乘估计公式分别为: 1 2 1 ()() ()n i i i n i i t t y y b t t ==--= -∑∑ ,=.a y bt - 3.【2015全国1】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i = 数据作了初步处理,得到下面的散点图及一些统计量的值.

多元线性回归模型公式().docx

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量 y 受 k 个自变量 x 1, x 2 ,..., x k 的影响,其 n 组观测值为( y a , x 1 a , x 2 a ,..., x ka ), a 1,2,..., n 。那么,多元线性回归模型的结构形式为: y a 0 1 x 1a 2 x 2 a ... k x ka a () 式中: 0 , 1 ,..., k 为待定参数; a 为随机变量。 如果 b 0 , b 1 ,..., b k 分别为 0 , 1 , 2 ..., k 的拟合值,则回归方程为 ?= b 0 b 1x 1 b 2 x 2 ... b k x k () 式中: b 0 为常数; b 1, b 2 ,..., b k 称为偏回归系数。 偏回归系数 b i ( i 1,2,..., k )的意义是,当其他自变量 x j ( j i )都固定时,自变量 x i 每变 化一个单位而使因变量 y 平均改变的数值。 根据最小二乘法原理, i ( i 0,1,2,..., k )的估计值 b i ( i 0,1,2,..., k )应该使 n 2 n 2 Q y a y a y a b 0 b 1 x 1a b 2 x 2a ... b k x ka min () a 1 a 1 有求极值的必要条件得 Q n 2 y a y a b 0 a 1 () Q n 2 y a y a x ja 0( j 1,2,..., k) b j a 1 将方程组()式展开整理后得:

高中数学知识点精讲精析 线性回归方程

6.4 线性回归方程 1、确定性函数关系:变量之间可以用函数表示 2、相关关系:变量之间具有一定的联系,但不能完全用函数表达 引入:某小卖部为了了解热茶销售量与气温的大致的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温对照表 如果某天的气温是-5℃,你能根据这些数据预测这天小卖部卖出热茶的杯数么?考虑离差的平方和: 一般地,设有n对观察数据如下: 仿照前面的方法,可得线性回归方程中系数a,b满足

由此二元一次方程组便可依次求出b 、a 的值. 相关关系 1. 散点图、正相关、负相关 2. 数据 回归直线方程: 样本相关系数: 1112211n n n i i i i i i i n n i i i i n x y x y b n x x a y bx =====????? -? ????????=???? - ?? ??? ?=-?∑∑∑∑∑)(1 21n x x x n x +++= ) (1 21n y y y n y +++= ∑=+++=n i n i x x x x 1 2 22212 ∑=+++=n i n i y y y y 12 22212 ∑=+++=n i n n i i y x y x y x y x 1 2211 ∑∑==--= n i i n i i i x n x y x n y x b 1 2 21x b y a -=a bx y +=? ∑∑∑===-?--= n i n i i i n i i i y y x x y x n y x r 1 1 2 2 1 )()(

时回归直线有意义 时回归直线无意义 .该市统计调查队随机调查10个家庭, 【解析】 ∴ 回归直线有意义 ∴ 回归直线: ∑∑∑===---= n i n i i i n i i i y n y x n x y x n y x 1 1 221) )((1||≤r 05.0||r r >05.0||r r ≤88 .3210 1 2 =∑=i i x ∑==10 1 27 .22i i y ∑==10 1 17 .27i i i y x 632.0950.005.0=>=r r 013.0-=a 833.0=b 013.0833.0-=x y

线性回归方程

线性 回归 方程 统计总课时第18课时分课题线性回归方程分课时第1 课时 教学目标了解变量之间的两种关系,了解最小平方法〔最小二乘法〕的思想,会用公式求解回归系数. 重点难点最小平方法的思想,线性回归方程的求解. 线性回归方程 某小卖部为了了解热茶销量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表: 气温/C ?26 18 13 10 4 -1 杯数20 24 34 38 50 64假设某天的气温是C? -5,那么你能根据这些数据预测这天小卖部卖出热茶的杯数吗? 新课教学 1.变量之间的两类关系: 〔1〕函数关系: 〔2〕相关关系: 2.线性回归方程: 〔1〕散点图: 〔2〕最小平方法〔最小二乘法〕:〔3〕线性相关关系: 〔4〕线性回归方程、回归直线:3.公式: [来源:https://www.doczj.com/doc/ce4453668.html,] 4.求线性回归方程的一般步骤: x y O

例题剖析 例1 下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否具有线性相关关系,如果具有线性相关关系,求出线性回归方程;如果不具有线性相关关系,说明理由.[来源:学&科&网] 机动车辆数x/千辆95 110 112 120 129 135 150 180 交通事故数y/千件 6.2 7.5 7.7 8.5 8.7 9.8 10.2 13 [来源:1ZXXK]

思考:如图是1991年到2000年北京地区年平均气温〔单位:C 〕与年降雨量〔单位:mm 〕的散点图,根据此图能求出它的回归直线方程吗?如果能,此时求得的回归直线方程有意义吗? 巩固练习 1x /百万元 [来 源:Z+xx+https://www.doczj.com/doc/ce4453668.html,] 2 4 5 6 8 y /百万元 30 40 60 50 70 〔1〕画出散点图; 〔2〕求线性回归方程. 课堂小结 了解变量之间的两种关系,了解最小平方法的思想,会用公式求解回归系数. x y 100 200 300 400 500 600 12.40 12.60 12.80 13.00

多元线性回归的计算方法

多元线性回归的计算方法 摘要 在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭 消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。 多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由 于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。 但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下: Zy=β1Zx1+β2Zx2+…+βkZxk 注意,由于都化成了标准分,所以就不再有常数项a 了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端的变量都取0时,常数项也就为0了。 多元线性回归模型的建立 多元线性回归模型的一般形式为 Yi=β0+β1X1i+β2X2i+…+i i i i h x υβ+ =1,2,…,n 其中 k 为解释变量的数目,j β=(j=1,2,…,k)称为回归系数 (regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为 E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXki βj 也被称为偏回归系数(partial regression coefficient) 多元线性回归的计算模型

线性回归方程

环球雅思学科教师辅导讲义讲义编号:组长签字:签字日期:

解析 因为x -=174+176+176+176+178 5=176, y - =175+175+176+177+1775 =176, 又y 对x 的线性回归方程表示的直线恒过点(x -,y - ), 所以将(176,176)代入A 、B 、C 、D 中检验知选C. 答案 C 3.(2011·陕西)设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个 样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( ). A .x 和y 的相关系数为直线l 的斜率 B .x 和y 的相关系数在0到1之间 C .当n 为偶数时,分布在l 两侧的样本点的个数一定相同 D .直线l 过点(x -,y - ) 解析 因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的 绝对值越接近1,两个变量的线性相关程度越强,所以A 、B 错误.C 中n 为偶数时,分布在l 两侧的样本点的个数可以不相同,所以C 错误.根据回 归直线方程一定经过样本中心点可知D 正确,所以选D. 答案 D 4.(2011·广东)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系: 时间x 1 2 3 4 5 命中率y 0.4 0.5 0.6 0.6 0.4 小李这5天的平均投篮命中率为________;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为________. 解析 小李这5天的平均投篮命中率 y - = 0.4+0.5+0.6+0.6+0.4 5 =0.5, 可求得小李这5天的平均打篮球时间x -=3.根据表中数据可求得b ^=0.01,a ^ = 0.47,故回归直线方程为y ^ =0.47+0.01x ,将x =6代入得6号打6小时篮球的

线性回归方程

2.4线性回归方程 重难点:散点图的画法,回归直线方程的求解方法,回归直线方程在现实生活与生产中的应. 考纲要求:①会作两个有关联变量数据的散点图,会利用散点图认识变量间的相关关系. ②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 经典例题:10.有10名同学高一(x)和高二(y)的数学成绩如下: ⑴画出散点图; ⑵求y对x的回归方程。 当堂练习: 1.下表是某小卖部一周卖出热茶的杯数与当天气温的对比表:若热茶杯数y与气温x近似地满足线性关系,则其关系式最接近的是() . .

. . A . B . C . D . 2.线性回归方程表示的直线必经过的一个定点是( ) A . B . C . D . 3.设有一个直线回归方程为 ,则变量x 增加一个单位时 ( ) A . y 平均增加 1.5 个单位 B. y 平均增加 2 个单位 C . y 平均减少 1.5 个单位 D. y 平均减少 2 个单位 4.对于给定的两个变量的统计数据,下列说确的是( ) A .都可以分析出两个变量的关系 B .都可以用一条直线近似地表示两者的关系 C .都可以作出散点图 D. 都可以用确定的表达式表示两者的关系 5.对于两个变量之间的相关系数,下列说法中正确的是( ) A .|r|越大,相关程度越大 B .|r|,|r|越大,相关程度越小,|r|越小,相关程度越大 杯 数 24 34 39 51 63

C.|r|1且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小D.以上说法都不对 6.“吸烟有害健康”,那么吸烟与健康之间存在什么关系() A.正相关B.负相关C.无相关D.不确定 7.下列两个变量之间的关系不是函数关系的是() A.角度与它的余弦值B.正方形的边长与面积 C.正n边形的边数和顶点角度之和D.人的年龄与身高 8.对于回归分析,下列说法错误的是() A.变量间的关系若是非确定性关系,则因变量不能由自变量唯一确定 B.线性相关系数可正可负 C.如果,则说明x与y之间完全线性相关 D.样本相关系数 9.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立的做10次和15V次试验,并且利用线性回归方法,求得回归直线分布为和,已知 . .

多元线性回归模型公式

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量 y 受k 个自变量x 1,x 2,...,x k 的影响,其n 组观测值为(y a ,x 1a ,x 2a ,...,x ka ), a 1,.2..,n 。那么,多元线性回归模型的结构形式为: y a 1x 1a 2x 2a ... k x ka a (3.2.11) 式中: 0,1 ,..., k 为待定参数; a 为随机变量。 如果b 0,b 1,...,b k 分别为 0,1, 2 ... , k 的拟合值,则回归方程为 ?=b 0 b 1x 1 b 2x 2 ... b k x k (3.2.12) 式中: b 0为常数; b 1,b 2,...,b k 称为偏回归系数。 偏回归系数b i (i1,2,...,k )的意义是,当其他自变量 x j (j i )都固定时,自变量 x i 每 变化一个单位而使因变 量 y 平均改变的数值。 根据最小二乘法原理, i (i 0,1,2,...,k )的估计值b i (i 0,1,2,...,k )应该使 n 2 n 2 Q y a y a y a b 0 b1x1a b2x2a ... bkxk a min (3.2.13) a 1 a1 有求极值的必要条件得 Q n 2 y a y a 0 b 0 a 1 (3.2.14) Q n 2 y a yaxja 0(j 1,2,...,k) b j a1 将方程组(3.2.14)式展开整理后得:

回归分析及独立性检验的基本知识点及习题集锦

回归分析的基本知识点及习题 本周题目:回归分析的基本思想及其初步应用 本周重点: (1)通过对实际问题的分析,了解回归分析的必要性与回归分析的一般步骤;了解线性回归模型与函数模型的区别; (2)尝试做散点图,求回归直线方程; (3)能用所学的知识对实际问题进行回归分析,体会回归分析的实际价值与基本思想;了解判断刻画回归模型拟合好坏的方法――相关指数和残差分析。 本周难点: (1)求回归直线方程,会用所学的知识对实际问题进行回归分析. (2)掌握回归分析的实际价值与基本思想. (3)能运用自己所学的知识对具体案例进行检验与说明. (4)残差变量的解释; (5)偏差平方和分解的思想; 本周内容: 一、基础知识梳理 1.回归直线: 如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。 求回归直线方程的一般步骤: ①作出散点图(由样本点是否呈条状分布来判断两个量是否具有线性相关关系),若存在线性相关关系→②求回归系数→ ③写出回归直线方程,并利用回归直线方程进行预测说明. 2.回归分析: 对具有相关关系的两个变量进行统计分析的一种常用方法。 建立回归模型的基本步骤是: ①确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量; ②画好确定好的解释变量和预报变量的散点图,观察它们之间的关系(线性关系). ③由经验确定回归方程的类型. ④按一定规则估计回归方程中的参数(最小二乘法); ⑤得出结论后在分析残差图是否异常,若存在异常,则检验数据是否有误,后模型是否合适等. 3.利用统计方法解决实际问题的基本步骤: (1)提出问题; (2)收集数据; (3)分析整理数据; (4)进行预测或决策。 4.残差变量的主要来源: (1)用线性回归模型近似真实模型(真实模型是客观存在的,通常我们并不知道真实模型到底是什么)所引起的误差。 可能存在非线性的函数能够更好地描述与之间的关系,但是现在却用线性函数来表述这种关系,结果就会产生误差。这 种由于模型近似所引起的误差包含在中。 (2)忽略了某些因素的影响。影响变量的因素不只变量一个,可能还包含其他许多因素(例如在描述身高和体重 关系的模型中,体重不仅受身高的影响,还会受遗传基因、饮食习惯、生长环境等其他因素的影响),但通常它们每一个因素的影响可能都是比较小的,它们的影响都体现在中。 (3)观测误差。由于测量工具等原因,得到的的观测值一般是有误差的(比如一个人的体重是确定的数,不同的秤可 能会得到不同的观测值,它们与真实值之间存在误差),这样的误差也包含在中。 上面三项误差越小,说明我们的回归模型的拟合效果越好。

高中数学文科选修1-2知识点总结24035学习资料

高中数学选修1-2知识点总结 第一章 统计案例 1.线性回归方程 ①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系 ③线性回归方程:a bx y +=∧ (最小二乘法) 其中,1 22 1n i i i n i i x y nx y b x nx a y bx ==? -? ?=??-??=-??∑∑ 注意:线性回归直线经过定点),(y x . 2.相关系数(判定两个变量线性相关性):∑∑∑===----= n i n i i i n i i i y y x x y y x x r 1 1 2 21 )()() )(( 注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关; ⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几 乎不存在线性相关关系。 1.(2011·山东)某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x /万元 4 2 3 5 销售额y /万元 49 26 39 54 根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 ( ). A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元 解析 ∵x -=4+2+3+54=72,y -=49+26+39+54 4=42, 又y ^=b ^x +a ^必过(x -,y -),∴42=72×9.4+a ^,∴a ^ =9.1. ∴线性回归方程为y ^ =9.4x +9.1. ∴当x =6时,y ^ =9.4×6+9.1=65.5(万元). 答案 B

线性回归方程和卡方的求法

高考统计部分的两个重要公式的具体如何应用 第一公式:线性回归方程为???y bx a =+的求法: (1) 先求变量x 的平均值,既1231()n x x x x x n = +++???+ (2) 求变量y 的平均值,既1231()n y y y y y n =+++???+ (3) 求变量x 的系数?b ,有两个方法 法112 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆)[]112222212()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--=??-+-++-?? (需理解并会代入数据) 法21 2 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆) []1122222212...,...n n n x y x y x y nx y x x x nx ++-?=??+++-??(这个公式需要自己记忆,稍微简单些) (4) 求常数?a ,既??a y bx =- 最后写出写出回归方程???y bx a =+。可以改写为:??y bx a =-(?y y 与不做区分) 例.已知,x y 之间的一组数据: 求y 与x 的回归方程: 解:(1)先求变量x 的平均值,既1(0123) 1.54x = +++= (2)求变量y 的平均值,既1(1357)44 y =+++= (3)求变量x 的系数?b ,有两个方法

法1?b = []11223344222212342222()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--=??-+-+-+-??--+--+--+--==??-+-+-+-?? 法2?b =[][]11222222222212...011325374 1.5457 ...0123n n n x y x y x y nx y x x x nx ++-??+?+?+?-??==????+++-+++???? (4)求常数?a ,既525??4 1.577a y bx =-=-?= 最后写出写出回归方程525???77y bx a x =+=+ 第二公式:独立性检验 两个分类变量的独立性检验: 注意:数据a 具有两个属性1x ,1y 。数 据b 具有两个属性1x ,2y 。数据c 具有两个属性2x ,2y 数据d 具有两个属性2x ,2y 而且列出表格是最重要。解题步骤如下 第一步:提出假设检验问题 (一般假设两个变量不相关) 第二步:列出上述表格 第三步:计算检验的指标 22 ()()()()()n ad bc K a b c d a c b d -=++++ 2K =9大于表格中7.879,则查表可得结论:两个变量之间不相关概率为0.005,或者可以肯定的说两个变量相关的概率为0.995.或095.50 例如你计算出2K =6大于表格中5.024,则查表可得结论:两个变量之间不相关概率为0.025,或者可以肯定的说两个变量相关的概率为0.995.或097.50 上述结论都是概率性总结。切记事实结论。只是大概行描述。具体发生情况要和实际联 系!!!!

回归方程和独立性检验知识点

回归方程和独立性检验 知识点 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

回归分析和独立性检验 一、回归分析 1、回归直线方程 a x b y ???+= (x 叫做解释变量,y 叫做预报变量) 其中∑∑==---=n i i n i i i x x y y x x b 1 2 1 )() )((?= ∑∑==--n i i n i i i x n x y x n y x 1 2 21 (由最小二乘法得出,考试时给出此公式中的一 个) x b y a ??-= ( 此式说明:回归直线过样本的中心点)(y x , ,也就是平均值点。 ) 2、几条结论: (1)回归直线过样本的中心点)(y x ,。 (2)b>0时,y 与x 正相关,散点图呈上升趋势;b<0时,y 与x 负相关,散点图呈下降趋势。 (3)斜率b 的含义(举例): 如果回归方程为y=+2, 说明x 增加1个单位时,y 平均增加个单位; 如果回归方程为y=-+2,说明x 增加1个单位时,y 平均减少个单位。 (4)相关系数r 表示变量的相关程度。 范围:1≤r ,即 11≤≤-r r 越大.,相关性越强. 。0>r 时,y 与x 正相关;0

(完整版)线性回归方程-刷题训练

线性回归方程同步练习题(文科) 1.某化工厂为预测产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值, 计算,得∑8 i =1 x i =52,∑8 i =1y i =228,∑8 i =1x 2 i =478,∑8 i =1x i y i =1849,则其线性回归方程为( A ) A.y ^ =11.47+2.62x B.y ^ =-11.47+2.62x C.y ^ =2.62+11.47x D.y ^ =11.47-2.62x 解析 利用回归系数公式计算可得a =11.47,b =2.62,故y ^ =11.47+2.62x . 2.已知x 与y 之间的一组数据: x 0 1 2 3 y 1 3 5 7 则y 对x 的线性回归方程y =bx +A. (2,2) B. (1.5,3.5) C. (1,2) D. (1.5,4) 3. 设回归直线方程为y =2-1.5x ,若变量x 增加1个单位,则( C ). A. y 平均增加1.5个单位 B. y 平均增加2个单位 C. y 平均减少1.5个单位 D. y 平均减少2个单位 4.已知回归方程为y ?=0.50x-0.81,则x=25时,y ?的估计值为 .答案 11.69 5.下表是某厂1~4月份用水量月份x 1 2 3 4 用水量y 4.5 4 3 2.5 由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是y ^ =-0.7x +a ,则a 等于______. 解析 x =2.5,y =3.5,∵回归直线方程过定点(x ,y ),∴3.5=-0.7×2.5+a .∴a =5.25. 6.某服装商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x (℃) 17 13 8 2 月销售量y (件) 24 33 40 55 由表中数据算出线性回归方程y ^ =bx +a 中的b ≈-2,气象部门预测下个月的平均气温约为6℃,据此估计, 该商场下个月毛衣的销售量约为________件. 答案 46解析 由所提供数据可计算得出x =10,y =38,又b ≈-2代入公式a =y -b x 可得a =58, 即线性回归方程y ^ =-2x +58,将x =6代入可得. 7.正常情况下,年龄在18岁到38岁的人们,体重y (kg )依身高x (cm )的回归方程为y=0.72x-58.5。 张红红同学不胖不瘦,身高1米78,他的体重应在 69.66 kg 左右。 8.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形对应顺序是 . 答案 a,c,b 9.三点(3,10),(7,20),(11,24)的回归方程是 .答案 y ?=1.75x+5.75 10.使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.0

高中数学线性回归方程讲解练习题

教学步骤及教学内容 线性回归方程 (参考公式:b= ∑ i=1 n x i y i-n x y ∑ i=1 n x2i-n x2 ,a=y-b x) 1.实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为() A.y ^ =x+1 B.y ^ =x+2 C.y ^ =2x+1 D.y ^ =x-1 2.在比较两个模型的拟合效果时,甲、乙两个模型的相关指数R2的值分别约为0.96和0.85,则拟合效果好的模型是() A.甲B.乙C.甲、乙相同D.不确定 3.某化工厂为预测产品的回收率y,需要研究它和原料有效成分含量x之间的相关关系,现取8对观测值,计算,得∑ 8 i=1 x i=52,∑ 8 i=1 y i=228,∑ 8 i=1 x2i=478,∑ 8 i=1 x i y i=1849,则其线性回归方程为() A.y ^ =11.47+2.62x B.y ^ =-11.47+2.62x C.y ^ =2.62+11.47x D.y ^ =11.47-2.62x 4.下表是某厂1~4月份用水量(单位:百吨)的一组数据: 月份x 123 4 用水量y 4.543 2.5 由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是y ^ =-0.7x+a,则a等于______. 5.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数x (个) 2 3 4 5 加工的时间y (小时) 2.5 3 4 4.5 (1)在给定的坐标系中画出表中数据的散点图; (2)求出y 关于x 的线性回归方程y ^ =bx +a ,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少小时? 作业 布置 家长 意见 家长签名: 2013 年_月 _日 (第_ 次) 审阅人:

用最小二乘法求线性回归方程

最小二乘法主要用来求解两个具有线性相关关系的变量的回归方程,该方法适用于求解与线性回归方程相关的问题,如求解回归直线方程,并应用其分析预报变量的取值等.破解此类问题的关键点如下: ①析数据,分析相关数据,求得相关系数r,或利用散点图判断两变量之间是否存在线性相关关系,若呈非线性相关关系,则需要通过变量的变换转化构造线性相关关系. ②建模型.根据题意确定两个变量,结合数据分析的结果建立回归模型. ③求参数.利用回归直线y=bx+a的斜率和截距的最小二乘估计公式,求出b,a,的值.从而确定线性回归方程. ④求估值.将已知的解释变量的值代入线性回归方程y=bx+a中,即可求得y的预测值. 注意:回归直线方程的求解与应用中要注意两个方面:一是求解回归直线方程时,利用样本点的中心(x,y)必在回归直线上求解相关参数的值;二是回归直线方程的应用,利用回归直线方程求出的数值应是一个估计值,不是真实值. 经典例题: 下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为1,2.,……,17)建立模型①:y=+;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:y=99+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠并说明理由. 思路分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测. 解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–+×19=(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+×9=(亿元). (2)利用模型②得到的预测值更可靠.理由如下: (i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–+上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利

相关主题
文本预览
相关文档 最新文档