当前位置:文档之家› 人教版高数必修一第14讲:函数的应用(学生版)

人教版高数必修一第14讲:函数的应用(学生版)

人教版高数必修一第14讲:函数的应用(学生版)
人教版高数必修一第14讲:函数的应用(学生版)

函数的应用

__________________________________________________________________________________

__________________________________________________________________________________

1、利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.

2、体验指数函数等与现实世界的密切联系及其在刻画现实问题中的作用.

一、解应用题的策略:

特别提醒:

解答应用题重点要过三关:

(1)事理关:需要读懂题意,知道讲的是什么事件,即需要一定的阅读能力.如教材中讲的储蓄问题,要清楚什么是复利,各期的本利和如何变化,即变化规律是什么,只有搞清这些问题,才能准确表达本利和y与利率r及存期x的关系.(2)文理关:需把实际问题的文字语言转化为数学的符号语言,以把实际问题抽象为一个函数问题.(3)数理关:构建了数学模型后,要正确解答出数学问题,需要扎实的基础知识和较强的数理能力.

二、解决应用题的一般程序:

(1)审题:弄清题意,分清条件和结论,理顺数量关系;

(2)建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;

(3)解模:求解数学模型,得出数学结论;

(4)还原:将用数学知识和方法得出的结论,还原为实际问题的意义.

三、几种不同增长的函数模型

(1)指数函数模型: y=ab x+c(b>0,b≠1,a≠0)

(2)对数函数模型: y=m log a x+n(a>0,a≠1,m≠0)

类型一 指数函数模型

例1:某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下列问题:

(1)写出该城市人口总数y (万人)与年份x (年)的函数关系式;

(2)计算10年后该城市人口总数(精确到0.1万人);

(3)计算大约多少年后该城市人口将达到120万人(精确到1年).(取1.01210=1.127,log 1.0121.20

=15).

练习1:医学上为研究传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞的增长数与天数的记录如下表: 天数 1 2 3 4 5 6 病毒细胞个数 1 2 4

8 16 32 可杀死

其体内该病毒细胞的98%.

(1)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天,lg2=0.3010)

(2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天)

练习2:已知光线每通过一块玻璃板,光线的强度就失掉10%,要使通过玻璃板的光线的强度减

弱到原来强度的13

以下,则至少需要重叠玻璃板数为( ) A .8块

B .9块

C .10块

D .11块

类型二 对数函数模型

例2:燕子每年秋天都要从北方飞向南方过冬.研究燕子的科学家发现,2岁燕子的飞行速度可以表示为函数v =5log 2Q

10

,单位是m/s ,其中Q 表示燕子的耗氧量. (1)求燕子静止时的耗氧量是多少个单位;

(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?

练习1:大西洋鲑鱼每年都要逆流而上2 000 m ,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的

游速可以表示为函数y =12log 3x 100

,单位是m/s ,其中x 表示鲑鱼的耗氧量的单位数.

(2)计算一条鲑鱼静止时耗氧量的单位数;

(3)若鲑鱼A的游速大于鲑鱼B的游速,问这两条鲑鱼谁的耗氧量较大?并说明理由.

练习2:某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物.已知该动物繁殖数量y(只)与引入时间x(年)的关系为y=a log2(x+1),若该动物在引入一年后的数量为100,则到第7年它们的数量为( )

A.300 B.400

C.600 D.700

类型三函数模型的选取

例3:某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份数x的关系,根据已有的知识经验模拟函数可选用二次函数或函数y=ab x+c(其中a、b、c为常数),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明你的理由.

练习1:某公司拟投资100万元,有两种投资方案可供选择:一种是年利率10%,按单利计算,5年后收回本金和利息;另一种是年利率9%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年后可多得利息多少万元(结果精确到0.01万元)?

练习2:某山区为加强环境保护,绿色植被的面积每年都比上一年增长10.4%,那么,经过x年,绿色植被面积可以增长为原来的y倍,则函数y=f(x)的图象大致为( )

1、某工厂第三年的产量比第一年的产量增长44%,若每年的平均增长率相同(设为x),则下列结论中正确的是( )

A.x>22% B.x<22%

C.x=22% D.x的大小由第一年产量确定

2、某种细菌在培养过程中,每15 min分裂一次(由1个分裂成2个),则这种细菌由1个繁殖成212个需经过( )

C .3 h

D .2 h

3、某工厂生产两种成本不同的产品,由于市场销售发生变化,A 产品连续两次提价20%,B 产品连续两次降价20%,结果都以23.04元出售,此时厂家同时出售A 、B 产品各1件,盈亏情况是( )

A .不亏不赚

B .亏5.92元

C .赚5.92元

D .赚28.96元

4、某企业的产品成本前两年平均每年递增20%,经过改进技术,后两年的产品成本平均每年递减20%,那么该企业的产品成本现在与原来相比( )

A .不增不减

B .约增8%

C .约增5%

D .约减8%

5、(2014~2015学年度江苏泰州三中高一上学期期中测试)为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (mg)与时间t (h)成正

比;药物释放完毕后,y 与t 的函数关系式为y =? ??

??116t -a (a 为常数),如图所示.根据图中提供的信息,回答下列问题:

(1)从药物释放开始,每立方米空气中的含药量y (mg)与时间t (h)之间的函数关系式;

(2)据测定,当空气中每立方米的含药量降低到0.25 mg 以下时,学生方可进教室,那么从药物释放开始,至少需要经过多少小时后,学生才能回到教室?

_________________________________________________________________________________ _________________________________________________________________________________

基础巩固

1.据报道,全球变暖使北冰洋冬季冰雪覆盖面积在最近50年内减少了5%,如果按此速度,设2010年的冬季冰雪覆盖面积为m ,从2010年起,经过x 年后,北冰洋冬季冰雪覆盖面积y 与x 的函

A .y =0.95x 50 ·m

B .y =(1-0.05x 50 )·m

C .y =0.9550-x ·m

D .y =(1-0.0550-x )·m

2.某种型号的手机自投放市场以来,经过两次降价,单价由原来的2 000元降到1 280元,则这种手机平均每次降价的百分率是( )

A .10%

B .15%

C .18%

D .20%

3.抽气机每次可抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽(参考数据:lg2≈0.301 0)( )

A .6次

B .7次

C .8次

D .9次

4.某商品的市场需求量y 1(万件)、市场供应量y 2(万件)与市场价格x (元/件)分别近似地满足关系:y 1=-x +70,y 2=2x -20.y 1=y 2时的市场价格称为市场平衡价格,则市场平衡价格为________元/件.

5.某池塘中野生水葫芦的面积与时间的函数关系图象如图所示.假设其函数关系为指数函数,并给出下列说法:

①此指数函数的底数为2;

②在第5个月时,野生水葫芦的面积就会超过30 m 2;

③野生水葫芦从4 m 2蔓延到12 m 2只需1.5个月;

④设野生水葫芦蔓延至2 m 2、3 m 2、6 m 2所需的时间分别为t 1、t 2、t 3,则有t 1+t 2=t 3; ⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.

其中,正确的是________.(填序号).

能力提升

6.如图,由桶1向桶2输水,开始时,桶1有a L 水,t min 后,剩余水y L 满足函数关系y =a e -nt ,那么桶2的水就是y =a -a e -nt .假设经过5 min ,桶1和桶2的水相等,则再过____min ,桶1中的水只有a 8L.

7.一种产品的成本原来是a 元,在今后m 年内,计划使成本平均每年比上一年降低p %,则成本y 随经过的年数x 变化的函数关系为________.

8.某乡镇目前人均一年占有粮食360 kg ,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x 年后人均一年占有y kg 粮食,求函数y 关于x 的解析式.

9. 对于5年可成材的树木,在此期间的年生长率为18%,以后的年生长率为10%.树木成材后,即可出售,然后重新栽树木;也可以让其继续生长.问:哪一种方案可获得较大的木材量(注:只需考虑10年的情形)?

10. 已知函数f (x )=ax 3

-2ax +3a -4在区间(-1,1)上有一个零点.

(1)求实数a 的取值范围;

(2)若a =3217

,用二分法求方程f (x )=0在区间(-1,1)上的根.

人教版高中数学必修一-第三章-函数的应用知识点总结

高中数学必修一第三章函数的应用知识点总结(详细) 第三章函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数y=f(x),使f(x)=0 的实数x叫做函数的零点。(实质上是函数y=f(x)与x轴交点的横坐标) 2、函数零点的意义:方程f(x)=0 有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点 3、零点定理:函数y=f(x)在区间[a,b]上的图象是连续不断的,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)至少有一个零点c,使得f( c)=0,此时c也是方程f(x)=0 的根。 4、函数零点的求法:求函数y=f(x)的零点: (1)(代数法)求方程f(x)=0 的实数根; (2)(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点. 5、二次函数的零点:二次函数f(x)=ax2+bx+c(a≠0). 1)△>0,方程f(x)=0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点. 2)△=0,方程f(x)=0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程f(x)=0无实根,二次函数的图象与x轴无交点,二次函数无零点. 二、二分法 1、概念:对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。 2、用二分法求方程近似解的步骤: ⑴确定区间[a,b],验证f(a)f(b)<0,给定精确度ε; ⑵求区间(a,b)的中点c;

人教版数学必修一函数的单调性与最大值

一、函数的单调性 1.增函数和减函数 一般地,设函数f(x)的定义域为I 如果对于定义域I内某个区间D上的任意两个自变量的值,,当时,都有f()f(),那么就说函数f(x)在区间D上是减函数 2.函数的单调性与单调区间 如果函数y=f(x)在区间D上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有单调性,区间D叫做y=f(x)的单调区间 (1)在某个区间具有单调性:①这个区间可以是整个定义域.如:y=x 在整个定义域R上是增函数,②这个区间也可以是定义域的真子集,如:y=x2在定义域(-∞,+∞)上不具有单调性,但在(-∞,0 ] 上是减函数,在 [ 0,+∞)上是增函数

(2)单调性是函数在某一区间上的“整体”性质,因此定义中的,有以下几个特征:一是任意性,,即“任意取,”,“任意”两字不能丢;二是有大小,通常规定;三是属于同一单调区间(3)单调性能使自变量取值之间的不等关系和函数值得不等关系正逆互推,即由f(x)是增函数且f()< (4)有的函数不具有单调性,如函数y=,它的定义域为R,但不具有单调性,函数y=x+1,x∈Z它的定义域不是区间,也不能说它在其定义域上具有单调性 (5)如果函数f(x)在其定义域内的两个区间A,B 上都是增(减)函数,一般不能认为f(x)在A∪B上是增(减)函数,例如f(x)=在(-∞,0)上是减函数,在(0,+∞)上是减函数,但是不能说其在(-∞,0)∪(0,+∞)上是减函数,在这里,正确的写法应为:“(-∞,0),(0,+∞)”或“(-∞,0)和(0,+∞)” (6)图像特征:在某区间上,单调递增的函数f(x),从左向右看,其图像时上升的,单调递减的函数f(x),从左向右看,其图像时下降的 (7)函数在某一点处的单调性无意义

(完整)高一必修一基本初等函数知识点总结归纳,推荐文档

n a n a n ? (1)根式的概念 高一必修一函数知识点(12.1) 〖1.1〗指数函数 ① 叫做根式,这里 n 叫做根指数, a 叫做被开方数. ②当 n 为奇数时, a 为任意实数;当 n 为偶数时, a ≥ 0 . ?a (a ≥ 0) ③根式的性质: ( n a )n = a ;当 n 为奇数时, = a ;当 n 为偶数时, =| a |= ?-a . (a < 0) (2) 分数指数幂的概念 m ①正数的正分数指数幂的意义是: a n = (a > 0, m , n ∈ N + , 且 n > 1) .0 的正分数指数幂等于 0. a - m = ( )1 m ( ) 1(a > 0, m , n ∈ N , n > 1) ②正数的负分数指数幂的意义是: n n = n m + 且 .0 的负分数指数幂没有意 a a 义. 注意口诀:底数取倒数,指数取相反数. (3) 分数指数幂的运算性质 ① a r ? a s = a r +s (a > 0, r , s ∈ R ) ② (a r )s = a rs (a > 0, r , s ∈ R ) ③ (ab )r = a r b r (a > 0, b > 0, r ∈ R ) (4) 指数函数 函数名称 指数函数 定义 函数 y = a (a > 0 且 a ≠ 1)叫做指数函数 a > 1 0 < a < 1 图象 y 1 y O y a x (0,1) x y a x y 1 O y (0,1) x 定义域 R 值域 (0,+∞) 过定点 图象过定点(0,1),即当 x=0 时,y=1. 奇偶性 非奇非偶 单调性 在 R 上是增函数 在 R 上是减函数 函数值的变化情况 y >1(x >0), y=1(x=0), 0<y <1(x <0) y >1(x <0), y=1(x=0), 0<y <1(x >0) a 变化对 图象的影响 在第一象限内, a 越大图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越小图象越低,越靠近 x 轴. 例:比较 n a n n a m

必修一第二章--2.3函数应用-含答案

~ §函数的应用(I) 课时目标 1.能运用所学的函数知识、方法解决模型为一次函数、二次函数及分段函数的实际问题.2.通过对实际问题的解决、培养数学应用意识,用数学的眼光看问题,用数学的思想、方法、知识解决问题. 几类常见的函数模型 (1)一次函数模型:f(x)=kx+b (k、b为常数,k≠0); ] (2)反比例函数模型:f(x)=k x +b (k、b为常数,k≠0); (3)二次函数模型:f(x)=ax2+bx+c (a、b、c为常数,a≠0); (4)分段函数模型:这个模型实际是以上两种或多种模型的综合,因此应用也十分广泛. 一、选择题 1.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如右图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( ) A.310元B.300元 { C.290元D.280元 2.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( ) A.减少%B.增加% C.减少%D.不增不减 3. 某工厂的大门是一抛物线型水泥建筑物,大门的地面宽度为8m,两侧距地面3m高处各有一个壁灯,两壁灯之间的水平距离为6m,如图所示,则厂门的高为(水泥建筑物厚度忽视不计,精确到0.1m)( ) A.6.9mB.7.0mC.7.1mD.6.8m ¥

4.国家购买某种农产品的价格为120元/担,某征税标准为100元征8元,计划可购m 万担.为了减轻农民负担,决定税率降低x个百分点,预计收购量可增加2x个百分点.则税收f(x)(万元)与x的函数关系式为( ) A.f(x)=120m(1+2x%)(8-x)% (0

高中必修一函数的奇偶性详细讲解及练习(详细答案)

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围.分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x=1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数. (2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f

人教版九年级数学上册 22.3 二次函数与实际问题应用 能力提升练(一)

22.3 二次函数与实际问题应用能力提升练(一) 限时跟踪练习(一):30分钟 1.为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数. (1)求彩虹桥上车流密度为100辆/千米时的车流速度; (2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内? (3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值. 2.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y 只,y与x满足下列关系式: y=. (1)李明第几天生产的粽子数量为420只? (2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本) (3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?

3.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别 表示该产品每千克生产成本y 1(单位:元)、销售价y 2 (单位:元)与产量x(单位: kg)之间的函数关系. (1)请解释图中点D的横坐标、纵坐标的实际意义; (2)求线段AB所表示的y 1 与x之间的函数表达式; (3)当该产品产量为多少时,获得的利润最大?最大利润是多少? 4.某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上.在乒乓球运行时,设乒乓球与端点A 的水平距离为x(米),与桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据: t(秒)0 0.16 0.2 0.4 0.6 0.64 0.8 6 X(米)0 0.4 0.5 1 1.5 1.6 2 … y(米)0.25 0.378 0.4 0.45 0.4 0.378 0.25 … (1)当t为何值时,乒乓球达到最大高度? (2)乒乓球落在桌面时,与端点A的水平距离是多少? (3)乒乓球落在桌面上弹起后,y与x满足y=a(x﹣3)2+k. ①用含a的代数式表示k; ②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以 将球沿直线恰好擦网扣杀到A,求a的值.

(完整版)人教版高一数学必修一基本初等函数解析

基本初等函数 一.【要点精讲】 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根。即若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n ②性质:1)a a n n =)(;2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 。 (2).幂的有关概念 ①规定:1)∈???=n a a a a n (ΛN * ;2))0(10 ≠=a a ; n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ); 2)r a a a s r s r ,0()(>=?、∈s Q ); 3)∈>>?=?r b a b a b a r r r ,0,0()( Q )。 (注)上述性质对r 、∈s R 均适用。 (3).对数的概念 ①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b =,那么数b 称以a 为底N 的对数,记作,log b N a =其中a 称对数的底,N 称真数 1)以10为底的对数称常用对数,N 10log 记作N lg ; 2)以无理数)71828.2(Λ=e e 为底的对数称自然对数,N e log ,记作N ln ; ②基本性质: 1)真数N 为正数(负数和零无对数);2)01log =a ;

(完整版)高中数学必修一函数大题(含详细解答)

高中函数大题专练 1、已知关于x 的不等式2 (4)(4)0kx k x --->,其中k R ∈。 ⑴试求不等式的解集A ; ⑵对于不等式的解集A ,若满足A Z B =I (其中Z 为整数集)。试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合 B ;若不能,请说明理由。 2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。 ① 对任意的[0,1]x ∈,总有()0f x ≥; ② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2 ()g x x =与()21x h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。 3.已知函数| |212)(x x x f - =. (1)若2)(=x f ,求x 的值; (2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x ?-? =??? 0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2 =++c x bf x f 有7个不同实数解,求,b c 满足的条件. 5.已知函数()(0)|| b f x a x x =- ≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围; (2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是 [,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探 求,a b 应满足的条件。

专题2.6二次函数的应用(1)抛物型问题-2020-2021学年九年级数学上册(原卷版)【人教版】

2020-2021学年九年级数学上册尖子生同步培优题典【人教版】 专题2.6二次函数的应用(1)抛物型问题 姓名:__________________ 班级:______________ 得分:_________________ 注意事项: 本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2019秋?大安市期末)如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加() A.1 m B.2 m C.3 m D.6 m 2.(2019秋?江岸区校级月考)如图,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的 关系是y=?1 12 x2+23x+53,则此运动员把铅球推出多远() A.12m B.10m C.3m D.4m 3.(2020?武汉模拟)从地面竖直向上先后抛出两个小球,小球的高度h(单位:m)与小球运动时间t(单 位:s)之间的函数关系式为h=?40 9(t﹣3) 2+40,若后抛出的小球经过2.5s比先抛出的小球高 10 3 m, 则抛出两个小球的间隔时间是()s. A.1B.1.5C.2D.2.5 4.(2020?长春模拟)某广场有一个小型喷泉,水流从垂直于地面的水管OA喷出,OA长为1.5m.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为3m.建立平面直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间近似满足函数关系y =ax2+x+c(a≠0),则水流喷出的最大高度为()

高一数学必修一第三章函数的应用知识点总结.docx

第三章函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数y = /(x)(xeD),把使/(x) = 0成立的实数无叫做函数y = f(x)(xeD)的零点。 2、函数零点的意义:函数y = /(x)的零点就是方程/(x) = 0实数根,亦即函数y = /(x)的图象与 兀轴交点的横坐标。 即:方程/(%) = 0有实数根o函数y = /(x)的图象与兀轴有交点o函数y = /(x) 有零点. 3、函数零点的求法: ①(代数法)求方程f(x) = 0的实数根; ? (几何法)对于不能用求根公式的方程,可以将它与函数y = /(x)的图象联系起來, 并利用函数的性质找出零点. 4、基本初等函数的零点: ①正比例函数y = kx(k 0)仅有一个零点。 ②反比例函数y =-伙H 0)没有零点。 x ③一次函数y = 伙工0)仅有一个零点。 ④二次函数y = ax2 + bx^- c(a H 0). (1)A> 0 ,方程ax2+bx+c = 0(a^0)有两不等实根,二次函数的图象与兀轴有两个交点,二次 函数有两个零点. (2)A=0,方程加+C =0(QH0)有两相等实根,二次函数的图象与兀轴有一个交点,二次函数 有一个二重零点或二阶零点. (3)A<0,方程a^+fex+c = 0(dH0)无实根,二次函数的图象与x轴无交点,二次函数无零点. ⑤指数函数y = a x(a > 0,且o h 1)没有零点。 ⑥对数函数歹=log“ x(a > 0,且a工1)仅有一个零点1. ⑦幕函数丁 =屮,当〃>0时,仅有一个零点0,当〃50时,没有零点。 5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把/(兀)转化成/(x) = 0,再把 复杂的函数拆分成两个我们常见的函数)[,儿(基本初等函数),这另个函数图像的交点个数就是函数/ (兀)零点的个数。 6、选择题判断区间(a,b)上是否含有零点,只需满足/(a)/(b)<0。 试判断方程X4-X2+2X-1= 0在区间[0, 2]内是否有实数解?并说明理由。

【新教材】人教版《3.4 函数的应用(一)》教学设计(2套)

【新教材】3.4 函数的应用(一) (人教A版) 客观世界中的各种各样的运动变化现象均可表现为变量间的对应关系,这种关系常常可用函数模型来描述,并且通过研究函数模型就可以把我相应的运动变化规律. 课程目标 1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题; 2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性. 数学学科素养 1.数学抽象:总结函数模型; 2.逻辑推理:找出简单实际问题中的函数关系式,根据题干信息写出分段函数; 3.数学运算:结合函数图象或其单调性来求最值. ; 4.数据分析:二次函数通过对称轴和定义域区间求最优问题; 5.数学建模:在具体问题情境中,运用数形结合思想,将自然语言用数学表达式表示出来。 重点:运用一次函数、二次函数、幂函数、分段函数模型的处理实际问题; 难点:运用函数思想理解和处理现实生活和社会中的简单问题. 教学方法:以学生为主体,采用诱思探究式教学,精讲多练。 教学工具:多媒体。 一、情景导入 我们学习过了一次函数、二次函数、分段函数、幂函数等都与现实世界有紧密联系,请学生们举例说明与此有关的生活实例.

要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探. 二、预习课本,引入新课 阅读课本93-94页,思考并完成以下问题 1.一、二次函数、反比例函数的表达形式分别是什么? 2.幂函数、分段函数模型的表达形式是什么? 3.解决实际问题的基本过程是? 要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。 三、新知探究 1.常见的数学模型有哪些? (1)一次函数模型:f(x)=kx+b(k,b为常数,k≠0); +b(k,b为常数,k≠0); (2 )反比例函数模型:f(x)=k x (3)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0); (4)幂函数模型:f(x)=ax n+b(a,b,n为常数,a≠0,n≠1); (5)分段函数模型:这个模型实则是以上两种或多种模型的综合,因此应用也十分广泛. 2.解答函数实际应用问题时,一般要分哪四步进行? 提示:第一步:分析、联想、转化、抽象; 第二步:建立函数模型,把实际应用问题转化为数学问题; 第三步:解答数学问题,求得结果; 第四步:把数学结果转译成具体问题的结论,做出解答. 而这四步中,最为关键的是把第二步处理好.只要把函数模型建立妥当,所有的问题即可在此基础上迎刃而解. 四、典例分析、举一反三 题型一一次函数与二次函数模型的应用 例1(1)某厂日生产文具盒的总成本y(元)与日产量x(套)之间的关系为y=6x+30 000,而出厂价格为每套12元,要使该厂不亏本,至少日生产文具盒( ) A.2 000套 B.3 000套 C.4 000套 D.5 000套 (2)某水果批发商销售每箱进价为40元的苹果,假设每箱售价不得低于50元且不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱.价格每提高1元,平均每天少销售3箱. ①求平均每天的销售量y(箱)与销售单价x(元/箱)之间的函数关系式; ②求该批发商平均每天的销售利润w(元)与销售单价x(元/箱)之间的函数关系式; ③当每箱苹果的售价为多少元时,可以获得最大利润?最大利润是多少? 【答案】(1)D (2)见解析 【解析】(1)因利润z=12x-(6x+30 000), 所以z=6x-30 000,

高中数学必修一《函数的最值课时作业》

函数的最值课时作业 一、选择题 1.设函数f (x )的定义域为R ,以下三种说法:①若存在常数M ,使得对任意x ∈R ,有f (x )≤M ,则M 是f (x )的最大值;②若存在x 0∈R ,使得对任意x ∈R ,且x ≠x 0有f (x )<f (x 0),则f (x 0)是f (x )的最大值;③若存在x 0∈R ,使得对任意x ∈R ,且x ≠x 0有f (x )≤f (x 0),则f (x 0)是f (x )的最大值.其中正确的个数为( ) A .0 B .1 C .2 D .3 2.函数f (x )=? ?? 2x +6,x ∈(1,2],x +7,x ∈[-1,1],则f (x )的最大值、最小值是( ) A .10,6 B .10,8 C .8,6 D .以上都不对 3.(2013~2014石家庄高一检测)若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( ) A .2 B .-2 C .2或-2 D .0 4.函数f (x )=x 2-4x +3,x ∈[1,4],则f (x )的最大值为( ) A .-1 B .0 C .3 D .-2 5.函数f (x )=2x -1+x 的值域是( ) A .[12,+∞) B .(-∞,12] C .(0,+∞) D .[1,+∞) 6.若0

人教版九年级数学二次函数应用题含答案

人教版九年级数学二次函数实际问题(含答案) 一、单选题 1.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为? [????] ?A.28米? ?B.48米 ?C.?68米?? ?D.88米 2.由于被墨水污染,一道数学题仅能见到如下文字:y=ax2+bx+c的图象过点(1,0)……求证这个二次函数的图象关于直线x=2对称.,题中的二次函数确定具有的性质是??? [????] A.过点(3,0)? B.顶点是(2,-1)? C.在x轴上截得的线段的长是3?? D.与y轴的交点是(0,3) 3.某幢建筑物,从10m高的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直),如图,如果抛物线的最高点M离墙1m,离地面m,则水流落地点B离墙的距离OB是??? A.2m???? B.3m?? C.4m???? D.5m 4.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是,则该运动员此次掷铅球的成绩是 [????] A.6m???? B.8m????

C.?10m?? D.12m 5.某人乘雪橇沿坡度为1:的斜坡笔直滑下,滑下的距离S(m)与时间t(s)间的关系为S=l0t+2t2,若滑到坡底的时间为4s,则此人下降的高度为???? [????] A.72m?? B.36m C.36m?? D.18m 6.童装专卖店销售一种童装,若这种童装每天获利y(元)与销售单价x(元)满足关系y=-x2+50x-500,则要想获得最大利润,销售单价为 [????] A.25元???? B.20元?? C.30元???? D.40元 7.中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门距横梁底侧高)入网.若足球运行的路线是抛物线y=ax2+bx+c所示,则下列结论正确的是 ①a<;②0;④0

(新)高中数学必修一函数部分难题汇总

函数部分难题汇总 1.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 2.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( ) A .沿x 轴向右平移1个单位 B .沿x 轴向右平移 1 2个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移1 2 个单位 3.设? ??<+≥-=)10()],6([) 10(,2)(x x f f x x x f 则)5(f 的值为( ) A .10 B .11 C .12 D .13 4.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( ) A .[]052 , B. []-14, C. []-55, D. []-37, 5.函数x x x y += 的图象是( ) 6.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( ) A .)2()1()2 3(f f f <-<- B .)2()2 3()1(f f f <-<- C .)23()1()2(-<-

高中数学必修一 函数的应用

函数的应用 教学目标 知识目标: 使学生能根据实际问题抽象出函数的数学模型; 使学生学会用数形结合的思想解决函数值大小比较的实际问题; 能力目标: 培养学生数学的应用意识,提高解决实际问题的能力; 情感目标: 培养学生学习数学的兴趣和积极性。 教学重点和难点: 使学生学会从实际问题抽象出函数的数学模型,并用数形结合的思想解决函数值大小比较的实际问题。 课前准备:学生调查桑塔纳出租车计价情况 教学过程: 一、复习 提问:我们已学的一次函数、正比例函数、常值函数都可用怎样的函数解析式表示? y=kx+b :当k 0≠时是一次函数;当k 0≠,b=0时是正比例函数;当k=0时是常值函数。 [说明:渗透分类的数学思想,明确函数间的关系] 二、函数的应用 1、 龟兔赛跑(动画演示) 师:兔子在醒来后,发现乌龟已在自己前面2500米处,很后悔,以每小时跑3000米的速度奋力去追,而乌龟仍以每小时500米的速度继续前进,那么谁能胜利呢? 师:你能用学过的方法直观地反映这一问题吗? (学生讨论后回答) 若设兔子醒后追赶了t 小时,龟、兔离开兔子睡觉处的路程S (米)与时间t (小时)各是什么关系?并在同一直角坐标系内画出图象。 (学生回答) 师:(板书)兔:1S =3000t ()0≥t ; 龟:t S 50025002+= ()0≥t ; (图象实物投影) 师:图象的交点表示什么实际意义?交点左侧表示什么意义?右侧又表示什么意义呢? (学生回答后,老师归纳) 归纳:两图象交点表示当自变量为交点横坐标时,两函数值相等,且同为交点纵坐标;反映在龟兔赛跑中,即经过相同的时间,兔子正好追上乌龟; 交点左侧部分图象对于相同的自变量,两函数值不同,其中位于上方图象的函数值大于下方图象的相应函数值;反映在龟兔赛跑中,即乌龟跑在兔子前面, [说明:对学生 脑海中传统的龟兔赛跑的结局提出问题,引发学生兴趣的同时也引起学生的思考,从而考虑解决问题的方法;通过对函数图象的一系列问题这一师生间的互动,使学生充分认识图象获取信息,理解图象的实际含义,直观感受到数形结合解决这类问题的价值,从学法上给学生以指导,为后面学生自主解

人教版高一数学必修一基本初等函数解析(完整资料)

此文档下载后即可编辑 基本初等函数 一.【要点精讲】 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根。即若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n ②性质:1)a a n n =)(;2)当n 为奇数时,a a n n =; 3)当n 为偶数时,? ??<-≥==)0() 0(||a a a a a a n 。 (2).幂的有关概念 ①规定:1)∈???=n a a a a n (ΛN * ;2))0(10 ≠=a a ; n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ); 2)r a a a s r s r ,0()(>=?、∈s Q ); 3)∈>>?=?r b a b a b a r r r ,0,0()( Q )。 (注)上述性质对r 、∈s R 均适用。 (3).对数的概念 ①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b =,那么数b 称以a 为底N 的 对数,记作,log b N a =其中a 称对数的底,N 称真数 1)以10为底的对数称常用对数,N 10log 记作N lg ; 2)以无理数)71828.2(Λ=e e 为底的对数称自然对数,N e log ,记作N ln ;

(完整)高中数学必修一函数难题

高中函数大题专练 2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。 ① 对任意的[0,1]x ∈,总有()0f x ≥; ② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2()g x x =与()21x h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。 3.已知函数||2 12)(x x x f - =. (1)若2)(=x f ,求x 的值; (2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x ?-?=??? 0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件. 5.已知函数()(0)|| b f x a x x =-≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围; (2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是 [,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探求,a b 应满足的条件。 6、设bx ax x f += 2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。 7.对于函数)(x f ,若存在R x ∈0 ,使00)(x x f =成立,则称点00(,)x x 为函数的不动点。

人教版高中数学必修一《函数的应用》重难点解析(含答案)

人教版数学必修一第三章《函数的应用》重难点解析 第三章 课文目录 3.1 函数与方程 3.2 函数模型及其应用 重点: 1.通过用“二分法”求方程近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识. 2.认识指数函数、对数函数、幂函数等 函数模型的增长差异,体会直线上升、指数爆炸、对数增长的差异. 难点: 1.在利用“二分法”求方程近似解的过程中,对给定精确度的近似解的计算. 2.如何选择适当的函数模型分析和解决 实际问题. 一、方程的根和函数的零点 1.函数的零点 给出三个具体函数的图象——设置问题研究情景,通过对函数图像的观察,归纳出结论: 一元二次方程()002 ≠=++a c bx ax 的根,就是相应的二次函数 ()02≠++=a c bx ax y 的图象与x 轴的交点的横坐标。 我们把使()0=x f 的实数x 叫做函数()x f y =的零点。 注意函数的零点与方程的根间的联系和区别,二者不能混为一谈。 例1 函数322 --=x x y 的零点是( ) A .31=-=x x 或 B .()()030,1,或- C .31-==x x 或 D .()()030,1, 或- 函数的零点与方程的根——形数的结合的典范。利用学生熟悉的二次函数的图象和性

质,为理解函数的零点提供直观认识,为判定零点是否存在和求零点提供支持,使函数零点的求解与函数的变化建立联系。 为判断方程()0=x f 实数根的个数,只需观察函数()x f y =的图象与x 轴交点的个数——方程根的研究转化为函数零点的研究。 例2 判断方程062ln =-+x x 实根的个数。 2.函数零点存在的判定 引导学生观察图象连续的函数的变化情况,让学生通过连续的函数值的变化情况认识到: 当函数值由正变为负时必定经过一个零点; 当函数值由负变为正时必定经过一个零点。 由此概括得到函数零点存在的判定方法。 如果函数()x f y =在区间[]b a ,上的图象是连续不断的一条曲线,并且有 ()()0

人教版高中数学必修一函数知识点(精简版)

函数常考知识点汇总 1.2.1函数的概念 1、函数的概念 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A . 【定义域补充】 求函数的定义域时列不等式组的主要依据是 (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底数必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合. (6)指数为零底不可以等于零 (7)实际问题中的函数的定义域还要保证实际问题有意义. 3、相同函数的判断方法 (1)定义域一致;(2)表达式相同 (两点必须同时具备) 注意:两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。 1.2.2函数的表示法 4、函数图象知识 (Ⅰ)对称变换 ①将y= f(x)在x 轴下方的图象向上翻得到y=∣f(x)∣的图象如:书上P21例5 ②y= f(x)和y= f(-x)的图象关于y 轴对称。如1x x x y a y a a -?? === ??? 与 ③y= f(x)和y= -f(x)的图象关于x 轴对称。如1log log log a a a y x y x x ==-=与 6、函数的解析式 A 、如果已知函数解析式的构造时,可用待定系数法; B 、已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法; C 、若已知抽象函数表达式,则常用解方程组消参的方法求出f(x) 1.3.1函数单调性与最大(小)值 1、函数的单调性定义 设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1>且()f x 与()g x 都是增(减)函数,则()()f x g x g 也是增(减)函数; 若()0,()0f x g x <<且()f x 与()g x 都是增(减)函数,则()()f x g x g 也是减(增)函数; 5、函数的最大(小)值定义 (ⅰ)一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f(x)≤M ; (2)存在x 0∈I ,使得f(x 0) = M 那么,称M 是函数y=f(x)的最大值.

相关主题
文本预览
相关文档 最新文档