当前位置:文档之家› 如何用光时域反射计(OTDR)进行正确的光纤测试

如何用光时域反射计(OTDR)进行正确的光纤测试

如何用光时域反射计(OTDR)进行正确的光纤测试
如何用光时域反射计(OTDR)进行正确的光纤测试

如何用光时域反射计(OTDR)进行正确的光纤测试

用OTDR进行测试维护工作,首先应该对OTDR本身的各项参数进行正确的设置;其次是对OTDR各项技术指标的正确理解;第三个需要注意的是不同需求和不同测试环境对测试仪器指标的要求以及测试的方法;最后是对测量曲线的正确解读。

在进行正式的介绍之前,首先介绍几个关键的概念:菲涅尔反射,瑞利散射,背向散射法,OTDR的工作原理。

瑞利散射:光纤在加热制造过程中,热骚动使原子产生压缩性的不均匀,造成材料密度不均匀,进一步造成折射率的不均匀。这种不均匀在冷却过程中固定下来,引起光的散射,称为瑞利散射,是光纤本身固有的。

菲涅尔反射:菲涅尔反射就是大家平常所理解的光反射。该现象通常在不连续界面处发生(例如连接器、适配器等),是气隙、未对准、折射率不匹配等原因导致的结果。

需要注意的是能够产生后向瑞利散射的点遍布整段光纤,是一个连续的,而菲涅尔反射是离散的反射,它由光纤的个别点产生,能够产生反射的点大体包括光纤连接器(玻璃与空气的间隙)、阻断光纤的平滑镜截面、光纤的终点等。

背向散射法:背向散射法是将大功率的窄脉冲光注入待测光纤,然后在同一端,检测沿光纤轴向向后返回的散射光功率。由于光纤材料密度不均匀,其本身的缺陷和掺杂成分不均匀,引起光纤中小的折射率的变化,当光脉冲通过光纤传输时,沿光纤长度上的每一点均会引起瑞利散射。这种散射向四面八方,其中总有一部分会进入光纤的数值孔径角,沿光纤轴反向传输到输入端。瑞利散射光的波长与入射光的波长相同,其光功率与散射点的入射光功率成正比。测量沿光纤轴向返回的背向瑞利散射光功率可获得沿光纤传输损耗的信息,从而测得光纤的衰减。

OTDR的工作原理:OTDR 类似一个光雷达。它先对光纤发出一个测试激光脉冲,然后观察从光纤上各点返回(包括瑞利散射和菲涅尔反射)的激光的功率大小情况,这个过程重复的进行,然后将这些结果根据需要进行平均,并以轨迹图的形式显示出来,这个轨迹图就描述了整段光纤的情况。下图是OTDR的一个结构简图。

图1OTDR的原理图

第一部分:OTDR的参数设置

测试前对OTDR所进行的各项参数的设置对测试结果的精确和正确与否有很大的影响。

光时域反射计的测量设置参数:波长、脉冲宽度、测量范围、平均时间、折射率、散射系数。

波长:光纤在不同波长下的衰减特性是不一样的,了解光链路的衰减量是用户测试最重要的目的。一般而言,OTDR提供1310nm/1550nm两个单模波长或850nm/1300nm两个多模波长,个别也有只提供单波长的情况,但提供双波长的是多数情况。因此,OTDR的设置中,有让用户选择测量波长的选项,用户在使用时应注意设置你所关心的测量波长。

脉冲宽度:脉宽指注入被测光纤的光脉冲信号高功率信号的宽度,脉宽越宽,反向信号越强,OTDR可以有效探测的距离越远,但宽脉宽会引起起始反射信号饱和,引起大的盲区。因此,脉宽的选择是与测量光纤的长度有关系的。长度越长,脉宽越宽。一般的OTDR脉宽从10ns—10μs分若干档供用户选择。智能化高的OTDR还会将脉宽设置与测量距离设置关联起来,拒绝短的距离与宽脉宽组合或长的距离与窄脉宽组合。用户在使用OTDR时,可以根据经验选择合适的脉宽设置。

测量范围:用户根据被测光纤的总长度选择测量长度范围。过长的选择会引起测量时间的加长,过短的选择会引起尾部的光纤无法被检测到。测量时选取适当的测试距离可以生成比较全面的轨迹图,对有效的分析光纤的特性有很好的帮助,通常根据经验,选取整条光路长度的1.5 - 2 倍之间最为合适。

平均时间:由于后向散射光信号极其微弱,一般采用统计平均的方法来提高信噪比,平均时间越长,信噪比越高。例如,3分钟的获取将比1分钟的获取提高0.8dB的动态。但超过10分钟的获取时间对信噪比的改善并不大。一般平均时间不超过3分钟。

折射率:OTDR通过测量从发射光到接收到反射所经过的时间来计算到事件的距离。这可能是前面板连接器反射的上升沿或来自某一连接器的反射。显示的距离和测量的时间通过折射率相联系。这表示折射率的变化会导致计算出的距离发生变化。

折射率是光纤的固有参数,取决于所用光纤的材料,因此应由光纤或光缆供应商提供。了解所测量光纤的折射率是非常重要的。由于折射率不准确所造成的误差通常大于仪器的误差。折射率在1.30000到1.70000之间由用户选择,改变群折射率设置会使OTDR测距结果发生变化。

折射率的定义:

=(真空中的光速)

折射率

(光脉冲在光纤中的速度)

散射系数:散射系数是散射回OTDR光线量的度量。它会影响回波损耗和反射级别的测量值。散射系数是OTDR输出处的光脉冲功率(不是能量)与光纤近端处的后向散射功率的比率。此比率以dB为单位。因为光脉冲功率与脉冲宽度相互独立,所以此比率与脉冲宽度成反比。

第二部分:正确的理解OTDR各项性能参数的含义

动态范围:它表示后向散射开始与噪声峰值间的功率损耗比。它决定了OTDR所能测得的最长光纤距离。如果 OTDR 的动态范围较小,而待测光纤具有较高的损耗,则远端可能会消失在噪声中。

目前有两种定义动态范围的方法:

峰值法:它测到噪声的峰值,当散射功率达到噪声峰值即认为不可见。

SNR=1 法:这里动态范围测到噪声的rms电平为止,对于同样性能的OTDR来讲,其指标高于峰值定义大约2.0dB。

图2 动态范围的定义

盲区:盲区是指两个靠的很近但仍可分别测量出来的事件,如果事件靠的太近,OTDR 会把他们当成一个点。有时把盲区叫做两个事件的分辨率。盲区也如动态范围那样,有它自己的指标。经常发生把事件盲区与衰减的事件盲区混为一谈的误解。

衰减盲区:衰减盲区是强反射覆盖了测量数据的那部分OTDR轨迹。它的发生是由于强信号使接收器饱和,并且需要一定时间进行恢复。衰减盲区描述了从反射点开始(C点)到接收点恢复到后向散射电平约0.5dB(D点)范围内的这段距离。这是OTDR能够再次测试衰减和损耗的点。衰减盲区是指两个反射事件之间的最小距离,但是能够分别测出他们各自的损耗。

事件盲区:事件盲区是反映两个反射事件之间的最小距离,仍可分辨出它们是两个彼此分开的事件。能够分别测出他们的距离,但是不能分别测出它们各自的损耗。从OTDR接收到的反射点开始到OTDR恢复的最高反射点1.5dB以下的这段距离(A,B两点之间),这里可以看到是否存在第二个反射点,但是不能测试衰减和损耗。

图3 “衰减盲区”和“事件盲区”示意图

动态范围和盲区成正比关系。动态范围越大,盲区就越大。就是说,如果需要更长的动态范围来测量较长的光纤,就必须有更宽的测试脉冲。测试脉冲越宽,盲区就越长。对于长度较短的光纤,OTDR 不可能有“高动态范围”。

第三部分:不同需求和不同测试环境对测试仪器指标的要求以及测试的方法

正确的是用OTDR 进行测试应该注意以下几点:测试场合对仪器技术指标的要求,参数设置是否正确,所要测量的光纤与仪器所提供的能力是否相符,测试方法是否正确。

(1)测试场合的要求:

在对楼宇或小范围的光纤进行测试和调试时,短盲区比动态范围重要得多。由于距离较短,不需要较大的动态范围。但是为了检测出跳线和光纤链路两端的损耗,需要短盲区。

对于长距离(超过20公里)光纤测试和诊断,由于光纤本身会产生大量的损耗,因此对于长距离光纤链路,动态范围就是一项重要的指标了。

折射率与散射系数的校正:就光纤长度测量而言,折射系数每0.01的偏差会引起7m/km 之多的误差,对于较长的光线段,应采用光缆制造商提供的折射率值。

(2)参数设置是否正确:

脉冲宽度的设置:在光功率大小恒定的情况下,脉冲宽度的大小直接影响着光的能量的

大小,光脉冲越长光的能量就越大。同时脉冲宽度的大小也直接影响着测试盲区的大小,也就决定了两个可辨别事件之间的最短距离,即分辨率。显然,脉冲宽度越小,分辨率越高,脉冲宽度越大分辨率越低。

折射率的设置:折射率与距离测量有关。

OTDR 上显示的距离

×=测量的时间(真空中的光速)距离折射率

因此,了解所测量光纤的折射率是非常重要的。由于折射率不准确所造成的误差通常大

于仪器的误差。折射率取决于所用光纤的材料,因此应由光纤或光缆供应商提供。

(3)所要测量的光纤与仪器所提供的能力是否相符:

动态范围常用作比较OTDR 测量距离的标准。

OTDR 的最大距离范围如下定义:

max max min =距离范围()动态范围()每公里光纤损耗()

应该明白,实际上动态范围指标是很不同的。各种OTDR 却有着相同的测量距离和熔接点测量范围。动态范围测量的是随机噪声的有效值(rms)。购买OTDR 的目的是用来测量光纤熔接点的性能,并非测量随机噪声。动态范围与定位/测量光纤的长度之间有很大差别,粗略估计、要从测量的动态范围中减去6dB。

在购买OTDR 时,首先应确定出需要测量的动态范围有多大。因此,在购买OTDR 之前应该考虑以下几个问题:

你的系统将运行在什么波长?动态范围相同,1550nm 的波长比1310nm 的波长传输的更远。要考虑到在几年之内波长可能有所改变。若用1310nm 的波长,衰减约为0.4dB/KM,用1550nm 波长衰减约为0.2dB/KM。

现在用的最长光纤和将来要用的光纤有多长?这与你需要用的实际测量范围有关。光纤的衰减量等于系统长度乘以每km 的dB 数(db/KM)。

光纤线路上还有其它什么衰减?影响光纤传输性能的主要参数是光功率损耗。损耗主要是由光纤本身、接头和熔接点造成的。但由于光纤的长度、接头和熔接点数目的不定,造成光纤链路的测试标准不象双绞线那样是固定的,因此对每一条光纤链路测试的标准都必须通过计算才能得出。

具体计算公式如下:

光纤链路的损耗极限=光纤长度*损耗系数+每个接头损耗值*数量+每个熔接点损耗值*数量

光缆衰减(dB) = 衰减系数(dB/km) ×长度(Km)

接头衰减(dB) = 接头个数×接头损耗(dB)

熔接衰减(dB) = 熔接个数×熔接损耗(dB)

与你希望测量的光纤最末端相比,至少要增加6dB 的动态范围。

(4)测试方法是否正确:

在有些不良接头的情况下,可能会看到一些反射。一些接头会显示为增益器,功率电平似乎增加。这是由接头前后的光纤后向散射系数的不同造成的。如果在一个方向上测量时看到增益器,则从光纤的另一端进行测量。您将看到在光纤中此点的损耗。增益器和损耗(“平均损耗值”)的差值显示此点的实际损耗。这就是建议您进行光纤的双向取平均测量的原因所在。

在判定盲区时有两个问题:第一,光纤系统中事件分开的距离有多远?你必须能测量各

个熔接点;第二,OTDR盲区指标有何限定?中等跨度的事件,如间隔为1~2KM的事件对OTDR 来说一般不成问题,除非系统光纤路很长。最坏情况是,同时测量长线远端的靠得很近的熔接点。许多OTDR说明书列出的盲区使用短脉冲测量的,要知道短脉冲只适于测量短光纤。

平均时间(补充)

第四部分:对测量曲线的正确解读

在说明测量曲线之前,先来说明几个概念。

光纤上的事件是指除光线材料自身正常散射以外的任何导致损耗或反射的事物。包括各类连接及弯曲、裂纹或断裂等损伤。事件可以为反射或非反射。

反射事件:当一些脉冲能量被反射,例如在连接器上,反射事件发生。反射事件在轨迹中产生尖峰信号。

非反射事件:非反射事件在光纤有一些损耗但没有光反射的部分发生非。非反射事件在轨迹上产生一个倾角。

OTDR轨迹在屏幕上以图形化方式显示测量结果。纵轴显示功率,横轴显示距离。测试的轨迹图显示返回信号相对于距离的功率。用该信息,可以确定一个链接的重要特征。

OTDR的测量结果中应提供:

※衰减信息

※单位距离的衰减(dB/km)

※事件信息,断点,连接点,熔接点

※反射率

※光纤的距离(用给定的两点)

一个典型的OTDR轨迹图

上图显示了一个典型的OTDR轨迹图。在图中可以看到在光纤的开始和结束的强反射;光纤链路结束后的噪声,光纤正常的衰减。光纤的开始总是显示前部连接器处的强反射,在光纤结束处轨迹下降到噪声电平以前也会看到强反射。

接下来应该注意链路中的连接器引起的反射和损耗,连接器会同时导致反射和损耗。

熔融接头是非反射事件,只能检测到损耗。在有不良接头的情况下,可能会看到一些反

射。一些接头显示为增益器,功率电平似乎增加。这是由接头前后的光纤后向散射系数不同

造成的。如果在一个方向上测量时看到增益,则从光纤的另一端进行测量,将看到光纤中此点的损耗。增益和损耗的差值显示此点的实际损耗。这就是建议您进行光纤的双向取平均测量的原因。

光纤的弯曲会导致损耗,但它们是非反射事件。

裂纹是指导致反射和损耗的部分损坏的光纤。反射的级别和损耗在光缆移动时可能会改变。

参考文献:

1、《为明天的光纤局域网保驾护航(白皮书)》,作者:美国fluke公司。

2、《E6000C Mini-OTDR User’s Guide》,Agilent Technologies。

3、《Optical Time Domain Reflectometers Pocket Guide》,Agilent Technologies。

4、《现场应用中的 ORL 测量》,作者:EXFO CHINA。

5、《光纤电视传输技术》,电子工业出版社,作者:林如俭。

6、《DS3620使用说明书》,作者:天津市德力电子仪器有限公司。

7、《光时域反射计的评估》,电子测试杂志,作者:不详。

光纤损耗测试方法及其注意事项(1)

光纤损耗测试方法及其注意事项1 引言 由于应用和用户对带宽需求的进一步增加和光纤链路对满足高带宽方面的巨大优势,光纤的使用越来越多。无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/ TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier 1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier 2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。? 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A 和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,我们分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 那么这三种方法各有什么特点,怎么操作,应该在什么场合下使用呢?这正是本文要阐述的问题。另外,光纤链路的测试,不同于双绞线链路的测试,又有什么地方需要注意或者有什么原则可以遵循呢?这也是本文想与读者分享的内容。 2 如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 下面我们具体介绍一下标准中定义的三种测试损耗的方法(以双向测试为例)。 2.1 测试方法A

光缆测试报告两篇

光缆测试报告两篇 篇一:光缆测试报告 工程名称: 生产厂家测试日期20XX年01月20日测试地点S36风机温度 0 ℃ 光缆盘号001 光纤芯数24 测试波长 ≤1310 nm 测试项目□开盘测试 标称长度4200 m 外层损伤无光纤封头完好 实测长度4200 m 线盘质量完好无损坏 □接头衰减测 试 接头桩号A3 接头塔号A3 □纤芯衰减测 试 测试线路长度0. 844km 方向升压站至S36风机 纤芯序号纤芯色别纤芯衰减(db/km) 纤芯序号纤芯色别 纤芯衰减(db/km)允许值实测值允许值实测值 1 B ≤0.35 0.3 2 18 W ≤0.35 0.31 2 OR ≤0.35 0.32 19 R ≤0.35 0.30 3 G ≤0.35 0.31 20 N ≤0.35 0.31 4 BR ≤0.3 5 0.30 21 Y ≤0.35 0.32

5 GR ≤0.35 0.31 22 V ≤0.35 0.31 6 W ≤0.35 0.32 23 P ≤0.35 0.30 7 R ≤0.35 0.31 24 AQ ≤0.35 0.31 8 N ≤0.35 0.31 25 9 Y ≤0.35 0.30 26 10 V ≤0.35 0.31 27 11 P ≤0.35 0.32 28 12 AQ ≤0.35 0.31 29 13 B ≤0.35 0.30 30 14 OR ≤0.35 0.31 31 15 G ≤0.35 0.32 32 16 BR ≤0.35 0.31 33 17 GR ≤0.35 0.30 34 测试仪器:采用XX牌OTDR(光时域反射仪),具体型号为S20。 测试结论:经测试光缆熔接损耗值符合图纸设计及规范要求,可以投入运行。 试验单位(盖章):审核人: 年月日 光缆测试报告 工程名称:

光纤传输损耗测试-实验报告

光纤传输损耗测试-实验报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成

2016 年05 月日 预习报告 一、实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、实验仪器 20MHz双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、实验原理 αλ,其含义为单位长度光纤引起的光纤在波长λ处的衰减系数为()

光功率衰减,单位是dB/km 。当长度为L 时, 10()()lg (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G.650、G.651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。 偏置电路 注入系统 光源 滤模器 包层模 剥除器 被测光纤 检测器 放大器电平测量 图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条件)由于插入被测光纤引起的功率损耗。显然,功率 1 P 、 2 P 的测量 没有截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。

OTDR(光时域反射仪)操作手册

CMA8800光时域反射测试仪 操 作 手 册 郑州维修中心

目录 第一章快速开始 第二章概览 第三章OTDR测量模式 第四章储存及打印功能 附录 CMA8800的特点及日常维护

第一章快速开始 1.1仪器供电 CMA8800是通过220VAC适配器/充电器从外部供电。 注意:CMA8800不能用内置电池供电! 电源开关位于上面板的右侧。按下开关即可启动。 1.2启动顺序 当该单元上电后,首先出现了一个开始画面,包括软件版本及日期,接着单元进行自检。结果显示如图1-2所示。 当自检结束后,按下PAUSE可以读屏幕上的信息。按下“继续”可以继续进行操作。 图1-2典型设备和自检屏幕 1.3操作模式选择屏幕 当上电完成后,将显示一个可供选择模式的屏幕,每一种可见的模式均位于相应软键的旁边,你只要按下相应的键就按相应的模式进行操作。这里为有经验的用户出了每一种模式的快速操作信息,详细的信息见于手册中后面的章节。

1.3.1故障定位模式 故障定位模式是一种快速确定光纤端/断点位置的方法。当你按下FAULT LOCATE,首先就开始一个光纤接口质量的检查(如果在附加设置中,光纤接口质量的检查功能已启动),这个检查会告诉你基于用户在快速设置菜单中所定义的背向散射系数的连接是不好的、一般的还是好的。当检查进行测试完成后,光纤端/断点显示如图1-4所示。 通过按下硬键TEST/STOP或者模式屏幕软键可使测试取消,

1.3.2配置模式 按“配置模式”键进入“快速设置菜单”屏,在这里设置自动测试功能及测量参数,参见3.1节和3.2关于快速设置和附加设置的信息 按“启动”键显示光纤存储信息屏幕(如图1-5所示),从这里你可以输入描述新的测试的信息,按“继续”就到达了连接光纤屏幕,接着再按“继续”就开始进行测试。 如需要,此时可按“模式屏”回到模式选择屏幕。 1.3.3专家模式 专家级的OTDR模式是为那些想应用CMA8800更先进功能的用户而设计的,所有的OTDR功能均见于这种模式。 按软键“专家模式”进入快速设置菜单(参见图3-1);在此处,你可以在测试之前设置所有的必要的参数;目前的设置决定了自动执行哪些操作功能,如果“全自动”设为开,则所有的操作均被认定为自动执行,如果“全自动”设为关,则你必须选择哪一种操作是自动执行的。 按下“启动”进入显示曲线屏幕,按下硬键“REAL TIME”开始运行实时扫描,再按下硬键“REAL TIME”可以终止实时扫描状态。按下硬键“TEST/STOP即可开始测试。 1.3.3.1曲线显示屏幕 从设置状态按GO就显示了一个与图6-1相似的曲线屏。 1、图标行 在曲线图形区上方的图标行,显示了对比曲线和背景曲线参考的曲线文件名和其他信息,包括该曲线是否已被滤波、是否被施加衰减、是否进行过曲线分析的,测试平均是否未完成等产,对比曲线的文件名在屏幕左边显示,背景曲线(如果存在)的文件名在网络上的屏幕右边显示。 光标行图标:有效结果表 平滑已经运行 正在行进数据采集 差值比较 光标锁定 曲线被施加衰减

光时域反射仪OTDR的基本原理

OTDR的基本原理 OTDR勺基本原理 什么是OTDR? 基础 OTDR将激光光源和检测器组合在一起以提供光纤链路的内视图。激光光源发送信号到光纤中,检测器接收从链路的不同元素反射的光。激光光源发送信号到光纤中,检测器在光纤中接收从链路的不同元素反射的光。发送的信号是一个短脉冲,其携带有一定数量的能量。然后,时钟精确计算出脉冲传播的时间,然后将时间转换为距离,便可以得知该光纤的属性。当脉冲沿着光纤传播时,由于连接和光纤自身的反射,一小部分脉冲能量会返回检测器。当脉冲完全返回检测器时,发送第二个脉冲一直到取样时间结束。因此,会立刻执 行多次取样并平均化以提供链路元件的清晰特性图。取样结束后,执行信号处理,除了计算 总链路长度、总链路损耗、光回损(ORL)和光纤衰减外,还计算每个事件的距离、损耗和 反射。使用OTDR的主要优势在于单端测试,只需要一位操作人员和一台仪器来鉴定链路质 量或查找网络故障。图#1显示了OTDR的框图。 图1. OTDR框图 图1 OTOR框图* 反射是关键 如前文所述,OTDR通过读取从所发送脉冲返回的光级别以显示链路情况。请注意,有两种类型的反射光:光纤产生的连续低级别光称为Rayleigh 背向散射,连接点处的高反射 峰值称为Fresnel反射。Rayleigh背向散射用于作为距离的函数以计算光纤中的衰减级别(单位是dB/km),在OTDR轨迹中显示为直线斜率。该现象来源于光纤内部杂质固有的反射 和吸收。当光照射到杂质上时,一些杂质颗粒将光重定向到不同的方向,同时产生了信号衰减和背向散射。波长越长,衰减越少,因此,在标准光纤上传输相同距离所需的功率越小。 图2说明了Rayleigh 背向散射。 图2. Rayleigh 背向散射 -iOR Puuse GEhJERATOft Dlf Ei?Tl JNAL C OUPLER ? Waller —Distance range

光纤损耗测试方法及其注意事项

《中国有线电视》2009(10) C H I N A D I G I T A L C A B L ET V·经验点滴·中图分类号:T N943.6 文献标识码:B 文章编号:1007-7022(2009)10-1094-01 光纤损耗测试方法及其注意事项 ◆管 辉(吉林省广播电影电视局三三一台,吉林永吉132200) 由于应用和用户对带宽需求的进一步增加和光纤链路在满足高带宽方面的巨大优势,光纤的使用越来越多,无论是布线施工人员还是网络维护人员都有必要掌握光纤链路测试的技能。 2004年2月颁布的T I A/T S B-140测试标准,旨在说明正确的光纤测试步骤,该标准建议了两级测试,分别为:T i e r1(一级),使用光缆损耗测试设备(O L T S)来测试光缆的损耗和长度,并依靠O L T S或者可视故障定位仪(V F L)来验证极性;T i e r2(二级),包括一级的测试参数,还包括对已经安装的光缆链路的O T D R 追踪。 根据T S B-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准A N S I/T I A/E I A-526-14A和A N S I/T I A/E I A-526-7中,已经分别对多模和单模光纤链路的损耗测试定义了3种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。 1 如何测试光纤链路损耗 光纤链路损耗的测试包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路),下面具体介绍标准中定义的3种测试损耗的方法(以双向测试为例)。 测试方法A:方法A设置参考值时,采用两条光纤跳线和一个连接器(考虑一个方向,见图1上半部分),设置参考值后,将被测链路接进来(见图1 下半部分),进行测试。我们不难发现,每个方向的测试结果中包括光纤和一端的连接器的损耗,因此方法A是用来测试这种光缆链路:光纤链路一端有连接器,另一端没有。 图1 测试方法A 测试方法B:方法B设置参考值时,只使用一条光纤跳线(考虑一个方向,见图2上半部分),设置参考值后,将被测链路接进来(见图2下半部分),进行测试。这种方法的测试结果中,包括光纤链路和两端连接的损耗,因此方法B是用来测试这种光缆链路:链路两端都有连接器,其连接器的损耗是整个损耗的重要部分,这就是室内光缆的常见例子。 从技术角度讲,测试结果还包括额外的光纤跳线(3~4)的损耗,但是其长度较短,损耗可以忽略不计。对室内光缆网络,这种方法提供了精确的光缆链路测试,因为它包括了光 图2 测试方法B 缆本身以及电缆两端的连接器。

电信光缆验收报告记录

电信光缆验收报告记录

————————————————————————————————作者:————————————————————————————————日期: 2

电信光纤施工验收报告 工作概况 对集团原有光纤结构进行整改。 1、废除原有主干双模光纤,改换单模光纤线。 2、改变原有光纤结构走向,重新布局光纤网络结构。 示意图 改造前改造后 3、更换光纤终端设备(改用高速单模光纤猫)验收报告 施工单位:电信施工工程队 工程于2013年5月15日完成,预计施工期2天,实际施工期为4天。共铺设光纤线缆1.2公里、高速光纤猫6对、熔光纤接头16蕊.并应行政部要求对原有光纤线缆以及电话线缆规整。施工过程由集团行政部网管全程监督。验收单位:集团行政部 施工单位: 验收单位:篇二:电信光缆线路工程验收 电信光缆线路工程验收 1、随工检验 (1)按国家机关规定,光缆线路工程均应实行监理制。由监理人员采取巡视、旁站等方式进行随工检验。对隐蔽工程项目,应由监理和施工双方签署《隐蔽工程检验签证》。 (2)光缆线路工程的随工检验,应按下表的项目及内容进行 光缆线路工程随工检验项目内容 2、光缆线路工程初步验收 (1)干线光缆线路工程初步验收(简称工程初验),应在施工完毕并经工程监理单位预检合格后进行。业主(省级)在收到监理单位“关于工程初验申请报告”后一周内组织工程初步验收。初验工作,一般可分档案、安装工艺、传输特性测试和财务、物资等四个组,分别对工程质量进行全面检查和评议。初验组认为有必要时可对隐蔽工程质量进行复查。 (2)光缆线路的安装工艺、传输特性应按下表的项目内容进行检查和抽测。安装工艺和测试数据应符合设计和规范的相关标准,测试数据还应与施工单位提供的竣工测试记录相符或吻合。 光缆线路工程初步验收项目内容 (3)初步验收会议应在全面检查和抽测后对施工质量进行评议,工程质量达到设计和规范标准的为合格。 (4)初步验收会议还应对施工图设计能否指导施工进行评议。施工图设计应达到的深度要求按相关规范或规定。 3、光缆线路工程竣工验收 (1)干线光缆线路工程的竣工验收,应由业主的主管单位(集团公司)组织进行。 (2)光缆线路工程竣工验收,应在初步验收合格并经3~6个月的试运行后进行。 (3)光缆线路工程竣工验收的准备,应由各业主(省级)组织竣工验收检查测试组,对工程进行全面检查。检查内容包括: ①初步验收会议上提出的工程遗留问题应整改处理合格。 ②中继段的光纤特性、光缆线路对地绝缘等指标,应进行近期维护普测的基础上进行重点抽测,各项指标应符合标准。 ③检查、抽测项目,可参照初步验收的项目内容。 (4)工程竣工验收应对工程质量及档案、投资决算等进行综合评价。并对工程设计、施工、监理及有关管理部门的工作进行总结。竣工验收通过后颁发验收证书,正式投产。篇三:光缆验收规范 目次 前言 iii 3

光纤传输损耗测试实验报告报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成 2016 年05 月日

预 习 报 告 一、 实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、 实验仪器 20MHz 双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、 实验原理 光纤在波长λ处的衰减系数为()αλ,其含义为单位长度光纤引起的光功率衰减,单位是dB/km 。当长度为L 时, 10()()l g (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G .650、G .651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。

图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条 件)由于插入被测光纤引起的功率损耗。显然,功率1P、2P的测量没有 截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。 (a) (b) 图1.2 典型的插入损耗法测试装置

光纤测试报告简易说明手册

光纤测试报告简易说明手册 ④ ② ③ ① ⑤ ⑥ ⑦ ①:所测试光缆名称及编号。 ②:光缆编号、光纤编号、起始位置、结束位置、光纤类型及操作者说明。本图中的所测试光缆是东区2#教学楼的第01芯光纤,本光缆系从实验楼(起始位置)敷设至2#教学楼(结束位置),光纤类型系单模光纤,操作测试人员为徐虎。

③:光纤测试所需的参数。本图中采用统计平均的方法,设置OTDR获取数 据取样的最大范围为2.5公里,测试波长为1310nm,发射100ns的光脉冲,以折射率为1.6459的投射光对总长度为0.2991千米的光纤进行测试,得出3个事件个数(事件个数详见⑥)。 ④:起始位置A端到结束位置B端的曲线图,所测试的光缆从A端到B端 总长度为298.59m(约299.1m)的取样曲线图。A-B之间的曲线图最能反映所测试光缆的通断情况以及衰减情况。正常情况是在仪器和光纤的连接点,通常会产生一个反射信号,同时光功率会因此降低,表现在OTDR曲线图上就是突然出现一个反射峰,图中的B端出现反射峰已表示光纤测试通过。若光纤尾端被压、损坏或光纤没连接上,B端就不会出现反射峰,或是与A端的曲线持平、或是低于A端的曲线。 ⑤:杂波(看图时请忽略)。因测试时设定的数据取样最大测量范围是 2.5km,实际测试光缆的长度为298.59m,因此图⑤中的曲线不是实际需要关心的数据。 ⑥:光纤测试的结果事件表。编号1和2显示所测量光纤的总长度及衰减情况,编号3是反射回来的杂波。 ⑦:衰减值。由编号1、2看出,光纤衰减值是0.057dB/km,表明光纤的衰减较少。 注:(1)单模光纤在1310nm波长的衰减常数一般为0.3~0.4dB/km(长度不同的光纤测试结果不一样) (2)看图时,④、⑥、⑦是工程中需要的直观结果,用户只需要了解这三个地方的数据。一般来说看图④时,B端有反射峰则可说明光纤熔接好并且无损坏,再看图⑥⑦,就知道所测量光纤的衰减值,工程上使用中,单模光纤衰减值低于3dB属于正常范围。 (3)因不同颜色的纤芯的衰减都不一样,请见下表: 同一条光缆不同的纤芯,由于施工、熔接工艺、所使用的测试跳线接口的洁净度等各方面原因,每一条芯所测试出来的衰减值是不一样的。 广州京豪网络科技有限公司 2015年7月30

光时域反射仪

光时域反射仪 科技名词定义 中文名称:光时域反射仪 英文名称:optical time-domain reflectometer;OTDR 定义:通过对测量曲线的分析,了解光纤的均匀性、缺陷、断裂、接头耦合等若干性能的 仪器。 所属学科:通信科技(一级学科);通信计量(二级学科) 光时域反射仪OTDR(Optical Time Domain Reflectometer), 是利用光线在光纤中传输时的瑞利散射所产生的背向散射而制成的 精密的光电一体化仪表。 OTDR用于光缆线路的施工、维护之中,可以进行光纤长度、光 纤的传输衰减、接头衰减和故障定位等的测量。 编辑本段 9.6.1 光时域反射仪概述 ? 光时域反射仪OTDR(Optical Time Domain Reflectometer),是利用光线 在光纤中传输时的瑞利散射所产生的背向散射而制成的精密的光电一体化仪表,广泛应用于实验、教学和施工现场。OTDR采用背向散射测试技术,能够测试整个光纤链路的衰减,并能提供和长度有关的衰减细节。OTDR同时 可测试接头损耗及故障点。它具有非破坏性且只需在一端测试的优点。OTDR 功能多、操作简便、测量的重复性高、体积小、不许其它仪表配合、 能自动存储和打印测量结果,目前已成为光通信系统工程检测中最重要的仪表。如图9-13所示是HP8147光时域反射仪。光时域反射仪(OTDR)的主要 功能为: ? (1)单光盘光缆传输损耗和光缆长度的检测。

? (2)光缆连接工艺的监测。 ? (3)中继段状态的测量,包括各盘光缆的损耗、各个接头的损耗及整个种极端的平均损耗的测量。 ? (4)线路故障原因及故障点位置的准确判断。 ? (5)OTDR自动存储、打印的背向散射信号曲线可以作为线路的重要技术档案。 9.6.2 OTDR 9.6.2 OTDR工作原理工作原理 1.瑞利散射 瑞利散射:当光线在光纤中传播时,由于光纤中存在着分子 级大小的结构上的不均匀,光线的一部分能量会改变其原有传 播方向向四周散射,这种现象被称为瑞利散射。其强度与波长 的4次方(λ4)成反比,其中又有一部分散射光线和原来的传播 方向相反,被称为背向散射,如图9-14所示。

光纤损耗测试方法及其注意事项

光纤损耗测试方法及其注意事项 1 引言 随着应用和用户对带宽需求的进一步增加,光纤链路对满足高带宽方面的巨大优势逐步体现,光纤的使用越来越多。在施工中,无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/ TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier 1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier 2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A 和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,本文中分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 本文主要就这三种方法各自的特点、操作方法、应该使用的场合进行分析和阐述。另外,对光纤链路的测试中需要注意的问题进行分析。 2 如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 标准中定义了三种测试损耗的方法(以双向测试为例): 2.1 测试方法A 方法A设置参考值时,采用两条光纤跳线和一个连接器(考虑一个方向,如图1)。设置参考值后,将被测链路接进来(如图2),进行测试。 图1 图2 每个方向的测试结果中包括光纤和一端的连接器的损耗。因此,方法 A 是用来测试这种光缆链路:光纤链路一端有连接器,另一端没有。 2.2 测试方法B 方法B设置参考值时,只使用了一条光纤跳线(考虑一个方向,如图3)。设置参考值后,将被测链路接进来(如图4),进行测试。 图3 图4 这种方法的测试结果中,包括光纤链路和两端连接的损耗。因此,方法B是用来测试这种光缆链路:链路两端都有连接器,其连接器的损耗是整个损耗的重要部分。这就是室内光缆的常见例子。 从技术角度讲,测试结果中还包括了额外的光纤跳线(3-4)的损耗,但是其长度较短,损耗可以忽略不计。对室内光缆网络,这种方法提供了精确的光缆链路测试,因为它包括了光缆本身以及电缆两端的连接器。 2.3 测试方法C 方法C设置参考值时,使用三条光纤和两个连接器(单方向,见图5),其中两个连接

光时域反射仪(OTDR)操作规程

光时域反射仪(OTDR)操作规程 1、试验目的:测量光纤长度、光纤的传输衰减、接头衰减和故障定位 2、试验人员:试验协助员负责连接光纤、操作仪器,试验负责人负责监护 3、试验设备:Micro-OTDR光时域反射仪,其工作电源为5V电池可靠供电,测量范围:500m—240kM可自适应选择,平均时间为15秒—3分钟可供选择,脉冲宽度为 30—300ns、1us—2.5us,波长可选1550波长或1310波长 4、注意事项: 4.1避免设备磕碰损坏 4.2 禁止非专业人员拆卸或任意打开部件 4.3 使用完毕后拧紧法兰头 5、操作步骤: 5.1 OTDR试验前的准备 5.1.1 检查光缆两端有无光源;有光源须通知试验协助员关闭两侧设备光源,无 光源可直接测试 5.1.2检查设备接口是否良好确无异物,有异物须用酒精棉擦拭干净 5.1.3 通知试验协助人员取下需测量光纤并记录光纤序号 5.2试验设备与测量准备 5.2.1 准备测试仪 5.2.2 连接光纤前确认设备电源处于关闭状态 5.2.3 开机检查仪器电池电源充足检查设备状态完好 5.3 试验设备操作 5.3.1 打开电源开关,进入设备主菜单 5.3.2 连接尾光纤至设备上端OTDR接口处并拧紧接头

图1:连接尾光纤至设备 5.3.3 测试实验前检查设备参数信息设置(可选择自动模式) 图2:检查设备参数设置注意接口牢固可靠 选择测 量参数 按下选择参 数信息配置 当前配置参数

5.3.4 点击键测试键开始测试 图3:按下Real 键测试 5.3.5 点击info 查看测试结果 图4:试验参数记录 1、查看当前光纤通道总长度 2、查看测试记录波长 3、记录当前光纤总衰减(平均距离衰减度0.2—0.5dB 为合格) 观察测试状态 点击测试

光纤实验心得体会

光纤实验心得体会 【篇一:光纤通信实验报告】 信息和通信工程学院 光纤通信实验报告 题目: 姓名:董敏华班级:2010211112 学号: 10210368 班内序号: 27 日期:2013/5/27 一、实验原理及框图 多模光纤基带响应测试方法既可用频域的方法,也可用时域的方法。时域法利用的是脉冲调制。按照对脉冲信号采集及数学处理方法的 不同,又分为脉冲展宽法、快速傅立叶变换法和频谱分析法。本实 验采用的是较为简单的脉冲展宽法。多模光纤脉冲展宽测试仪原理图: 如上图所示为多模光纤时域法带宽测试原理框图。从光发模块输出 窄脉冲信号,首先使用跳线(短光纤)连接激光器和光检测器,可 以测出注入窄脉冲的宽度??1;然后将待测光纤替换跳线接入,可以 测出经待测光纤后的脉冲宽度??2。经过理论推导可以得到求解带宽 公式: b? ghz) 多模光纤脉冲展宽测试仪前面板接口分上下两层,上层用于850nm 测试,下层为1310nm。每隔波长分别由窄脉冲发生器输出极窄光脉冲经被侧光纤回到测试仪内进行o/e变换后送出电信号,通过高速示波器即可显示。 多模光纤脉冲展宽测试仪实物图如下所示:

实验采用的数字示波器实物图如下所示: 二、实验步骤 (一)850nm窗口下光纤的带宽测试 1. 打开测试仪电源开关(位于背面),前面板上的电源指示灯亮; 2. 将示波器输入端和本仪器850nm的“rf out”输出端用信号线接好; 3. 用一根光纤跳线将850nm的“optical in”和“optical out”连接起来; 4. 仪器连接好后如下图所示: 进行示波器操作: a) 按auto-scale键调出波形; b) 点击time base键,并通过右下方旋钮调整脉冲至适当宽度(一般设置为10.0ns/div); c) 点击?t、?v键,显示屏右方会出现?v markers(off/on)、?v markers(off/on)选框,先通过右侧对应按键将?v markers设为on,分别调节v marker1和v marker2测出脉 冲高度并找出脉冲半高值;再将?v markers设为on,分别调节t marker1和t marker2 使其和脉冲半高值相交。则有t marker2-t marker1即为脉冲半高全宽?1。 5. 换下该光纤跳线,接入待测光纤用同样方法测出?2;其测试步骤 和4相同,如下图所示: 21)1/2 (ns) (二)1310nm窗口下待测光纤的带宽测试: 和850nm窗口下测试不同的是:应该选择1310nm区域内的“optical in”和“optical out”,“rf out”口进行正确连接,除此之外,其他都和850nm下待测光纤的带宽测试步骤相同。 三、实验注意事项

光缆接续损耗及互联网测试计算方法

工信部颁YDJ44-89《电信网光纤数字传输系统施工及验收暂行规定》简称《暂规》,对光纤接续损耗的测量方法做了规定,但没有规定明确的标准。原信产部郑州设计院在中国电信南九试验段以后的工程中提出了中继段单纤平均接续损耗0.08dB/个的设计标准,以后的干线工程均沿用。 1、光纤衰减:1310nm波长,0.35dB/km;1490nm波长,0.22dB/km。 2、光活动连接器插入衰减:0.5dB/个(尾纤连接)。 3、光纤熔接接头衰减:束状光缆0.1dB/每个接头,带状光缆0.2db/每个接头。 4、冷接子双向平均值为0.15dB/每个接头。 互联网(Dedicated Internet Access)测试计算方法: 在计算机网络、IDC机房中,其宽带速率的单位用bps(或b/s)表示;换算关系为:1Byte=8bit 1B=8b----------1B/s=8b/s(或1Bps=8bps) 1KB=1024B----------1KB/s=1024B/s 1MB=1024KB----------1MB/s=1024KB/s 在实际上网应用中,下载软件时常常看到诸如下载速度显示为128KB(KB/s),103KB/s等等宽带速率大小字样,因为ISP提供的线路带宽使用的单位是比特,而一般下载软件显示的是字节(1字节=8比特),所以要通过换算,才能得实际值。然而我们可以按照换算公式换算一下: 128KB/s=128×8(Kb/s)=1024Kb/s=1Mb/s即:128KB/s=1Mb/s 理论上:2M(即2Mb/s)宽带理论速率是:256KB/s(即2048Kb/s),实际速率大约为80--200kB/s;(其原因是受用户计算机性能、网络设备质量、资源使用情况、网络高峰期、网站服务能力、线路衰耗,信号衰减等多因素的影响而造成的)。

光缆测试报告

M L C项目通信传输系统 光缆测试报告 北京建谊建筑工程有限公司 2010年7月21日 一、光缆测试说明 1、通信系统说明 MLC项目配套工程包括通信传输系统,由MLC在TCC通信机房、小营/西直门MLC机房分别新设一套传输设备,三套传输设备通过光缆组成4芯复用段保护环网,通过TCC既有配线架与各线OCC在TCC设置的传输设备业务层互联。MLC新设的传输设备通过TCC 既有ODF与MLC机房新设ODF通过光缆连接,实现各线LC业务接入MLC。 2、光纤使用说明 1)西直门8层MLC机房(灾备中心)至京投大厦西辅楼一层MLC机房(生产中心),占用南环4芯光纤; 2)西直门8层MLC机房(灾备中心)至京投大厦东辅楼三层TCC机房MLC通信设备,占用北环4芯光纤; 3)京投大厦西辅楼一层MLC机房(生产中心)至京投大厦东辅楼三层TCC机房MLC 通信设备,新敷设1根24芯光纤; 4)西直门8层MLC机房(灾备中心)至西直门7层通信机房(南环、北环均在此处上光纤配线架),新敷设1根24芯光纤; 5)京投大厦西辅楼一层MLC机房(生产中心)至京投大厦西辅楼B1层通信配线间(南环在此处上光纤配线架),新敷设1根24芯光纤; 6)京投大厦西辅楼一层MLC机房(生产中心)至京投大厦西辅楼7层配线间,新敷设2根4芯多模光缆。(此处的2根4芯多模光缆不属于通信传输系统,是连接服务器与工作站交换机之间的多模光缆); 此次测试针对以上6部分进行。 3、测试仪器

采用信维牌OTDR(光时域反射仪),具体型号为S20。 4、相关图纸 《MLC项目通信系统光纤传输路由图》

二、光缆测试内容 光缆测试包括以下内容: 光缆熔接损耗(MLC项目中的光缆熔接点); 3处MLC通信设备之间光纤传输链路的光衰减; 具体说明如下: 光缆熔接损耗:西直门本项目敷设的1根24芯光缆;京投大厦本项目敷设的2根24芯光缆;京投大厦本项目敷设的2根4芯多模光缆; 3处MLC通信设备之间光纤传输链路的光衰减:西直门8层MLC通信设备与京投大厦西辅楼一层MLC通信设备之间的链路衰减;西直门8层MLC通信设备与京投大厦东辅楼三层TCC机房MLC通信设备之间的链路衰减;京投大厦西辅楼一层MLC通信设备与京投大厦东辅楼三层TCC机房MLC通信设备之间的链路衰减; 三、测试目的 序号测试内容测试目的合格标准备注 1 光缆熔接损耗检查光纤熔接质量每个熔接点损耗 < 光纤熔接规范 2 西直门8层MLC通信设备与京 投大厦西辅楼一层MLC通信 设备之间的链路衰减 检查光纤链路质量<25dB 通信设备对光衰 减的要求 3 西直门8层MLC通信设备与京 投大厦东辅楼三层TCC机房 MLC通信设备之间的链路衰减 检查光纤链路质量<25dB 通信设备对光衰 减的要求 4 京投大厦西辅楼一层MLC通 信设备与京投大厦东辅楼三 层TCC机房MLC通信设备之间 的链路衰减 检查光纤链路质量<15dB 通信设备对光衰 减的要求

光时域反射仪OTDR测量复杂鬼影分析

“鬼影”是使用光时域反射仪(OTDR)测量时经常会出现的现象,是一种与事实不相符合的影像。常常在测量较短光纤链路中出现。我们知道,OTDR测量是通过发出探测光脉冲对光纤进行探测,在遇到有介质不同(折射率不同)的位置,如机械式连接器、冷接端子等就会发生反射,OTDR会检测到这些反射光,在曲线上反应出来的就是反射事件。 “鬼影”产生的原因一般是由于反射光遇到连接器发生了第二次反射,有时由于反射光能量较强,链路又较短会发生多次反射,对光纤链路进行了多次的探测,形成多个“鬼影”。如下图: 由以上原因,我们可以了解到由于再次探测光纤在曲线上又会反应出另一个反射事件,因此“鬼影”的位置信息一定是实际反射位置信息的整倍数关系。如上图,a=b。那么判断“鬼影”主要利用这种位置信息的关系来判断。 下面给大家分析一些实例,这些实例远比上图复杂的多。 1、鬼影实例一

这条测试曲线看起来反射事件非常多,复杂得令人眩目。但我们仔细分析一下就会发现,大多数反射事件均是鬼影,只有峰1和峰2才是真正得反射事件。应用鬼影发生得原因可以分析出那些是鬼影。这些鬼影对实际测试影响很大,如果不仔细进行分析很难分辨。为什么会出现如此复杂的测试曲线呢?究其原因是几个原因造成。 1、链路短。因此反射光能量很强,造成多次反射,形成多个鬼影。 2、链路中存在多个机械连接器,且距离较近。峰2的反射到峰1就发生再次反射,重新探测以峰1作为开始点的光纤链路,由于峰1与峰2距离很近,这股连续反射光始终保持了相当的强度。因此后边连续出现了多个峰2的鬼影。 2、鬼影实例二 上图中,真正的反射事件只有1、2、3、5几个,其他均是鬼影,结束点应该是峰5。其形成原因与分析方法与实例一是一样的,只是该曲线更具有隐蔽性,需要仔细研究光路才能作出正确分析。

光缆施工现场与验收的检测方法和标准

光缆施工现场及验收的检测方法与标准 光缆施工的现场测试很重要,它是为连接光端机总调测做准备。光缆内光纤的测试项目有传输衰减的测量,对多模光纤,当需要时测试基带响应。 单盘光缆测试的目的在于工厂产品的质量;施工布放后的测试是为检查布放过程有无损伤,并作为接续前的检查;接续中的测试是为了检查接头是否达到低损耗;接续后组成单元光缆段的测试,目的在于检查是否达到设计对传输总衰减和总基带响应要求,作为连接光端机总调测的准备。 单模光纤是以色散系数来表征色散的。单模光纤的色散系数本来很低,对于140Mbit/s 系统的限额为300ps/nm,因此当中继段长小于50km时,该限额有很大余量,施工过程可以不必测量;565Mbit/s五次群的限额为120ps/nm,因此有必要在设计中考虑,施工后进行验证测量。 1、现场传输衰减的测量 1.1 光纤的衰减 光信号沿光纤传输时,光功率的损失即为光纤的衰减,衰减A以分贝(dB)为单位,A=10lgP1/P2(dB) P1和P2分别是注入端和输出端的光功率。 1.2 光缆间增加注入系统

为了测量得到精确的结果,必须保证功率分配是稳态模,因此在光源与被测光缆间增加注入系统。注入系统由扰模器、滤模器和包层模剥除器组成的一种模拟装置;对多模光纤可以用1km以上,以一定曲率半径圈绕的光纤。 1.3 3种测试方法比较 CCITT建议G.651推荐了3种测试方法。即剪断法、和后向散射法。剪断法精度高但有破坏性;介入损耗法是非破坏性,精度不如剪断法;而后向散射法,即用光时域反射仪(OTDR)测量,功能全、精度高和无破坏性,测量数据可直接打印出来。 1.4 用光时域反射仪(OTDR)测量的优点 用光时域反射仪(OTDR)测试只需在光纤的一端进行,如图1、2所示,用这种仪表不仅可以测量光纤的衰减系数,还能提供沿光纤长度衰减特性的详细情况,检测光纤的物理缺陷或断裂点的位置,测定接头的衰减和位置,以及被测光纤的长度,这种仪器带有打印机,可以把测绘的曲线打印出来。

如何选择光纤测试仪表

如何选择光纤测试仪表 概述 常用光纤测试表有:光功率计、稳定光源、光万用表、可变光衰减器、光时域反射仪(OTDR)和光故障定位仪。 选择光纤测试仪表,一般需考虑以下四个方面的因素:确定你的系统参数、工作环境、比较性能要素、仪表的维护。 光功率计:用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的。非常像电子学中的万用表,在光纤测量中,光功率计是重负荷常用表,光纤技术人员应该人手一个。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。稳定光源:对光系统发射已知功率和波长的光。稳定光源与光功率计结合在一起,可以测量光纤系统的光损耗。对现成的光纤系统,通常也可把系统的发射端机当作稳定光源。如果端机无法工作或没有端机,则需要单独的稳定光源。稳定光源的波长应与系统端机的波长尽可能一致。在系统安装完毕后,经常需要测量端到端损耗,以便确定连接损耗是否满足设计要求,如:测量连接器、接续点的损耗以及光纤本体损耗。 光万用表:用来测量光纤链路的光功率损耗。有以下两种光万用表:1、由独立的光功率计和稳定光源组成。 2、光功率计和稳定光源结合为一体的集成测试系统。 在短距离局域网(LAN)中,端点距离在步行或谈话之内,技术人员可在任意一端成功地使用经济性组合光万用表,一端使用稳定光源另一端使用光功率计。对长途网络系统,技术人员应该在每端装备完整的组合或集成光万用表。 当选择仪表时,温度或许是最严格的标准。Bellcore推荐现场便携式设备应在-18℃(无湿度控制)至50℃(95%湿度) 可变光衰减器: 用于仿真系统损耗,以便测量系统容限、接收机工作范围及线性度。系统容限是实际收到功率与保证系统可靠运行的最小接收功率之差。对高端系统,通常需要定性系统在各种条件下的性能。其系统性能可靠性通常由误码率

光时域反射仪使用说明书

AQ7260 OTDR 光时域反射仪 简易操作手册 第1版 2005年3月

前言 感谢您购买AQ7260。本操作手册循序渐进地介绍了实际测量工作流程,简单的仪表操作,使初学者容易上手。同 时我们还提供AQ7260用户手册(英文版),该手册介绍仪表的所有功能以及使用时的安全注意事项。使用前请阅 读两本手册。 目录 第一章 测量前的准备事项..............................................31-1 连接光模块和连接适配器.............................................3 1-2 打开电源..........................................................31-2-1 连接电源....................................................3 1-2-2 接通电源....................................................31-3 连接测量光纤......................................................3第二章 按键和显示画面说明...........................................42-1 按键..............................................................4 2-2 显示画面..........................................................4 2-3 画面显示设定......................................................5第三章 测量..........................................................63-1 使用单键进行自动测量...............................................63-1-1 开始测量....................................................6 3-1-2 停止测量....................................................6 3-1-3 确认和改变测量条件..........................................7 3-1-4 初始化测量条件..............................................83-2 手动测量..........................................................93-2-1 设置测量条件................................................9 3-2-2 实时测量...................................................10 3-2-3 平均化操作.................................................11 3-2-4 放大、缩小和移动波形........................................11 3-2-5 距离测量...................................................12 3-2-6 测量连接损耗...............................................14 3-2-7 测量回波损耗量.............................................153-3 自动搜索.........................................................16第四章 测量数据的记录...............................................174-1 保存.............................................................17 4-2 调用.............................................................19 4-3 删除.............................................................20 4-4 打印.............................................................214-4-1 打印显示画面...............................................21 4-4-2 打印文件数据...............................................214-5 复制.............................................................23 1

相关主题
文本预览
相关文档 最新文档