当前位置:文档之家› 随机过程关于平稳过程中的各态历经性的综述

随机过程关于平稳过程中的各态历经性的综述

随机过程关于平稳过程中的各态历经性的综述
随机过程关于平稳过程中的各态历经性的综述

关于平稳过程中的各态历经性的综述

首先要介绍一下什么是平稳过程,平稳过程是一类统计特性不随时间推移而变化的过程。在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响。有这样重要的一类随机过程,即所谓平稳随机过程,它的特点是:过程的统计特性不随时间的推移而变化。严格地说,如果对于任意的n (=1,2…),12,,t t t T ∈n …,和任意实数h,当

12,,n t h t h t h T +++∈…,时,n 维随机变量

(X(1t ),X(2t ),…,X(t n ))

和 (X (1t h +),X (2t h +),…,X (n t h +)) 具有相同的分布函数,则称随机过程{}X ∈(t ),t T 具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程。

在实际工作中,确定随机过程的均值函数和相关函数是很重要的。而要确定随机过程的数字特征一般来说需要知道过程的一﹑二维分布,这在实际问题中往往不易办到,因为这时要求对一个过程进行大量重复的实验,以便得到很多的样本函数。

但是由于平稳过程的统计特性不随时间的推移而变化,就会提出这样一个问题:能否从一个时间范围内观察到的样本函数或一个样本函数在某些时刻的取值来提取过程的数字特征呢?所谓各态历经,是指可以从过程的一个样本函数中获得它的各种统计特性;具有这一特性的随机过程称为具有各态历经性的随机过程,只要有一个样本函数就可以表示出它的数字特征。

定义 设X (t )是均方连续平稳随机过程,如果它沿整个时间上的平均值即时间平均值〈X (t )〉存在,即

〈X (t )〉=1lim ()2T

T

T X t dt T -→∞?

存在,而且〈X (t )〉=E {X (t )}=X μ依概率1相等。即〈X (t )〉依概率1等于X μ= E {X (t )}, X μ代表随机过程的集平均(或称统计平均),则称该过程的均值具有各态历经性。

定义 设X (t )是一均方连续平稳随机过程,且对于固定的τ,()X

t X t τ(+)也是连续平稳随机过程,〈()X

t X t τ(+)〉 代表()X t X t τ(+)沿整个时间轴的平均值,即

()X t X t τ(+)=1lim

(+)()2T

T

T X t X t dt T

τ-→∞?

若〈()X

t X t τ(+)〉存在,称〈()X t X t τ(+)〉为X (τ)的时间相关函数。又

〈()X t X t τ(+)〉E {()X t X t τ(+)}=X R τ()

则称该过程的自相关函数具有各态历经性。

定义 如果X (t )是一均方连续的平稳随机过程,且其均值和自相关函数均具有各态历经性,则称该过程X (t )为具有各态历经性的,或者说X (t )是各态历经的,或是遍历的。

例一 有随机相位正弦波过程X (t )=cos()A t ωθ+,其中A, ω是常数,θ为[0,2∏]内均匀分布的随机变量。试计算它的时间平均值和时间相关函数;问该过程是否具有各态历经性?

解 〈X (t )〉=1lim cos()2T

T

T A t dt T ωθ-→∞+?

=sin cos lim

T A T T

ωθω→∞ =0

〈()X

t X t τ(+)〉=21

lim cos()cos()2T

T

T A t t dt T

ωωτθωθ-→∞+++?

=[]2

1

lim

cos(22)+cos 22

T

T

T A t dt T

ωωτθωτ-→∞++?

=2

cos 2

A ωτ 因为X (t )的集平均值和集相关函数分别为 〈X (t )〉=E {X (t )}=0

X R τ()

=2cos 2

A ωτ 故 〈X (t )〉=E {X (t )}=〈X (t )〉

X R τ()

=〈()X t X t τ(+)〉 因此随机相位正弦波过程具有各态历经性。

例二 设X(t)=X ,-∞

解 由于

[]2

()()2

14(,)()()3

X X m t E X t EX R t t X t X t EX ττ===??+=+==

?? 因此{X(t),-∞

11

()22T T

T T

X t X t dt Xdt X T T

--→∞→∞==??

T +T +()l.i.m l.i.m

时间相关函数

2

211()()()()22T T T T

X t X t X t X t dt X dt X T T ττ--→∞→∞+=+==??T +T +l.i.m l.i.m 由于P (X=2)=1和P(214

3

X =)=1不成立,故,{X(t),-∞

相关函数不具有各态历经性。

为了对平稳过程的各态历经性有充分的认识和了解,我们引入以下几个定理进一步说明一个平稳过程该满足怎样的条件才是各态历经的。定理的证明过程不做解答。

定理一 (均值各态历经定理)平稳过程X (t )的均值具有各态历经性的充要条件是

22

01lim (1)()02T X X T R d T T

ττμτ→+∞??--=??? 定理二 (自相关函数各态历经定理)平稳过程X (t )的自相关函数X R τ()具有各态历经性的充要条件是

22

11101lim (1)()02T X T B R d T T

ττττ→+∞??--=???(), (1) 其中[]111()=()()()()B E X t X t X t X t τττττ++++。

在(1)式中令τ=0,就可以得到均方值具有各态历经性的充要条件。

在实际应用过程中通常只考虑定义在0≤t ≤+∞上的平稳过程。此时上面的所有时间平均都应以0≤t ≤+∞上的时间平均来代替。而相应的各态历经定理可表示为下述形式:

定理三

[]0

1lim ()()T

X T X t dt E X t T μ→+∞==? (2) 以概率1成立的充要条件是

2

01lim (1)()0T X X T R d T T

ττμτ→+∞??--=??? 定理四

[]0

1lim ()()()()()T

X T X t X t d E X t X t R T ττττ→+∞+=+=? 以概率1成立的充要条件是

2

11101lim (1)()0T X T B R d T T

ττττ→+∞??--=???() (3) 各态历经定理的重要价值在于它从理论上给出了如下保证:一个平稳过程X (t ),若0

01lim ()T

X T x t dt T μ→+∞=? 和

1lim ()(+)()T

X T x t x t dt R T ττ→+∞=? 值得注意的是:具有各态历经性的随机过程必定是平稳随机过程,但平稳随机过程不一定是各态历经的。在通信系统中所遇到的随机信号和噪声,一般均能满足各态历经条件。

对平稳随机过程X(t),如果它的数字特征与某一样本x(t)的相对应的时间平均值之间有下列关系:

{}{}{

}

2

2

()()()()()()(4)()()()

X E X t x t E X t E X t x t x t R x t x t ττ=-=?-???????=+

那么,我们称平稳随机过程X(t)具有各态历经性。(上面的分析虽然对平稳随机过程的某一特定样本而言的,但是,只要平稳随机过程的所有样本都具有相同的性质,那么这些分析就与样本的选择无关了。)

平稳随机过程的各态历经性可以理解为平稳过程的各个样本都同样地历经了随机过程的各种可能状态。由于任一样本都蕴含着平稳过程的全部统计特性的信息,因而任一样本的时间特征就可以充分地代表整个平稳随机过程的统计特性。这就是(4)式的实质。

如果一个平稳过程是具有各态历经性的,我们就可以通过过程的一个样本很容易地求得平稳过程的各数字特征量,这是很有实际意义的结论。由此,我们也看到了平稳随机过程的物理意义(假定平稳过程是一噪声电压):

{}22

2()()(0)()()()m E X t x t x t x t x t σ====?-???X 是直流分量。(均值)R 是总平均功率。

是交流平均功率。(方差)

从上面的讨论中可以看到,具有各态历经性的随机过程一定是平稳随机过程,但平稳随机过程却并不都具有各态历经性。各态历经的条件还是比较宽的,工程实际中遇到的许多过程都能够满足它的条件,不过要去验证它是否符合充要条件,往往比较困难。在许多情况下假定它具有各态历经性,从这个假设出发,对所得到的数据进行分析处理,看其结果是否与实际相符合,如果不相符合就要修改此假定,另作分析。

随机过程-习题-第6章

6.1 6.2 6.3 6.4设有n 维随机矢量)(21n ξξξξτ =服从正态分布,各分量的均值为 n i a E i ,,2,1, ==ξ,其协方差矩阵为 ????? ? ??? ? ?=22 2 2 2 2 2000000σσσσσσσ a a a B 试求其特征函数。 解:n 元正态分布的特征函数为 }2 1 e x p {),,,(21][Bt t t j t t t n '-'=μφξ n i a E i ,,2,1, ==ξ ),,,(21n t t t t =' ,则 ∑== 'n i i jat t j 1 μ ()()),,,(2 1 2 23222 2212 1' ++='n n t t t t t a t t a t t Bt t σσσσσσ =22223232222221221σσσσσσn t t a t t t a t t t ++++++ =∑∑ -=+=+ 1 1 2112 2n i i i n i i a t t t σσ

∴]21exp[)]21(exp[),,,(1 1 211 2221][∑ ∑ -=+=- -=n i i i n i i i n a t t t jat t t t σσφξ 6.5. 设n 维正态分布随机矢量)(21n T ξξξξ =各分量的均值为i E i =ξ, n i ,3,2,1=,各分量间的协方差为 n i m i m n b i m ,3,2,1,|,|,=--= 设有随机变量∑==n i i 1 ξη,求η的特征函数。 解:易得:???? ? ???????=n ξξξη 21]111[ 2 ) 1(][][1 1 += ==∑∑==n n i E E n i n i i ξη 协方差矩阵为: ??????? ??? ? ?? ???------=n n n n n n n n n n 321 312211121B 所以 ]111[]111['??= B ηD =2 2 3n n + 由于高斯分布的随机变量的线形组合依旧是高斯分布的,所以η的特征函数为: ?? ? ???????++-+=2456822)1(exp )(t n n n t n n j t ηΦ 6.6 设有三维正态分布随机矢量)(321ξξξξ=T ,其各分量的均值为零,即0][=i E ξ )3,2,1(=i ,其协方差矩阵为 ???? ? ??=333231232221131211b b b b b b b b b B

第3章 平稳随机过程的谱分析

第3章 平稳随机过程的谱分析 付里叶变换是处理确定性信号的有效工具,它信号的频域内分析处理信号,常常使分析工作大为简化。 对于随机信号,是否也可以应用频域分析方法?付里叶变换是否可引入随机信号中? 3.1 随机过程的谱分析 3.1.1 回顾:确定性信号的谱分析 )(t f 是非周期实函数, )(t f 的付里叶变换存在的充要条件是: 1.)(t f 在),(∞-∞上满足狄利赫利条件; 2.)(t f 绝对可积: +∞

3.1.2 随机过程的功率谱密度 一、样本函数的平均功率 问题1:由于付里叶变换是针对确定性函数进行的,在处理随机过程)(t X 时,取 )(t X 的一个样本函数)(t x (在曲线族中取某一曲线)来进行付里叶分 析。 问题2:随机过程)(t X 的样本函数)(t x 一般不满足付里叶变换的条件,它的总能 量是无限的,需考虑平均功率。 若随机过程)(t X 的样本函数)(t x 满足 +∞<=? -∞→T T T dt t x T W 2 )(21 lim W 称为样本函数)(t x 的平均功率。 对于平稳过程,其样本函数的平均功率是有限的。 二、截取函数 对于)(t X 的一个样本函数)(t x ,在)(t x 中截取长为T 2的一段,记为)(t x T , 它满足: ???? ?≥<=T t T t t x t x T 0 ) ()( 称)(t x T 为)(t x 的截取函数。 三、截取函数的付里叶变换 0>T ,取定后,)(t x T 的付里叶变换一定存在: ??--+∞ ∞--==T T t j t j T T dt e t x dt e t x X ωωω)()()( 其付里叶逆变换为: ? +∞ ∞ -= ωωπ ωd e X t x t j T T )(21 )( 其帕塞瓦(Parseval )等式为 ? ? ? +∞ ∞ --+∞ ∞ -= =ωωπ d X dt t x dt t x T T T T 2 2 2 )(21 )()(

平稳随机过程的谱分析

第二章平稳随机过程的谱分析 本章要解决的问题: ●随机信号是否也可以应用频域分析方法? ●傅里叶变换能否应用于随机信号? ●相关函数与功率谱的关系 ●功率谱的应用 ●采样定理 ●白噪声的定义 2.1 随机过程的谱分析 2.1.1 预备知识 1、付氏变换: 对于一个确定性时间信号x(t),设x(t)是时间t的非周期实函数,且x(t) 满足狄利赫利条件(有限个极值,有限个断点,断点为有限值)且绝对可积,能量有限,则x(t)傅里叶变换存在。即: 满足上述三个条件的x(t)的傅里叶变换为:

其反变换为: 2、帕赛瓦等式 由上面式子可以得到: ——称为非周期性时间函数的帕塞瓦(Parseval)等式。 物理意义:若x(t)表示的是电压(或电流),则上式左边代表x(t)在时间(-∞,∞)区间的总能量(单位阻抗)。因此,等式右边的被积函数 2 ) (ωX X 表示了信号x(t)能量按频率分布的情况,故称 2 ) (ωX X 为 能量谱密度。 2.1.2、随机过程的功率谱密度 一个信号的付氏变换是否存在,需要满足三个条件,那么随机信号是否满足这三个条件从而存在付氏变换呢? 随机信号持续时间无限长,因此,对于非0的样本函数,它的能量

一般也是无限的,因此,其付氏变换不存在。 但是注意到它的平均功率是有限的,在特定的条件下,仍然可以利用博里叶变换这一工具。 为了将傅里叶变换方法应用于随机过程,必须对过程的样本函数做 某些限制,最简单的一种方法是应用截取函数。 x(t): 截取函数T 图2.1 x(t)及其截取函数 x(t)满足绝对可积条件。因此,当x(t)为有限值时,裁取函数T x(t)的傅里叶变换存在,有 T x(t)也应满足帕塞瓦等式,即:(注意积分区间和表达很明显,T 式的变化)

第十二章 平稳随机过程

第十二章 平稳随机过程 §1 基本概念 定义1:已给s.p t X t X {=,}T t ∈,若1≥?n ,即T 中任意的,,,21n t t t Λ与 h t h t h t n +++,,,21Λ,n 维r.v ),,(21n t t t X X X Λ与),,(21h t h t h t n X X X +++Λ有相同 的n 维d.f 。即 ) ,,,;,,(),,() ,,(),,,;,,,(2121212121212121n n n h t h t h t n t t t n n x x x h t h t h t F x X x X x X P x X x X x X P x x x t t t F n n ΛΛΛΛΛΛ+++=≤≤≤=≤≤≤=+++ 则称s.p t X 是一个严(强,狭义)平稳过程。 当t X ?n 维d.l 时,则有 ),,;,,,(),,;,,,(21212121n n n n x x x h t h t h t f x x x t t t f ΛΛΛΛ+++= 若取n =1,则有),(),(1111x h t f x t f +=,特别,当T ∈0,可取,1t h -=则有),0(),(111x f x t f =。此时平稳过程t X 的一维d.l 与1t (时间)无关。于是 X X m dx x xf t X E μ=== ?+∞ ∞ -),0()(1 即t X 的均值是一个与时间无关的常数。 其方差 ?∞ ∞ -=-=-=.),0()(][2 22 X X X t t dx x f m x m X E X D σ也与时间t 无关的 常数。 而且T X 的二维d.l 也只依赖于.21t t -=τ即当2t h -=时,有 ).,;(),;0,(),;,(2121212121x x f x x t t f x x t t f τ∧ =-= 所以t X 与τ+t X 之间自相关为 ??∞∞-∞ ∞ -+== =+).(),;(),(21212 1ττττX t t X R dx dx x x f x x X X E t t R 它只依赖于.τ类似地τ+t t X X ,之间协方差为

上海大学随机过程第六章习题与答案

第三章 习 题 1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概 率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链. (1)写出状态空间; (2)求一步转移概率矩阵; (3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为 {2,1,0,1,2}S =-- (2){,0}n X n ≥的一步转移概率矩阵为 10000000 0000 1q r p q r p q r p ????????=???????? P (3)因为两步转移概率矩阵为 22 (2) 2222 22 1 0000 202220 20 000 1q rq r pq pr p q rq r pq pr p q qr pq r p pr ????++????==+? ?++?????? P P 所以在甲获得1分的情况下,再赛2局甲胜的概率为 (2) 12(1)p p pr p r =+=+ 2.设{,1,2,}i Y i =L 为相互独立的随机变量序列,则

(1){,1,2,}i Y i =L 是否为Markov 链? (2)令1 n n i i X Y == ∑,问{,1,2,}i X i =L 是否为Markov 链? 解(1)由于 11221112211122111221111221(,,,,) (,,,)(,,,) ()()()() ()() (,,,) n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------================= ========L L L L L 因此,{,1,2,}n Y n =L 是马尔可夫链. (2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依 次 类 推 , 1121 n n X U U U --=+++L 为 1 n U -的函数,记为 1112(),n n n n f U X U U U --=+++L 为n U 的函数,记为().n n f U 由于12,,,,n U U U L L 相互 独立,则其相应的函数1122(),(),,(),n n f U f U f U L L 也相互独立,从而 12211122111 1112211 (,,,)(,,,) (,,,)()() n n n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑L L L 因此{,1,2,}n X n =L 是马尔可夫链. 3 设,1,2,i X i =L 是相互独立的随机变量,且使得(),0,1,i j P X j a j ===L ,如果 max{,1,2,,1}n i X X i n >=-L ,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻 n 产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值. (1)证明,{,1,2,}n R n =L 是Markov 链,并求其转移概率; (2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =L 是否是Markov 链,若是,则计算其转移概率. 证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足

平稳随机过程

平稳随机过程 ?严格平稳随机过程 ?广义平稳随机过程 ?平稳随机过程自相关函数性质?各态历经过程

1. 严格平稳(Strict Sense Stationary, SSS)随机过程定义: 随机过程X (t )的任意N 维统计特性与时间起点无关。 1111(,,,,,)(,,,,,) X N N X N N p x x t t t t p x x t t +?+?=如果X (t ) 是严格平稳的,则与t 无关。 (,)()X X p x t p x =即X(t)与X(t+?t)具有相同的统计特性。

二维概率密度 只依赖于τ,与t 1和t 2的具体取值无关。 12121212121221212 (,,,)(,,,) (,,,0)(,,) X X X X p x x t t p x x t t t t p x x t t t t p x x t t =+?+?=-?=-=ττ=-

如果X (t )是严格平稳随机过程, 则 121212121212 (,)(,,,)() X X X R t t x x p x x t t dx dx R t t ∞ -∞ ==ττ=-?()()X X X m t xp x dx m ∞ -∞==?22 2()()()X X X X t x m p x dx ∞ -∞σ=-=σ ?

100200300400500 -4-3-2-101234Stationay Gaussian Noise 0100200300400500 -4 -3 -2-101234Non-stationay Gaussian Noise

随机过程-习题-第6章

| . 设有n 维随机矢量)(21n ξξξξτ =服从正态分布,各分量的均值为 n i a E i ,,2,1, ==ξ,其协方差矩阵为 ????? ???? ? ?=22 2 2 2 2 2000000σσσσσσσ a a a B 试求其特征函数。 解:n 元正态分布的特征函数为 }2 1exp{),,,(21][Bt t t j t t t n '-'=μφξ n i a E i ,,2,1, ==ξ ),,,(21n t t t t =' ,则 > ∑== 'n i i jat t j 1 μ ( )()),,,(21 2 232222212 1' ++='n n t t t t t a t t a t t Bt t σσσσσσ

=22223232222221221σσσσσσn t t a t t t a t t t ++++++ =∑∑ -=+=+ 1 1 2112 2n i i i n i i a t t t σσ ∴]21exp[)]21(exp[),,,(1 1 211 2221][∑ ∑ -=+=--=n i i i n i i i n a t t t jat t t t σσφξ . 设n 维正态分布随机矢量)(21n T ξξξξ =各分量的均值为i E i =ξ, n i ,3,2,1=,各分量间的协方差为 n i m i m n b i m ,3,2,1,|, |,=--= 设有随机变量∑==n i i 1 ξη,求的特征函数。 [ 解:易得:???? ? ???????=n ξξξη 21]111[ 2 ) 1(][][1 1 += ==∑∑==n n i E E n i n i i ξη 协方差矩阵为: ??????? ??? ? ?? ???------=n n n n n n n n n n 321 312211121B 所以 ]111[]111['??= B ηD =2 2 3n n + 由于高斯分布的随机变量的线形组合依旧是高斯分布的,所以η的特征函数为: ?? ? ???????++-+=2456822)1(exp )(t n n n t n n j t ηΦ 设有三维正态分布随机矢量)(321ξξξξ=T ,其各分量的均值为零,即0][=i E ξ

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程 粗略的说——随机过程的统计特征不随时间的推移而变化。一.严平稳随机过程 1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数 综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。 a):一般在实用中,只要产生随机过程的主要物理条件,在时间 进程中不变化。则此过程就可以认为是平稳的。 例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。 12121212 12 1 21212 2 2 2 (,)(,;)() (,)()()(,;)()()(0)(0)[()] X X X X X X X X X X X X X X R t t x x f x x dx dx R C t t x m x m f x x dx dx C R m C R m D X t τττττσ=?==??==?=?==∫∫∫∫

∞<)]([2 t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。即在观测的有限时间段内,认为是平稳过程。 因此,工程中平稳过程的定义如下: 二、宽平稳过程1、定义 若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数 R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关 则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。 可见:一个均方值有限的严平稳过程,一定是宽平稳过程。反之:一个宽平稳过程,则不一定是严平稳过程。 c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。即:讨论与过程的一、二阶矩有关的问题。

随机过程复习小结

1:正态过程或者高斯过程 设{(),}X t t T ∈是随机过程,若对任意正整数n 和1212,,,,((),(),,())n n t t t T X t X t X t ???∈???是n 维正态随机变量,则称{(),}X t t T ∈是正态过程或者高斯过程。 2:维纳过程的定义 3:广义平稳过程=宽平稳过程 若两个随机过程X(t)和Y(t)的联合概率分布不随时间平移而变化,即与时间的起点无关,则称此两个过程为联合严平稳。 4:二维联合分布函数 5:半角公式和全角公式 . cos2α = 2(cos α)^2 ? 1 cos2α = 1 ? 2(sin α)^2 cos2α = (cos α)^2 ? (sin α)^2 6 :

7:一维概率密度族 (,)X s t ρ= ,0s t > 第三章:泊松过程 1:称计数过程{(),0}X t t ≥为具有参数0λ>的泊松过程,若它满足下列条件: (1)(0)0X =; (2)()X t 是独立增量过程; (3)在任一长度为t 的区间中,事件A 发生的次数服从参数0λ>的泊松分布,即对任意 ,0s t ≥,有 ()(()()),0,1,...! n t t P X t s X s n e n n λλ-+-=== [()]E X t t λ= 2:定义3.3说明,在充分小的时间间隔内容,最多有一个时间发生,而不能同时有两个或者两个以上事件同时发生。 3:[()()][()()]()E X t X s D X t X s t s λ-=-=- s

(完整版)上海大学随机过程第六章习题及答案.doc

第三章习题 1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率 为 r ,其中 p, q, r 0, p q r 1 ,设每局比赛后,胜者得 1 分,负者得1分,平局不记分,当两个人中有一个人得到 2 分时比赛结束,以X n表示比赛至第n 局时甲获得的分数, 则{ X n , n 1} 是一齐冯马尔可夫链. (1)写出状态空间; (2)求一步转移概率矩阵; (3)求在甲获得 1 分的情况下,再赛 2 局甲胜的概率 . 解( 1){ X n, n0} 的状态空间为 S { 2, 1,0,1,2} ( 2){ X n, n 0} 的一步转移概率矩阵为 1 0 0 0 0 q r p 0 0 P 0 q r p 0 0 0 q r p 0 0 0 0 1 ( 3)因为两步转移概率矩阵为 1 0 0 0 0 q rq r 2 pq 2 pr p2 0 P(2) P 2 q2 2rq r 2 2 pq 2 pr p2 0 q2 2qr pq r 2 p pr 0 0 0 0 1 所以在甲获得 1 分的情况下,再赛 2 局甲胜的概率为 p12(2) p pr p(1 r ) 2.设{ Y i,i 1,2,L } 为相互独立的随机变量序列,则 (1){ Y i,i 1,2,L } 是否为Markov链? n (2)令X n Y i,问 { X i , i 1,2,L } 是否为Markov链? i 1 解( 1)由于

P(Y n j Y 1 i 1 ,Y 2 i 2 ,L ,Y n 1 P(Y 1 i 1, Y 2 i 2 ,L ,Y n 1 i ,Y n j ) i) P(Y 1 i 1 ,Y 2 i 2 ,L , Y n 1 i) P(Y 1 i 1 )P(Y 2 i 2 )L P(Y n 1 i )P(Y n j ) j ) P(Y n j Y n 1 i ) 1 i 2 , L ,Y n 1 i ) P(Y n P(Y i 1 ,Y 2 因此, { Y n , n 1,2,L } 是马尔可夫链 . ( 2)取 f 1 (U 1 ) X 1 U 1 ,当 U 1 i 1 时, X 2 U 1 U 2 是 U 2 的函数,记为 f 2 (U 2 ). 依 次类推, X n 1 U 1 U 2 L U n 1 为 U n 1 的函数,记为 f n 1 (U n 1 ), X n U 1 U 2 L U n 为 U n 的 函 数 , 记 为 f n (U n ). 由 于 U 1,U 2 ,L ,U n ,L 相 互 独 立 , 则 其 相 应 的 函 数 f 1 (U 1), f 2 (U 2 ),L , f n (U n ),L 也相互独立,从而 n P( X n j X 1 i 1 , X 2 i 2 ,L , X n 1 i ) P( Y i j X 1 i 1, X 2 i 2 ,L , X n 1 i ) i 1 P( X n 1 Y n j X 1 i 1 , X 2 i 2 ,L , X n 1 i) P(Y n j i ) P( X n j X n 1 i ) 因此 { X n , n 1,2,L } 是马尔可夫链 . 3 设 X i , i 1,2,L 是相互独立的随机变量,且使得 P( X i j ) a j , j 0,1,L ,如 果 X n max{ X i ,i 1,2,L ,n 1} ,其中 X 0 ,就称在时刻 n 产生了一个记录 .若在时刻 n 产生了一个记录,就称 X n 为记录值,以 R n 表示第 n 个记录值 . (1)证明, { R n , n 1,2,L } 是 Markov 链,并求其转移概率; (2)以 T i 表示第 i 个与第 i 1 记录之间的时间, 问 { T n , n 1,2,L } 是否是 Markov 链,若是, 则计算其转移概率 . 明 :( a ) 根 据 意 有 : R 1 X n 1 , R 2 X n 2 ,....R k X n k , ? ? 足 X n 1 X n 2 .... X n k .... 且 1 n 1 n 2 .... n k .... 故 P{ R k 1 z | R k i k , R k 1 i k 1 ,...R 1 i 1} P{ R k 1 z | j i k i k 1 ... i 1} P{ R k 1 z | j i k } P{ R k 1 z | R k i k } 故 { R i , i 1} 是一个 可夫 且

2.9 严平稳随机过程

随机信号分析

目录 CONTENTS CONTENTS 严平稳随机过程平稳随机过程的基本概念

-2.5-2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 t1t2t3t4t5t6t7t8快艇航行噪声随时间变化的观测实验第1次观测第2次观测第3次观测 ()()x m t E X t =????随机过程的数学期望()1x m t ()4x m t () 5x m t 如果数学期望与时间无关,将简化分析和计算! ()x x m t m =

-2.5-2 -1.5-1 -0.5 0.5 1 1.5 2 2.5 3 t1t2t3t4t5t6t7t8快艇航行噪声随时间变化的观测实验第1次观测第2次观测第3次观测 随机过程的自相关函数????=?R t t E X t X t X ,1212)()()(R t t X ,23) (?=τt t 320R t t X ,56)(?=τt t 650如果自相关函数与观察起始时刻无关,只和观察的两个随机变量的时间差有关? ==?ττR t t R t t X X ,,1221)()(有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

严平稳随机过程 随机过程X t ,若它的n 维概率密度(或n 维分布函数) 不随时间起点选择的不同而改变 就是说,对任何n 和ε,随机过程X t 的n 维概率密度满足: +++=εεεf x x x t t f x x x t t X n n X n n ,,,;,,,t ,,,;,,,t 12121212)()(f x x x t t n n ,,,;,,,t 1212) (则称X t 为严(格)平稳过程,或称X t 为狭义平稳过程。 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

第六章平稳随机过程

第六章 平稳随机过程 6.1平稳过程的概念与例子 第二章2.4中介绍了严平稳过程与宽平稳过程.在自然科学,工程技术中人们常遇到这类过程,例如纺织过程员棉纱截面积的变化;导弹在飞行中受到湍流影响产生的随机波动;军舰在海浪中的颠波;通讯中的干扰噪声等等.它们都是可用平稳过程描述.这类过程一方面受到随机因素的影响产生随机波动,同时又有一定的惯性,使在不同时刻的波动特性基本保持不变.其统计特是,当过程随时间的变化而产生随机波动时,其前后状态是相互联系的,且这种联系不随时间的推延而改变 . 由于严平稳过程的统计特征是由有限维分布函数来决定的,在应用中比较难以确定,而宽平稳过程的判别只涉及一二阶矩的确定,在实际中比较容易获得,因此我们主要研究宽平稳过程.这种仅研究与过程一二阶矩有关性质的理论,这就是所谓相关理论.对于正态过程,由于其宽平稳性与严平稳性是等价的,故用相关理论研究它显得特别方便.本书后面涉及的.主要是宽平稳过程,简称它为平稳过程. 例6.1 设,...}2,1,0,{,±±=n X n 是实的互不相关随机变量序列,且,0][=n X E 2 ][σ =n X D ,试讨论随机序列的平稳性. 解 因为,0][=n X E ???≠===--, 0,00,],[),(2ττσττ n n X X X E n n R 其中τ为整数,故随机序列的均值为常数,相关函数仅与τ有关,因此它是平稳序列. 在物理和工程技术中,称上述随机序列为白噪声.它普遍存在于各类波动现象中,如电子发射波的波动,通讯设备中电流或电压的波动等,这是一种较简单的随机干扰的数学模型. 例6.2设,...}2,1,0,{,±±=n Z n 为复随机序列,且,0][=n Z E mn n m n Z Z E δσ2][=, ,...) 2,1,0(,2±±=∞<∑∞ -∞ =n w n n n σ 为实数序列.对于每一个t,可以证明级数 t iw n n n e Z ∑∞ -∞ =在 均方意义下收敛.令 X(t)= t iw n n n e Z ∑ ∞ -∞ = 利用随机变量级数均方收敛性质,可以推得 E t X E =)]([[ t iw n n n e Z ∑∞ -∞ =]=0, [ )]()([E t X t X E =-τt iw n n n e Z ∑ ∞ -∞ =, ]) (∑ ∞ = ∞--n t iwm m e Z τ

随机过程分析

随机过程分析 摘要随着科学的发展,数学在我们日常的通信体系中有着越来越重的地位,因为在科学研究中,只有借助于数学才能精确地描述一个现象的不同量之间的关系,从最简单的加减乘除,到复杂的建模思想等等。其中,随机过程作为数学的一个重要分支,更是在整个通信过程中发挥着不可小觑的作用。如何全面的对随机信号进行系统和理论的分析是现在通信的关键,也是今后通信业能否取得巨大进步的关 键。 关键字通信系统随机过程噪声 通信中很多需要进行分析的信号都是随机信号。随机变量、随机过程是随机分析的两个基本概念。实际上很多通信中需要处理或者需要分析的信号都可以看成是一个随机变量,利用在系统中每次需要传送的信源数据流,就可以看成是一个随机变量。例如,在一定时间内电话交换台收到的呼叫次数是一个随机变量。也就是说把随某个参量而变化的随机变量统称为随机函数;把以时间t为参变量的随机函数称为随机过程。随机过程包括随机信号和随进噪声。如果信号的某个或某几个参数不能预知或不能完全预知,这种信号就称为随机信号;在通信系统中不能预测的噪声就称为随机噪声。下面对随机过程进行分析。 一、随机过程的统计特性 1、数学期望:表示随机过程的n个样本函数曲线的摆动中心,

?∞ ∞-==11);()]([)(dx t x xp t X E t a 2、方差:表示随机过程在时刻t 对于均值a(t)的偏离程度。 即均方值与均值平方之差。 {}?∞∞--=-=-==112222);()]([)]()([))](()([)]([)(dx t x p t a x t a t X E t X E t X E t X D t δ 3、自协方差函数和相关函数: 衡量随机过程任意两个时刻上获得的随机变量的统计相关特性时,常用协方差函数和相关函数来表示。 (1)自协方差函数定义 {} )]()()][()([);(221121t a t X t a t X E t t C x --=??∞∞-∞ ∞---=2121212211),;,()]()][([dx dx t t x x p t a x t a x 式中t1与t2是任意的两个时刻;a (t1)与a(t2)为在t1及t2得到的数学期望; 用途:用协方差来判断同一随机过程的两个变量是否相关。 (2)自相关函数 ??∞∞-∞ ∞-==2121212212121),;,()]()([),(dx dx t t x x p x x t X t X E t t R X 用途:a 用来判断广义平稳; b 用来求解随机过程的功率谱密度及平均功率。 二、平稳随机过程 1、定义(广义与狭义): 则称X(t)是平稳随机过程。该平稳称为严格平稳,狭义平稳或

随机过程关于平稳过程中的各态历经性的综述

关于平稳过程中的各态历经性的综述 首先要介绍一下什么是平稳过程,平稳过程是一类统计特性不随时间推移而变化的过程。在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响。有这样重要的一类随机过程,即所谓平稳随机过程,它的特点是:过程的统计特性不随时间的推移而变化。严格地说,如果对于任意的n (=1,2…),12,,t t t T ∈n …,和任意实数h,当 12,,n t h t h t h T +++∈…,时,n 维随机变量 (X(1t ),X(2t ),…,X(t n )) 和 (X (1t h +),X (2t h +),…,X (n t h +)) 具有相同的分布函数,则称随机过程{}X ∈(t ),t T 具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程。 在实际工作中,确定随机过程的均值函数和相关函数是很重要的。而要确定随机过程的数字特征一般来说需要知道过程的一﹑二维分布,这在实际问题中往往不易办到,因为这时要求对一个过程进行大量重复的实验,以便得到很多的样本函数。 但是由于平稳过程的统计特性不随时间的推移而变化,就会提出这样一个问题:能否从一个时间范围内观察到的样本函数或一个样本函数在某些时刻的取值来提取过程的数字特征呢?所谓各态历经,是指可以从过程的一个样本函数中获得它的各种统计特性;具有这一特性的随机过程称为具有各态历经性的随机过程,只要有一个样本函数就可以表示出它的数字特征。 定义 设X (t )是均方连续平稳随机过程,如果它沿整个时间上的平均值即时间平均值〈X (t )〉存在,即 〈X (t )〉=1lim ()2T T T X t dt T -→∞? 存在,而且〈X (t )〉=E {X (t )}=X μ依概率1相等。即〈X (t )〉依概率1等于X μ= E {X (t )}, X μ代表随机过程的集平均(或称统计平均),则称该过程的均值具有各态历经性。 定义 设X (t )是一均方连续平稳随机过程,且对于固定的τ,()X t X t τ(+)也是连续平稳随机过程,〈()X t X t τ(+)〉 代表()X t X t τ(+)沿整个时间轴的平均值,即 ()X t X t τ(+)=1lim (+)()2T T T X t X t dt T τ-→∞? 若〈()X t X t τ(+)〉存在,称〈()X t X t τ(+)〉为X (τ)的时间相关函数。又

六章 平稳时间序列

第六章 平稳时间序列模型 时间序列的分析研究始终是计量经济学和统计学的一个热点,对于制定精确定价和预测决策是至关重要的,近代计量经济学和金融市场的许多研究成果和市场决策理论愈来愈多是建立在时间序列分析的基础上。Engle 和Grange 因为他们的时间序列模型在经济金融中的广泛应用而获得2003年的诺贝尔经济学奖,就是时间序列分析方法的重要性在世界上被广泛认可的有力证明.近代计量经济和金融市场的许多研究成果都建立在时间序列分析的基础之上。传统应用较广的是Box 和Jenkins (1970)提出的ARIMA (自回归求和移动平均)方法;Engle(1982)提出了ARCH 模型(一阶自回归条件异方差),用以研究非线性金融时间序列模型,由此开创了金融时序独树一帜的研究思路和方法。随着时间序列分析理论和方法的发展,美国学者Schemas 和Lebanon 发现股票日收益序列与周收益序列中存在混沌现象,米尔斯也指出金融时间序列似乎通常可以用随机漫步来很好近似,非线性时间序列模型被广泛应用在金融时间序列分析中。就数学方法而言,平稳随机序列的统计分析,在理论上的发展比较成熟,从而构成时间序列分析的基础。因此,本章从基本的平稳时间序列讲起。 第一节 基本概念 一、随机过程 在概率论和数理统计中,随机变量是分析随机现象的有力工具。对于一些简单的随机现象,一个随机变量就足够了,如候车人数,某单位一天的总用水量等。对于一些复杂的随机现象,用一个随机变量来描述就不够了,而需要用若干个随机变量来加以刻画。例如平面上的随机点,某企业一天的工作情况(产量、次品率、耗电量、出勤人数等)都需要用多个随机变量来刻画。 还有些随机现象,要认识它必须研究其发展变化过程,这一类随机现象不能 只用一个或多个随机变量来描述,而必须考察其动态变化过程,随机现象的这种动态变化过程就是随机过程。例如,某一天电话的呼叫次数ξ,它是一个随机变量。若考察它随时间t 变动的情况,则需要考察依赖于时间t 的随机变量t ξ,{t ξ}就是一个随机过程。又例如,某国某年的GNP 总量,是一个随机变量,但若考

第六章窄带随机过程

第八讲 窄带随机过程 8.1 希尔伯特变换和解析过程 8.1.1 希尔伯特变换 一. 希尔伯特变换的定义 设有实信号)(t x ,它的希尔伯特变换记作)(?t x 或)]([t x H ,并定义为 ττ τπd t x t x H t x ?∞ ∞--==) (1 )]([)(? 用'ττ +=t 代入上式,进行变量替换,可得到上式的等效形式为: '' ) '(1 )(?τττπd t x t x ?∞ ∞-+-= 也可得 '' ) '(1 )(?τττπd t x t x ?∞ ∞--= 希尔伯特反变换为 ττ τπd t x t x H t x ?∞ ∞----==)(?1 )](?[)(1 经变量替换后得 ττ τπττ τπd t x d t x t x ? ? ∞ ∞ -∞ ∞ -+= -- =)(?1 )(?1 )( 二. 希尔伯特变换的性质 1. 希尔伯特变换相当于一个0 90的理想移相器。

从定义可以看出,希尔伯特变换是)(t x 和t π1 的卷积,即 t t x t x π1 *)()(?= 于是,可以将 )(?t x 看成是将)(t x 通过一个具有冲激响应为t t h π1 )(=的线性滤波器的输出。由冲激响应可得系统的传输函 数为 )sgn()(ωωj H -= 式中,)sgn(ω为符号函数,其表达式为 010 1)sgn(<-≥= ωωω 可得滤波器的传输函数为 00 )(<≥-=ωωωj j H 即 1)(=ωH 2 02 )(<≥- = ωπ ωπ ω? 上式表明,希尔伯特变换相当于一个090的理想移相器。 由上述分析可得,)(?t x 的傅立叶变换)(?ωX 为

第六章 平稳随机过程

第六章 平稳随机过程 在自然科学与工程技术研究中遇到的随机过程有很多并不具有Markov 性,这就是说从随机过程本身随时间的变化和互相关联来看,不仅它当前的状况,而且它过去的状况都对未来的状况有着不可忽略的影响,并且其统计特征不随时间推移而变化,这类随机过程称为平稳过程. 例如,恒温条件下热噪声电压()X t 是由于电路中电子的热扰动引起的,这种热扰动不随时间推移而改变;又如,连续测量飞机飞行速度产生的测量误差()X t ,它有很多因素(如仪器振动,电磁波干扰与气候等)造成,但主要因素不随时间推移而改变. 平稳过程是一种特殊的二阶矩过程,其表现在过程的统计特性不随时间的推移而改变.用概率论语言来描述:相隔时间h 的两个时刻t 与t h +处随机过程所处的状态()X t 与 ()X t h +具有相同的概率分布.一般地,两个n 维随机向量()12(),(),,()n X t X t X t 与 ()12(),(),,()n X t h X t h X t h +++ 具有相同的概率分布. 这一思想抓住了没有固定时间 (空间)起点的物理系统中最自然现象的本质,因而平稳过程在通讯理论、天文学、生物学、生态学、和经济学个领域中有着十分广泛的应用. 6.1 随机微积分 在高等数学的微积分中,连续、导数和积分等概念都是建立在极限概念的基础上.对于随机过程的研究,也需要建立在随机过程的连续性、可导性和可积性等概念的基础上,这些内容形式上与高等数学极为相似,但实质不同,高等数学研究的对象是函数,随机微积分研究的对象是随机函数(即随机过程),有关这部分的内容统称为随机分析(stochastic analysis ). 在随机分析中,随机序列极限的定义有多种,下面我们简单介绍常用的定义.由于我们主要研究广义平稳过程(具体的定义将在第二节介绍),因此,以下的随机过程都假定为二阶矩过程.为了讨论的方便,我们约定:今后如不加说明,二阶矩过程{(),}X t t T ∈的均值函数()()0X m t EX t ==,自协方差函数(,)()()X C s t E X s X t ??=?? . 6.1.1 均方收敛 定义6.1 称二阶矩随机序列{()}n X ω以概率为1收敛于二阶矩随机变量()X ω,若使 lim ()()n n X X ωω→∞ =成立集合的概率为1,即 {} :lim ()()1n n P X X ωωω→∞ == 或称{()}n X ω几乎处处收敛(almost everywhere converge )于()X ω,记作n X ..a e ??→ X .

相关主题
文本预览
相关文档 最新文档