当前位置:文档之家› 液压传动知识点

液压传动知识点

液压传动知识点
液压传动知识点

液压传动知识点一、液压传动:以液压油作为工作介质,利用液体的压力能实现能量传递。

二液压传动的工作特性

1)力的传递按照帕斯卡原理进行。

(2)液压传动中压力取决于负载。

(3)负载的运动速度取决于流量。

(4)液压传动中的能量参数:压力P

流量Q

1)力的传递按照帕斯卡原理进行。

小活塞底面单位面积上的压力为:P1=F/A1

大活塞底面上的压力为:P1=W/A2

根据流体力学中的帕斯卡原理,平衡液体内某一点的压力等值地传递到液体各点,因此有:P=P1=P1=F/A1=W/A2

2)液压传动中压力取决于负载

只有大活塞上有了重物W(负载),小活塞上才能施加上作用力F,并使液体受到压力,所以负载是第一性的,压力是第二性的。即有了负载,并且作用力足够大,液体才

受到压力,压力的大小取决于负载。

3)负载的运动速度取决于流量

液压传动中传递运动时,速度传递按照容积变化相等的原则进行。

A1·L1=A2·L2 V1=L1/t V2=L2/t A1·V1=A2·V2=Q

Q 为流量,负载(重物)的运动速度取决于进入大液压缸的流量Q 。

三,液压系统组成

1、动力元件—泵(机械能——压力能)

把原动机的机械能转换成液体压力能的转换元件

2、执行元件—缸、马达(压力能——机械能)

把液体的液压能转换成机械能的转换元件

3、控制元件—阀(控制方向、压力及流量)

对液压系统中油液的压力、流量或流动方向进行控制或调节的元件

4、辅助元件—油箱、油管、滤油器、压力表

在系统中起储存油液、连接、滤油、测量等作用

四,液压传动的优缺点

优点:

1.在同等输出功率下,液压传动装置的体积小,重量轻,结构紧凑。

2.液压装置工作比较平稳。

3.液压装置能在大范围内实现无级调速(调速范围可达1:2000),且调速性能好。

4.液压传动容易实现自动化。

5.液压装置易于实现过载保护。液压元件能自行润滑,寿命较长。

6.液压元件已实现标准化、系列化和通用化,所以液压系统的设计、制造和使用都比较方便。

缺点:

1.液压传动不能保证严格的传动比。这是由于液压油的可压缩性和泄漏等因素造成的。

2.液压传动中,能量经过二次变换,能量损失较多,系统效率较低。

3.液压传动对油温的变化比较敏感(主要是粘性),系统的性能随温度的变化而改变。

4.液压元件要求有较高的加工精度,以减少泄漏,从而成本较高。

5.液压传动出现故障时不易找出。

五,液压传动的工作特征

(一)基本概念

1.液体静压力:

静止液体在单位面积上所受的法向力称为静压力。静压力在液压传动中简称压力,在物理学中则称为压强。

液体中某点的压力定义为:P= limF/A

2.液体静压力有两个重要特性:

1)液体静压力垂直于承压面,其方向和该面的内法线方向一致。这是因为液体质点间的内聚力很小,不能受拉只能受压。

2)静止液体内任一点所受到的压力在各个方向上都相等。这是因为,如果某点受到的压力在某个方向上不相等,那么液体就会流动,这就违背了液体静止的条件 3.液体静压力基本方程

p△A=p0△A+ρgh△A化简得:p=p0 +ρgh

式中,ρgh△A为小液柱的重力W ,ρ为液体的密度。液体在受外界压力作用的情况下,液体自重所形成的那部分压力ρgh相对甚小,在液压系统中常可忽略不计,因而可近似认为整个液体内部的压力是相等的。以后我们在分析液压系统的压力时,一般都采用这种结论。

(二)工作特征

1.以静压传递原理进行工作

液体没有固定的形状,而它却要占有一定的体积。因此,液压传动必须是在密闭的容器(液压泵、液压缸及管路等)内进行。

在充满液体的密闭连通器内,当一处受到压力时,这个压力将通过液体传到各个连通容器内,并且其压力处处相等(忽略压力降)。

2.工作压力的大小取决于负载

液压传动系统的重要特征之一:

在液压传动系统中,工作压力的大小取决于负载,而与流入的液体多少无关。

液体的压力主要是液体表面受外力(如通过活塞)作用而产生的。也就是,液压传动是用压力来满足外力要求的。即

P=F/A (8-1)

式中p为液体压力,Pa;A为受力面积,m2;F为外载荷,N。压力p是指:单位面积上所受的压力,即压力强度。

3.运动速度取决于液体的流量

液压传动系统的重要特征之二:

在液压传动系统中,执行元件得运动速度取决于流量,而与体得压力无关。

在液压传动系统中,执行元件(如液压缸活塞)运动速度的大小取决于进入执行元件的液体的流量。即

Q =Av v=Q/A

(8-2)

式中,Q为液体流量,m3/s;A为液体通流截面积,m2;v 为运动速度,m2/s。

所谓流量Q就是:单位时间内流过某一截面积为A的液体体积。

4.液体流动时要克服阻力

在液压传动中,油液在管路(包括液缸)中是流动的,因此存在阻力。

当执行元件(如液压缸活塞)以一定速度运动时,由于须克服管路中的阻力,那么液压泵的压力p1要大于液压缸中的压力p2。

即P1=p2+∑Δp

而∑Δp=RfQα(8-3)

式中,∑Δp为管路中的压力损失,包括沿程损失和局部损失;Rf为液阻系数;α为系数,一般取沿程阻力α=1~2,局部阻力α=2。

5.功率的大小取决于压力和流量的乘积

由于功率等于力乘以速度,故液压缸的输出功率为

N=Fv

而F=pA ,v=Q/A

故N=pQ(8-4)

这表明,液压系统的功率等于系统的压力p和流量Q的乘积。

六,(1)液压泵的基本工作原理

液压泵实现吸油,压油的工作过程,必须具备夏利条件:1)应具备密封容积

2)密封容积的大小能交替变化

3)应有备油装置

4)吸油过程中,油箱必须与大气相通。这是实现吸油的必须条件。

(2)液压泵的分类及选用

液压泵按其结构形式,可分为齿轮泵、叶片泵、柱塞泵和螺杆泵;按其排量能否调节,可分为定量泵和变量泵。

齿轮泵又分外啮合齿轮泵和内啮合齿轮泵。

叶片泵又分双作用叶片泵、单作用叶片泵和凸轮转子泵。柱塞泵又分径向柱塞泵和轴向柱塞泵。

选用原则:

是否要求变量,要求变量选用变量泵。

工作压力,柱塞泵的额定压力最高。

工作环境,齿轮泵的抗污能力最好。

噪声指标,双作用叶片泵和螺杆泵属低噪声泵。

效率,轴向柱塞泵的总效率最高。

作用叶片泵、径向柱塞泵和轴向柱塞泵可以作变量泵1,齿轮泵:

齿轮泵结构形式有两种:内啮合和外啮合。其中外啮合齿轮泵应用较多。

齿轮泵的优缺点

优点:结构简单紧凑、工作可靠、制造容易、价格低、自吸性好、维护简便、对工作介质污染不敏感。

缺点:流量和压力脉动大,噪音也就较大、容积效率低、径向不平衡力较大,工作压力提高受限制。

2,叶片泵

叶片泵分为两类:单作用叶片泵和双作用叶片泵。

单作用叶片泵—转子每旋转一周完成一次吸、排油液。双作用叶片泵—转子每旋转一周完成两次吸、排油液。叶片泵特点:工作压力较高,流量脉动小,工作平稳,噪音较小,寿命较长。结构相对较复杂,吸油特性欠佳,对油液的污染较敏感。

单作用叶片泵

1).单作用叶片泵的工作原理:

利用定子和转子间偏心距,转子旋转时使密封工作容积不断发生变化,达到吸油和压油的目的。

它利用吸油腔和压油腔之间的封油区,将吸油腔和压油腔分隔开。单作用叶片泵多用于变量泵。

单作用叶片泵的流量是脉动的。叶片数越多。流量脉动率越小;奇数叶片比偶数叶片的脉动率小。

双作用叶片泵

1).双作用叶片泵的工作原理:

双作用叶片泵的转子和定子中心重合,定子内表面近似于椭圆面。转子旋转时,其中心与定子内表面的距离就随之发生变化,从而使密封工作容积发生变化,达到吸油和压油的目的。

双作用叶片泵有两个吸油腔和两个压油腔,呈对称分布。它是利用吸油腔和压油腔之间的封油区,将吸油腔和压油腔分隔开。

双作用叶片泵的优缺点

优点:流量均匀,运转平稳,噪音小;结构紧凑,体积小;密封可靠,压力较高。

缺点:制造要求高,加工较困难;对油液污染敏感,容易损坏;吸油能力较差。

双作用叶片泵的应用

双作用叶片泵的应用广泛应用于各种中、低压液压系统,完成中等负荷的工作。如金属切削机床、锻压机械及辅助设备等的液压系统。

3,柱塞泵

柱塞泵是靠柱塞在缸体内做往复运动,使得密封容积发生变化,从而实现吸油与压油。

柱塞泵可分为两大类:径向柱塞泵和轴向柱塞泵。

柱塞沿转子径向布置的泵称为径向柱塞泵,柱塞按传动轴轴线方向布置的泵称为轴向柱塞泵。

为了连续吸油和压油,柱塞数必须大于等于3。

与叶片泵相比,柱塞泵的优点有:加工方便,能提高配合精度,密封性能好,在高压下工作仍有较高的容积效率;调节流量方便;可充分利用主要零件的材料强度性能。

因柱塞泵具有上述优点,所以常用于高压、大流量及大功率的系统中和流量需要条件的场合。如液压机、工程机械、石油机械、矿山冶金机械等等。

径向柱塞泵

1).径向柱塞泵的工作原理:

由于径向柱塞泵的转子和定子之间有偏心距,转子旋转时柱塞底部的密闭工作腔容积也就随之发生变化,从而实现吸油与压油的目的。配硫轴固定不动。

径向柱塞泵的流量随偏心距e的变化而不同,若偏心距e 是可调的,则泵即成为变量泵。

径向柱塞泵存在的问题:径向尺寸大;转动惯性大;自吸能力差;配油轴径向受力不平衡,易磨损,提高转速和压力受限制。因此,径向柱塞泵逐渐被轴向柱塞泵所代替。

轴向柱塞泵

1.轴向柱塞泵的工作原理:

由于斜盘相对传动轴有一倾斜角度,那么斜盘的作用就迫使柱塞在缸体中作往复运动,并通过配油盘的配油窗口进行吸油和压油。

斜盘式轴向柱塞泵的结构特点:

?有三对磨擦副:柱塞与缸体孔,缸体底面与配流盘,滑靴与斜盘;

?泵体上有泄漏油口;

?传动轴是悬臂梁,缸体外有大轴承支承;

?为减小瞬时流量的脉动性,常取柱塞数为奇数。

?容积效率较高,额定压力可达30MPa以上。

4,液压缸

液压缸是液压系统的执行元件。

液压缸是将液压能转变为机械能的装置,用它驱动工作机构实现往复直线运动或摆动。

液压缸的分类

1.按结构形式分

活塞缸:又分单杆液压缸、双杆液压缸

柱塞缸

摆动缸:又分单叶片摆动缸、双叶片摆动缸

2.按作用方式分

单作用液压缸:一个方向的运动依靠液压力实现,而反方向的运动则需依靠弹簧力、重力或其它外力来实现;

双作用液压缸:两个方向的运动都依靠液压力来实现。5,控制阀

控制阀在液压系统中被用来控制液流的压力、流量和方向,保证执行元件按照要求进行工作。

控制阀属控制元件。

液压阀的分类

1.根据用途不同分类:

压力控制阀—用来控制和调节液压系统液流压力的阀类,如溢流阀、减压阀、顺序阀等。

流量控制阀—用来控制和调节液压系统液流流量的阀类,如节流阀、调速阀、分流集流阀、比例流量阀等。

方向控制阀—用来控制和改变液压系统液流方向的阀类,如单向阀、液控单向阀、换向阀等。

对液压阀的基本要求

动作灵敏,工作可靠,工作时冲击和振动要小。

阀口全开时,液流压力损失要小;阀口关闭时,密封性能要好,内部泄漏少,无外泄漏。

所控制的参数(压力或流量)要稳定,当受外干扰时其变化量要小。

结构紧凑,安装、调试、维护方便,通用性要好。

1)方向控制阀

方向控制阀的作用是控制液压系统中的液流方向。

方向控制阀包括单向阀和换向阀两类。

单向阀有普通单向阀和液控单向阀。

换向阀按操作阀芯运动的方式可分为手动、机动、电磁动、液动、电液动等。

单向阀

1.普通单向阀

(1)特点:

普通单向阀(简称单向阀)的作用是只允许液流向一个方向流动,反向则被截止。

要求正向液流通过时压力损失小,反向截止时密封性好。

2.液控单向阀

(1)特点:

液控单向阀比普通单向阀多一控制油口,当控制口不通压力油时,液控单向阀的作用与比普通单向阀一样。

换向阀

换向阀是利用阀芯在阀体孔内作相对运动,使油路接通或切断而改变油液的方向,从而实现对执行元件运动方向的控制。

换向阀的分类:

按结构形式可分—滑阀式、转阀式和锥阀式。

按阀体连通的主油路数可分—两通、三通、四通…等。

按阀芯在阀体内的工作位置可分—两位、三位、四位等。按操作阀芯运动的方式可分—手动、机动、电磁动、液动、电液动等。

按阀芯定位方式分—钢球定位式、弹簧复位式。

上述类型中,以滑阀式换向阀在液压系统中应用最多。

几种常用的换向阀:

(1)手动换向阀

阀芯运动是由操作者直接手动控制来实现的。手动换向阀又分为手动和脚踏两种。

根据阀芯的定位方式分为钢球定位式和弹簧自动复位式。常用于需要保持工作状态时间较长的情况,如机床、液压机、船舶等。

(2)机动换向阀

机动换向阀是通过安装在运动部件上的档块或凸轮推动阀芯实现换向。

机动换向阀通常是弹簧复位式的二位阀。

特点:结构简单、工作可靠,换向位置精度高。改变档块斜面角度或凸轮外形,可使阀芯获得合适的换向速度,并能减小换向冲击。

(3)电磁换向阀

通电后,电磁铁产生的电磁力推动阀芯动作,从而控制液流方向。通过控制左右电磁铁的通电和断电,就可控制液流方向,实现执行元件的换向。

电磁铁可以是直流、交流或交本整流的。

特点:电磁阀控制方便,在液压设备中应用广泛。由于电磁铁吸力有限,所以电磁阀只宜用于流量不大的场合。(4)液动换向阀

液动换向阀是利用控制油路的压力油来推动阀芯实现换向的。由于控制压力可以调节,所以液动换向阀可以制造成流量较大的换向阀。

液动换向阀特点:结构简单、动作可靠、平稳。由于液压驱动力大,故可用于流量大的液压系统中。液动换向阀很少单独使用,常与电磁换向阀联合使用。

(5)电液换向阀

电液换向阀是由电磁换向阀与液动换向阀组合而成。其中,液动换向阀实现主油路的换向,称为主阀;电磁换向阀改变液动换向阀控制油路的方向,称为先导阀。

特点:电液换向阀综合了电磁换向阀与液动换向阀的优

点,具有控制方便、流量大的特点。液动阀两端控制油路上的节流阀可以调节主阀的换向速度,并可降低换向冲击。压力控制阀

压力控制阀是用来控制液压系统中油液压力或通过压力信号实现控制的阀类。它包括溢流阀、减压阀、顺序阀、压力继电器。

压力控制阀的基本工作原理:通过液压作用力与弹簧力进行比较来实现对油液压力的控制。

(一)溢流阀

1.溢流阀的结构和工作原理

溢流阀的作用主要是在溢流的同时使液压泵的供油压力得到调整,并保持基本恒定。

溢流阀按其工作原理可分为:直动式溢流阀和先导式溢流阀。

直动型溢流阀结构简单,制造容易,成本低,但油液压力直接靠弹簧平衡,所以压力稳定性较差,动作时有振动和噪音;此外,系统压力较高时,要求弹簧刚性大,使阀的开启性能变坏。所以直动型溢流阀只用于低压液压传动中。

2先导式溢流阀

先导型溢流阀遥控口接法:

先导阀前腔有一遥控口,在该控制口接远程调压阀可实现远控,接电磁阀通回油箱可实现卸载。

先导型溢流阀,压力稳定,波动小,主要用于中压液压传动系统中

溢流阀的应用

作稳压阀用,保证系统压力恒定。

作安全阀用,限制系统最大压力,对系统起保护作用。

作背压阀用,在回油路上产生背压,使部件运动平稳。

作卸荷阀用,在执行机构不工作时使油路卸荷。(二)减压阀

减压阀是利用液流流过缝隙产生压力损失,使其出口压力低于进口压力的压力控制阀。

按调节要求不同分为:定压减压阀,定比减压阀,定差减压阀。其中定压减压阀应用最广,简称减压阀。

减压阀又分直动式和先导式两种,其中先导式应用较广.减压阀的特点与应用

减压阀与先导型溢流阀比较:减压阀是出口压力控制,保证出口压力为定值,溢流阀是进口压力控制,保证进口压力为定值;减压阀阀口常开,溢流阀阀口常闭;减压阀有单独的泄油口,溢流阀弹簧腔的泄漏油经阀体内流道内泄至出口;减压阀与溢流阀一样有遥控口。

减压阀用在液压系统中获得压力低于系统压力的二次油路上,如夹紧回路、润滑回路和控制回路。必须说明,减压阀出口压力还与出口负载有关,若负载压力低于调定压力

时,出口压力由负载决定,此时减压阀不起减压作用。(三)顺序阀

1.顺序阀的结构和工作原理

顺序阀是一种利用压力作为控制信号,自动接通或切断某一油路(即阀口的通断)的压力阀。常用来控制执行元件动作的先后顺序,故称为顺序阀。

顺序阀分为直动式和先导式两种。

按控制油来源不同分内控和外控,按弹簧腔泄漏油引出方式不同分内泄和外泄。

顺序阀通过改变上盖或底盖的装配位置可得到四种结构形式:内控外泄;内控内泄;外控外泄;外控内泄。

顺序阀的应用

内控外泄顺序阀用于实现多个执行元件的顺序动作。

3流量控制阀

流量控制阀是通过改变阀口大小来改变液阻,对通过阀口的流量实现调节,从而达到改变执行元件运动速度的目的。

流量控制阀主要包括:节流阀、调速阀、溢流节流阀和分流集流阀。

节流阀是最基本的流量控制阀。

(一)节流阀

节流元件的节流口结构形式常见的有:锥形、三角槽形、

矩形、三角形等。

节流阀的流量特性取决于节流口的结构形式。但无论节流口采用何种结构形式,节流口都介于理想薄壁小孔和细长小孔之间。

1.节流阀的流量特性

节流阀的流量特性可表示为

Q=CAΔpm (8-53)式中C—系数,与节流阀的结构和油液的性质有关;

A—节流阀通流面积;Δp—节流阀前后压力差;

m—节流指数,一般取m=0.5~1.0,

薄壁小孔m=0.5,细长小孔m=1.0。

上式反映了流经节流阀的流量Q与阀前后压力差Δp 和开口面积A 之间的关系。

当系数C、压力差Δp和指数m一定时,改变节流口面积A即可调节通过阀口的流量Q。

节流阀结构简单,制造容易,体积小,但负载和温度的变化对流量的稳定性影响较大。只实用于负载和温度变化小或速度稳定性要求较低的系统。

二)调速阀

调速阀是由定差减压阀与节流阀串连而成。

调速阀可以是定差减压阀在前,节流阀在后,也可以是节流阀在前,定差减压阀在后。

由于定差减压阀可以保持节流阀前后压力差Δp基本不变,从而使通过节流阀的流量Q不受负载变化的影响。(三)溢流节流阀

溢流节流阀是由节流阀与压差式溢流阀并连而成。

液压辅助装置

液压辅助装置是液压系统的重要组成部分,它们包括:油箱、油管、滤油器、测量仪表、密封装置、储能器等。

在液压系统设计时,油箱需根据系统要求自行设计,其它辅助装置已标准化、系列化,可以直接选用。

油管及管接头

管件是用来连接液压元件、输送液压油液的连接件。它应有足够的强度,没有泄漏,密封性能好,压力损失小,拆装方便。

管件包括油管和管接头。

1.油管:

常用的油管有:钢管、紫铜管、橡胶软管、尼龙管、耐油塑料管。

应根据液压系统的工作条件和压力大小来选择油管。油管内径d的选取应以降低流速减少压力损失为前提;管壁厚δ不仅与工作压力有关,还与管子材料有关。

2.管接头:

管接头是油管与液压元件、油管与油管之间可拆卸的连

液压传动知识点复习总结

液压与气压传动知识点复习总结(很全) 一,基本慨念 1,液压传动装置由动力元件,控制元件,执行元件,辅助元件和工作介质(液压油)组成 2,液压系统的压力取决于负载,而执行元件的速度取决于流量,压力和流量是液压系统的两个重要参数 其功率N=PQ 3, 液体静压力的两个基本特性是:静压力沿作用面内法线方向且垂直于受压面;液体中任一点压力大小与方位无关. 4,流体在金属圆管道中流动时有层流和紊流两种流态,可由临界雷诺数(Re=2000~2200)判别,雷诺数(Re )其公式为Re=VD/υ,(其中D 为水力直径), 圆管的水力直径为圆管的内经。 5,液体粘度随工作压力增加而增大,随温度增加减少;气体的粘度随温度上升而变大, 而受压力影响小;运动粘度与动力粘度的关系式为ρ μν=, 6,流体在等直径管道中流动时有沿程压力损失和局部压力损失,其与流动速度 的平方成正比.22ρλv l d p =?, 2 2 v p ρξ=?. 层流时的损失可通过理论求得λ=64e R ;湍流时沿程损失其λ与Re 及管壁的粗糙度有关;局部阻力系数ξ由试 验确定。 7,忽略粘性和压缩性的流体称理想流体, 在重力场中理想流体定常流动的伯努利方程为γρυ++22 P h=C(常数),即液流任意截面的压力水头,速度水头和位置 水头的总和为定值,但可以相互转化。它是能量守恒定律在流体中的应用;小孔流量公式q=C d A t ρp ?2,其与粘度基本无关;细长孔流量q=?l d μπ1284P 。平板缝隙流量q=p l bh ?μ123 ,其与间隙的 三次方成正比,与压力的一次与方成正比. 8,流体在管道流动时符合连续性原理,即2111V A V A =,其速度与管道过流面积成反比.流体连续性原理是质量守衡定律在流体中的应用.

液压传动基础知识试题以及答案

测试题(液压传动) 姓名:得分: 一、填空题(每空2分,共30分) 1.液压系统中的压力取决于(),执行元件的运动速度取决于()。 2.液压传动装置由()、()、()和()四部分组成,其中()和()为能量转换装置。 3.仅允许油液按一个方向流动而反方向截止的液压元件称为()。 4.溢流阀为()压力控制,阀口常(),先导阀弹簧腔的泄漏油与阀的出口相通。定值减压阀为()压力控制,阀口常(),先导阀弹簧腔的泄漏油必须单独引回油箱。 5.为了便于检修,蓄能器与管路之间应安装(),为了防止液压泵停车或泄载时蓄能器内的压力油倒流,蓄能器与液压泵之间应安装()。 二、选择题(每题2分,共10分) 1.将发动机输入的机械能转换为液体的压力能的液压元件是()。 A.液压泵 B.液压马达 C.液压缸 D.控制阀 2.溢流阀一般是安装在()的出口处,起稳压、安全等作用。 A.液压缸

B.液压泵 C.换向阀 D.油箱。 3.液压泵的实际流量是()。 A.泵的理论流量和损失流量之和 B.由排量和转速算出的流量 C.泵的理论流量和损失流量的差值 D.实际到达执行机构的流量 4.泵常用的压力中,()是随外负载变化而变化的。 A.泵的输出压力 B.泵的最高压力 C.泵的额定压力 5.流量控制阀使用来控制液压系统工作的流量,从而控制执行元件的()。 A.运动方向 B.运动速度 C.压力大小 三、判断题(共20分)

1.液压缸活塞运动速度只取决于输入流量的大小,与压力无关。() 2.流量可改变的液压泵称为变量泵。() 3.定量泵是指输出流量不随泵的输出压力改变的泵。() 4.当液压泵的进、出口压力差为零时,泵输出的流量即为理论流量。() 5.滑阀为间隙密封,锥阀为线密封,后者不仅密封性能好而且开启时无死区。() 6.节流阀和调速阀都是用来调节流量及稳定流量的流量控制阀。() 7.单向阀可以用来作背压阀。() 8.同一规格的电磁换向阀机能不同,可靠换向的最大压力和最大流量不同。() 9.因电磁吸力有限,对液动力较大的大流量换向阀则应选用液动换向阀或电液 换向阀。() 10.因液控单向阀关闭时密封性能好,故常用在保压回路和锁紧回路中。() 四、问答题(共40分) 1、说明液压泵工作的必要条件?(15分) 2、在实际的维护检修工作中,应该注意些什么?(25分) 一、1.(负载)(流量) 2.(动力元件)、(执行元件)、(控制元件)(辅助元 件)(动力元件)(执行元件)3.(单向阀)4.(进口)(闭)(出口)(开)5.(截止阀)(单向阀) 二、(A)(B)(C)(A)(B)

液压考试知识点总结概要

《液压传动考试宝典之68招》 【2011级机械班内部资料陈林涛总结 2014年六月】一,考试内容: 针对以上考试,我为大家总结了一下精简和重点知识点,希望大家好好看看,考试顺利!!!二.重要知识点:(有颜色,划线的最重要!!!) 1.液压传动以液体作为传递运动和动力的工作介质,而且传动中必须经过两次 能量转换。它先通过动力装置将机械能转换为液体的压力能,后又将压力能转换为机械能做功。 2.系统内的工作压力取决于外界负载。 3.活塞的运动速度v 取决于进入液压缸(马达)的流量q。 4.压力p和流量q是流体传动中最基本、最重要的两个参数,它们相当于机械 传动中的力和速度,它们的乘积即为功率 5.液压传动装置主要由以下四部分组成能源装置—泵。将原动机输入的机械 能转换为液体的压力能,作为系统供油能源装置。执行装置—缸(或马达)。

将流体压力能转换为机械能,而对负载作功。控制调节装置—各种控制阀,用以控制流体的方向、压力和流量,保证执行元件完成预期的工作任务。辅助装置—油箱、油管、滤油器、压力表、冷却器、分水滤水器、油雾器、消声器、管件、管接头和各种信号转换器等,创造必要条件,保证系统正常工作。 6.液压系统中控制部分的结构组成形式有开环式和闭环式两种。 7.液压传动优点:在同等的体积下,液压装置能比电气装置产生更大的动力。 液压装置工作比较平稳。液压装置能在大范围内实现无级调速。它还可以在运行的过程中进行调速。液压传动易于对液体压力、流量或流动方向进行调节或控制。液压装置易于实现过载保护。 8.缺点:液压传动在工作过程中常有较多的能量损失。液压传动对油温变化比 较敏感,它的运动速度和系统工作稳定性很易受到温度的影响,因此它不宜在很高或很低的温度条件下工作,为了减少泄漏,液压元件在制造精度上的要求较高,因此它的造价较贵,而且对油液的污染比较敏感。液压传动出现故障时不易找出原因。 9.液压系统能否可靠稳定的工作,在很大程度上取决于系统中所用到的液压油 液。 10.液压液的物理性质:密度,可压缩性,粘性。 11.液压系统使用的液压液应具备如下性能: 密封件有良好的相容性。对热、氧化、水解和剪切都有良好的稳定性。抗泡沫性好,抗乳化性好,腐蚀性小,防锈性好。体积膨 燃,但油本身不燃烧时的温度)和燃点高。对人体无害,成本低。

液压与气压传动实习心得

液压与气压传动实习心得 为期一周的液压气压传动实验就这样结束了,但是通过这次实验我对液压气压回路及组件有了一个很深的认识,通过不断地练习使我不仅把理论和实践紧密的结合起来,了解工作原理。也提高了我们的动手能力,而且也增进了我们团队中的合作意识,因为液压回路不是一个人就能随便能安装得起来的,这就需要我们的配合与相互间的学习,通过这次实习我们收获,不仅是知识方面,而且在我们未来的工作之路上,它让我们学会了如何正确面对未来工作中的困难与挫折,是一次非常有意义的经历。 我想不仅仅是这些了。在这次实验过后,让我深刻了解到,对于每干一件事情,我们都应该善于分析与总结,只有这样,我们才会变的更好,通过实验我们锻炼了团队合作精神。让我们可以养成细心专注的好习惯,以后不至于在遇到问题的时候畏惧退缩,可以让我们更加有毅力的攻克难关,加强我们自身的能力。对此我们怀着无比的高兴心情,因为我们又学到了新的知识在人生的道路上又向前迈进了新的一程,不仅感谢老师对我们的谆谆教导,而且感谢我同组同学及全班同学的帮助和关心! 经过一周的液压气压传动实验,在李老师的帮助下,我充分的把理论知识与实践相结合,在实践中检验自己,在课堂上我们充分理解书本上的知识,在实践中我们团队,相互合作,在遇到问题之后我们查阅资料,请教同学和老师,把每一个在实验中遇到的问题都

完善的解决。 一开始我们不知道什么是液压,对这门功课一无所知。在课堂上,我们从最初的元件学起,我们根本不知道这些元件的名字,更不知道他们的用途,老师很有耐心的交我们认识每一个元件,教我们液压气压的原理,我们明白了液压的原理和认识液压的元件之后,渐渐地我们对液压有了一定的认识。有了一定的课堂学习基础,之后李老师教我们如何做实验,刚开始的我们对实验器材也不懂,但是经过两位老师耐心的讲解和示范,我们有了一定的了解。为了激励我们学习,让我们更好地完成液压的试验,老师们把我们班同学分成了几个实验组,分组进行实验器材连接,开关打开他们能运行。 我们在做实验中遇到了很多困难,看似简单的实验我们做了一遍又一遍,不是压力小了,就是线连错了,或者是方向伐方向弄反了,我们一遍一遍的请教老师,各组的同学都很努力。最后我们终于完成了实验。由于知识的匮乏,难免有许多考虑不周全的地方,如果没有李老师的帮助,想要完成这个实验是难以想象的。虽然我们都很累,都留下了汗水,但是我们认为值得,因为我们有收获。我们学到了知识。 在实验课上,我们还明白了团队的合作精神的重要性,我们以后到了工作岗位以后,避免不了团队的合作。合作在工作中必不可少。我们现在明白了团队合作的力量与重要,同学之间的相互帮助让我们体会到团结互助的重要性,为以后的工作和生活积累下经验,通过和同学的配合,我们可以发现自己的不足之处,从而好好改进让

化工热力学要点纲要

第一章绪论 (1)明确化工热力学的主要任务是应用经典热力学原理,推算物质的平衡性质,从而解决实际问题,所以物性计算是化工热力学的主要任务。 (2)掌握热力学性质计算的一般方法 (3)热力学性质计算与系统有关。大家必须明确不同系统的热力学性质计算与其热力学原理的对应关系,这一点对于理解本课程的框架结构十分重要。 第二章流体的P-V-T关系 (1)应该理解状态方程不仅可以计算流体的p-V-T性质,而且在推算热力学性质中状态方程是系统特征的重要模型。 (2)熟悉纯物质的P-V-T相图及其相图上的重要概念,如三相点、临界点、汽化线、熔化线、升华线、等温线、等压线等容线、单相区、两相共存区、超临界流 体区等。能在p-v图和p-T图中定性表达出有关热力学过程和热力学循环。 (3)掌握由纯物质的临界点的数学特征约束状态方程常数的方法。 (4)理解以p为显函数和以V为显函数的状态方程的形式,以及它们在性质计算中的区别。 (5)能借助于软件用PR和SRK方程进行p-V-T性质计算,清楚计算时所需要输入的物性常数及其来源。对于均相混合物性质的计算,需要应用混合法则,了解 相互作用参数的含义和取值。 (6)理解对应态原理的概念,掌握用图表和三参数对应态原理计算物性的方法,了解偏心因子对应态原理。 (7)能够通过查寻有关手册,估算蒸汽压、饱和气液相摩尔体积、汽化焓等物性,清楚它们之间的关系。 第三章流体热力学性质间的关系 (1)均相封闭系统的热力学原理给出了热力学性质之间的普遍化依赖关系,结合表达系统特征的模型就能获得不同热力学性质之间的具体表达式。在物性推算中 应该明确需要给定的独立变量,需要计算的从属变量,以及从属变量与独立变 量之间的关系式。另外,还必须输入有关模型参数,结合一定的数学方法,才 能完成物性推算。 (2)清楚剩余性质的含义,能用剩余性质和理性气体热容表达状态函数的变化。能够用给定的状态方程推导出剩余性质表达式。 (3)掌握状态方程计算纯物质饱和热力学性质饿原理,这是属于非均相系统性质计算,在计算时需要将状态方程与相平衡准则结合起来。 (4)掌握纯物质的压焓图和温熵图的特征以及相图上的重要的点、线、面。运用压焓图和温熵图定性表达热力学状态、过程和定量计算热力学性质。了解压焓图、 温熵图以及p-V-T相图之间的相互对应关系。 (5)熟练掌握并能运用水的性质表。 (6)了解用热力学性质解析计算方法来制作热力学性质图、表的基本原理。 第四章化工过程的能量分析 (1)稳定流动系统的热力学第一定律与封闭系统是不一样的,常用焓值进行热量衡算,若使用热力学性质图,常使用温熵图和压焓图。 (2)能量的可利用程度或品质高低由有效能来衡量。通过有效能来计算过程的能量

液压传动复习题b

参考答案 一、简答题 1.简述液压传动系统的主要组成部分。 液压泵,执行元件,控制元件,辅助元件。 2.简述容积式液压泵能够连续吸液、排液的根本原因。 容积式液压泵必须具备密封且可变的工作容腔和配流机构。配流机构一方面隔离高压、低压腔,另一方面配合吸、排液腔完成吸、排液。 3.何为液压泵的困油现象?并说明困油引起的后果。 1)液压泵工作的某一短暂时间段内产生一个与吸液腔和排液腔均不沟通的闭死容积,此闭死容积在此时间段内发生容积变化,导致此容腔内的压力急剧上升或急剧下降,此现象称为困油现象。 2)困油现象导致气穴、气蚀,增加泵轴承上的载荷,引起泄漏、降低容积效率,产生振动及噪声。 4.简述影响外啮合齿轮泵容积效率的主要因素及提高容积效率的主要方法。 外啮合齿轮泵的泄漏分为:轴向泄露、径向泄漏和齿轮啮合处泄漏,其中正常情况下轴向泄漏占总泄漏量的70%~80%,因此影响外啮合齿轮泵容积效率的主要因素是该泵的轴向泄漏。 解决办法:采用轴向间隙自动补偿装置即浮动侧板或浮动轴套。 5.比较双作用叶片泵与单作用叶片泵在性能上的主要差别。 流量脉动:双作用叶片泵的流量脉动及噪声比单作用叶片泵的小 径向力:双作用叶片泵的径向力平衡,单作用叶片泵的径向力不平衡 变量:单作用叶片可以做成变量泵,双作用叶片泵不可以做成变量泵 6.简述相同结构形式的液压泵与液压马达在结构上的主要区别。 由于下列原因造成马达与泵在结构上的差别: 运转正反: 一般要求正反转,故结构上应对称。泵不需要正反转,故为了解决困油等 现象,结构上不对称。 转速范围、启动性能:马达转速范围大,有启动性能要求。泵转速范围小无启动性能 要求。故为提高马达在低速下的运转性能及提高马达的启动性 能,马达的轴承一般采用滚动轴承,而泵可以采用滑动轴承。 自吸能力、初始密封性能:液压泵有自吸能力能力的要求,无初始密封性要求。马达 有初始密封性要求,无自吸能力要求。为解决此性能要求 上的差别在结构上也有所不同。 7.简述液压传动系统中控制元件的主要作用。 液压系统中的控制元件主要为:压力控制元件、流量控制元件、方向控制元件 压力控制元件:控制、调节系统中液体的压力; 流量控制元件:控制系统流量,控制执行元件的运行速度; 方向控制元件:控制液流方向,控制执行元件的运行方向。

液压与气压传动概念知识点总结考试重要考点

1.液压系统的工作原理:1).液压是以液体作为工作介质来进行能量传递和转换的;2).液压以液体压力能来传递动力和运动的;3).液压的工作介质是在受控制、受调节的状态下进行的。 2.液压传动系统的组成:动力装置、控制及调节装置、执行元件、辅助装置、工作介质。 3.液压传动系统的组成部分的作用:1)动力装置:对液压传动系统来说是液压泵,其作用是为液压传动系统提供压力油;对气压传动系统来说是气压发生装置(气源装置),其作用是为气压传动系统提供压缩空气。2)控制及其调节装置:用来控制工作介质的流动方向、压力和流量,以保证执行元件和工作机构按要求工作;3)执行元件:在工作介质的作用下输出力和速度(或转矩和转速),以驱动工作机构作功;4)辅助装置:一些对完成主要工作起辅助作用的元件,对保证系统正常工作有着重要的作用;5)工作介质:利用液体的压力能来传递能量。 4.液压传动的特点:优点:1)与电动机相比,在同等体积下,液压装置能产生更大的动力;2)液压装置容易做到对速度的无极调节,而且调速围大,并且对速度的调节还可以在工作过程中进行;3)液压装置工作平稳,换向冲击小,便于实现频繁换向;4)液压装置易于实现过载保护,能实现自润滑,使用寿命长;5)液压装置易于实现自动化,实现复杂的运动和操作;6)液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用;缺点:7)液压传动无法保证严格的传动比;8)液压传动有较多的能量损失(泄露损失、摩擦损失等),传动效率相对低;9)液压传动对油温的变化比较敏感,不宜在较高或较低的温度下工作;10)液压传动在出现故障时不易诊断。 5.在液压传动技术中,液压油液最重要的特性是它的可压缩性和粘性。

液压实验心得体会

第一篇、液压与气压传动学习心得 液压实验心得体会 液压与气压传动学习心得 在学完本课程后,我能够正确选择和使用液压气动元件。掌握液压系统、气动系统的设计方法。能够分析和评价现有液压、气动系统。能够正确设计液压系统,选择液压元件。 回想每一阶段的学习总有不同的收获与体会。在学习绪论的时候吴乃领老师从机器的组成为起点,介绍机械传动、电传动、流体传动、控制的原理与特点,通过比较介绍流体传动与控制的优缺点,系统组成流体传动与控制技术的发展历史,目前的运用状况以及传动技术的最新发展,使我们了解流体传动与控制的地位、原理、结构以及特点,以及流体传动运用与发展历史,并介绍本课程的学习方法,是我们大家对本课程的学习产生了浓厚的兴趣。在第二章流体力学基础的学习中,老师介绍了流体的特性,流体静力学、流体动力学伯努利方程等专业知识,帮助我们掌握学习流体传动与控制技术所需的流体力学基础。第三章我们主要学习了液压传动系统中的动力元件,第四章则是介绍液压系统的执行元件各种缸的结构、特点与使用方法,缸的推力、速度的计算;缸的各部分结构设计要点,

各种缸的最新发展方向。让我掌握了各种形式的液压缸的设计计算方法,各种缸的典型结构与应用。随后的第五章老师则介绍了压力控制阀、流量控制阀、方向控制阀的原理、结构与使用方法,在此基础上,介绍电液比例阀、伺服阀以及电液伺服阀的原理、特点、结构以及特性。介绍液压控制阀技术的最新发展。而后的学习更是给我们的认识打开了另一扇门。 液压就是通过液压油来传递压力的装置。一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件和液压油。液压由于其传动力最大,易于传递及配置,在工业、民用行业应用广泛。液压系统的执行元件液压缸和液压马达的作用是将液体的压力能转换为机械能,而获得需要的直线往复运动或回转运动。 液压系统中油液的可压缩性很小,在一般的情况下它的影响可以忽略不计,但低压空气的可压缩性很大,大约为油液的10000倍,所以即使系统中含有少量的空气,它的影响也是很大的。溶解在油液中的空气,在压力低时就会从油中逸出,产生气泡,形成空穴现象,到了高压区在压力油的作用下这些气泡急剧受到压缩,很快被击碎,形成气蚀现象。气蚀现象可引起固体壁面的剥蚀,对液压管路损害是很严重的。同时当气体突然受到压缩时会放出大量热量,引起局部过热,使液压元件和液压油受到损坏。空气的可压缩性大,还会使执行元件产生爬行现象,破坏工作平稳性,有时甚至引起振动。这些都影响到系统的正常工作。油液中混人大量气泡还容易使油液变质。降低油液的使用寿命,因此必须防止空气进入液压系统。

化工热力学教学大纲

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 化工热力学是化学工程的重要分支和基础学科,是热力学基本定律应用于化学工程领域中而形成的一门学科。本课程主要研究化工过程中各种形式的能量之间相互转化的规律及过程趋近平衡的极限条件,主要涉及能量及组成的计算。能量计算包括功能互换,也包括物理热和化学热的计算,前者包括温度、压力对焓的影响及各种相变热,后者主要是反应热。组成计算包括化学平衡和相平衡。化学平衡包括平衡常数及平衡组成的计算,并确定反应方向;相平衡包括在不同温度、压力条件下各相组成的确定。化工热力学是化工过程研究、开发与设计的理论基础,是一门理论性与应用性均较强的课程,是化学工程与工艺专业的专业基础课程。 2.设计思路: 化工热力学应用热力学基本定律研究化工过程中能量的有效利用、各种热力学过程、相平衡和化学平衡,还研究与上述内容有关的基础数据,如物质的p-V-T关系和热化学数据。 本课程主要包括四部分的内容,各部分的内容和基本要求如下: 第一部分,流体的p-V-T关系,要求掌握各种p-V-T关系使用范围,会应用各种p-V-T关系进行基本的p-V-T 计算。 第二部分,纯物质(流体)的热力学性质,要求掌握应用p-V-T关系求解纯物质的热力学性质的方法。 第三部分,热力学基本定律及其应用,要求掌握化工过程能量分析的方法,了解和掌握化工热力学原理的应用(压缩、膨胀、动力循环与制冷循环等)。 第四部分,均相混合物热力学性质,掌握利用混合规则求解均相混合物热力学性质的方法。 第五部分,相平衡,掌握气液相平衡的计算方法。 3. 课程与其他课程的关系: 本课程适宜安排在修完高等数学、大学物理、物理化学(上)等有关基础课课程之后开设,内容上注意与物理化学的衔接。 二、课程目标 通过本课程的学习,学生将系统地掌握运用化工热力学的基本概念、理论和计算方法,分析和解决化工生产中有关能量转换和有效利用、相平衡和化学变化的实际问题的能力,能利用化工热力学的方法对化工中涉及的物

化工热力学复习总结教学提纲

化工热力学复习总结

第一章、绪论 一、化工热力学的目的和任务 通过一定的理论方法,从容易测量的性质推测难测量的性质、从有限的实验数据获得更系统的物性的信息具有重要的理论和实际意义。 化工热力学就是运用经典热力学的原理,结合反映系统特征的模型,解决工业过程(特别是化工过程)中热力学性质的计算和预测、相平衡和化学平衡计算、能量的有效利用等实际问题。 二、1-2化工热力学与物理化学的关系 化工热力学与物理化学关系密切,物理化学的热力学部分已经介绍了经典热力学的基本原理和理想系统(如理想气体和理想溶液等)的模型,化工热力学将在此基础上,将重点转移到更接近实际的系统。 三、热力学性质计算的一般方法 (1)基于相律分析系统的独立变量和从属变量; (2)由经典热力学原理得到普遍化关系式。特别是将热力学性质与能容易测量的p、V、T及组成性质和理想气体等压热容联系起来; (3)引入表达系统特性的模型,如状态方程或活度系数; (4)数学求解。 第2章流体的P-V-T关系 1.掌握状态方程式和用三参数对应态原理计算PVT性质的方法。 2.了解偏心因子的概念,掌握有关图表及计算方法。 1.状态方程:在题意要求时使用该法。 ①范德华方程:常用于公式证明和推导中。

②R—K 方程: ③维里方程: 2.普遍化法:使用条件:在不清楚用何种状态方程的情况下使用。 三参数法: ①普遍化压缩因子法 ②普遍化第二维里系数法 3、Redlich-Kwong(RK)方程 3、Soave(SRK)方程 4、Peng-Robinson(PR)方程 () 22 a0.45724c r c R T T P α =0.0778c c RT b P = §2-5高次型状态方程 5、virial方程 virial方程分为密度型: 和压力型: 第3章纯物质的热力学性质 1、热力学性质间的关系

液压与气压传动知识点

1、动力粘度的物理意义是单位速度梯度下的切应力。 +ρgh。 2、静压力的基本方程为p=p 3、般齿轮啮合系数ε必须大于1。 4、解决齿轮泵困油现象的方法是在齿轮泵的两侧端盖上铣两条卸荷槽。 5、溢流阀的作用有调节系统的流量,并保持系统的压力基本稳定,用于过载保护,作卸荷阀,远程调压 6、液压传动是利用液体的压力能来做功的。 7、液体在管内流动时有层流和端流两种流态,液体的流态由雷诺数判断。 8、液压系统中的压力损失有局部压力损失和沿程压力损失两种。 9、液压传动系统由动力元件、执行元件、控制元件、辅助元件及工作介质五部分组成,各部分的作用分别为向系统提供动力源、将液压泵提供的液压能转变为机械能、对液体的流动方向、压力的高低以及流量的大小进行预期的控制、保证液压系统有效地传递力和运动,提高液压系统的工作性能、实现各种不同的控制功能。其中液压泵的作用为将原动机输出的机械能转换为工作液体的压力能。 10、液压传动系统的调速方法有节流调速、容积调速、容积节流调速。 11、齿轮泵的瞬时流量是脉动的,齿轮泵的齿数越少,脉动率越大。 12、液压系统基本控制回路按其功能不同分方向、速度、压力控制回路。 13、油箱分总体式油箱和分离式油箱。油箱的作用是储存油液,散发油液中的热量、逸出混在油液中的气体、沉淀油中的污物。 14、液压泵单位时间内排出液体的体积称为泵的流量,它的大小与泵的排量和转速有关。 15、根据节流阀在油路中的位置,节流调速回路可分为进油节流调速回路,回油节流调速回路,旁路节流调速回路。 16、当柱塞泵的柱塞数为奇数时,流量脉动系数较小。 17、单作用叶片泵通过改变定子和转子之间的偏心距来变量。它能否实现双向变量?能。 18、油液的粘度随温度的升高而降低,随压力的升高而增加。 19、液压控制阀的作用是控制液压系统中执行元件的压力,流量和方向,可分为

液压传动基本知识.(DOC)

第一讲 液压传动基础知识 一、 什么是液压传动? 定义:利用密闭系统中的压力液体实现能量传递和转换的传动叫液压传动。液压传动以液体为工作介质,在液压泵中将机械能转换为液压能,在液压缸(立柱、千斤顶)或液压马达中将液压能又转换为机械能。 二、液压传动系统由哪几部分组成? 液压传动系统由液压动力源、液压执行元件、液压控制元件、液压辅助元件和工作液体组成。 三、液压传动最基本的技术参数: 1、压力:也叫压强,沿用物理学静压力的定义。静压力:静止液体中单位承压面积上所受作用力的大小。 单位:工程单位 kgf/cm 2 法定单位:1 MPa (兆帕)= 106 Pa (帕) 1 MPa (兆帕)≈10 kgf/cm 2 2、流量:单位时间内流过管道某一截面的液体的体积。 单位:工程单位:L / min ( 升/ 分钟 ) 法定单位:m 3 / s 四、职能符号: 定义:在液压系统中,采用一定的图形符号来简便、清楚地表达各种元件和管道,这种图形符号称为职能符号。 作用:表达元件的作用、原理,用职能符号绘制的液压系统图简便直观;但不能反映元件的结构。如图: 操纵阀双向锁 YDF-42/200(G) 截止阀 过滤器 安全阀 千斤顶液控单向阀 五、常用密封件: 1.O 形圈: 常用标记方法: 公称外径(mm ) 截面直径 (mm ) 2.挡圈(O 形圈用): 3.常用标记方法: 挡圈 A D × d × a

A型(切口式); D外径(mm);d内径(mm);a厚度(mm) 第二讲控制阀;液控单向阀;单向锁 一、控制阀: 1.定义:在液压传动系统中,对传动液体的压力、流量或方向进行调节和控制的液压元件统称为控制阀。 2.分类:根据阀在液压系统中的作用不同分为三类: 压力控制阀:如安全阀、溢流阀 流量控制阀:如节流阀 方向控制阀:如操纵阀液控单向阀双向锁 3.对阀的基本要求: (1)工作压力和流量应与系统相适应; (2)动作准确,灵敏可靠,工作平稳,无冲击和振动现象; (3)密封性能好,泄漏量小; (4)结构简单,制作方便,通用性大。 二、液控单向阀结构与原理: 1.定义:在支架液压系统中用以闭锁液压缸中的液体,使之承载的控制元件为液控单向阀。一般单向阀只能使工作液一个方向流动,不能逆流,而液控单向阀可以由液压控制打开单向阀,使工作液逆流。 2. 3. 作用(以立柱液控单向阀为例): ①升柱:把操纵阀打到升柱位置,高压液打开液控单向阀阀芯向立柱下腔供液,立柱活塞杆伸出。 ②承载:升到要求高度时继续供液3~5s后停止供液,此时液控单向阀在立柱下腔高压液体的压力作用下,阀芯关闭,闭锁立柱下腔中的液体,阻止立柱下腔的液体回流,使立柱承载。 ③降柱:把操纵阀打向降柱位置,从操作阀过来的高压液一路通向立柱上腔,一路打开液控阀阀芯,沟通立柱下腔回路,立柱下降。 4. 规格型号:

化工热力学教学大纲

《化工热力学》教学大纲 一、课程基本信息 课程中文名称:化工热力学 课程英文名称:Chemical Engineering Thermodynamics 课程编号:06131050 课程类型:学科基础课 总学时:54 学分:3 适用专业:化学工程与工艺 先修课程:物理化学、化工原理 开课院系:化工与制药学院 二、课程的性质与任务 化工热力学是化学工程学的一个重要分支,是化工类专业必修的专业基础课程。它是化工过程研究、开发与设计的理论基础,是一门理论性与应用性均较强的课程。该门课系统地介绍了将热力学原理应用于化学工程技术领域的研究方法。它以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,深刻阐述了各种物理和化学变化过程达到平衡的理论极限、条件和状态。 设置本课程,为了使考生能够掌握化工热力学的基本概念、理论和专业知识;能利用化工热力学的原理和模型对化工中涉及到的化学反应平衡原理、相平衡原理等进行分析和研究;能利用化工热力学的方法对化工中涉及的物系的热力学性质和其它化工物性进行关联和推算;并学会利用化工热力学的基本理论对化工中能量进行分析等。 三、课程教学基本要求 通过本课程学习,要求 1.正确理解化工热力学的有关基本概念和理论; 2.理解各个概念之间的联系和应用; 3.掌握化工热力学的基本计算方法; 4.能理论联系实际,灵活分析和解决实际化工生产和设计中的有关问题。 四、理论教学内容和基本要求

教学内容 第一章绪论 1.1 热力学发展简史 1.2 化工热力学的主要研究内容 1.3 化工热力学的研究方法及其发展1.4 化工热力学在化工中的重要性第二章流体的p-V-T关系 2.1 纯物质的p –V –T关系 2.2 气体的状态方程 2.2.1理想气体状态 2.2.2 维里方程 2.2.3 立方型状态方程 2.2.4 多参数状态方程 2.3 对应态原理及其应用 2.3.1 对比态原理 2.3.2 三参数对应态原理 2.3.3 普遍化状态方程 2.4 真实气体混合物的p-V-T关系2.4.1 混合规则 2.4.2气体混合物的虚拟临界性质2.4.2 气体混合的第二维里系数 2.4.3 混合物的状态方程 2.5液体的p –V -T关系 2.5.1 饱和液体体积 2.5.2 压缩液体(过冷液体)体积2.5.3 液体混合物的p –V -T关系 第三章纯流体的热力学性质 3.1 热力学性质间的关系 3.1.1 热力学基本方程 3.1.2 Maxwell关系式 3.2焓变与熵变的计算

液压与气压传动知识点小结

【1】液压传动是以液体作为工作介质,利用液体的压力能来进行能量传递的传动方式。 【2 】液压传动系统的组成:1,动力元件,将输入的机械能转换为油液的压力能。2,执行元件,将油液的压力能转换为机械能。3,控制元件,在液压系统中各种阀用来控制和调节 个部分液体的压力,流量和方向,以满足及其的工作要求,完成一定的工作循环。4,辅助 元件,它们有储油用的油箱,过滤油液中杂质的滤油器,油管及管接头,密封件,冷却器和蓄能器等。5,工作介质,即传动油液,通常采用液压油。 【3】液压传动的2 个重要准则:1,液压传动中工作压力取决于外负载。2,活塞的运动速 度只取决于输入流量的大小,而与外负载无关。 【4 】液压传动的优点:1,在相同输出功率的情况下,液压传动装置的重量轻,结构紧凑,惯性小。2,能方便地再很大范围内实现无级调速。3,操纵方便,易于控制。4,液压传动 工作安全性好,易于实现过载保护,系统发生的热量容易散发。5,富裕的刚性。6,负载保压容易。7,很容易实现直线运动。8,液压元件易于实现系列化,标准化和通用化,便于设计,制造,维修和推广使用。液压传动的缺点:1,动力损失较大。2,介质动力油对污染很 敏感。3,介质动力油性质敏感。4,污染环境。5,有系统破裂的危险性。6,液压传动不能保证严格的传动比。7,造价高。8,使用和维修技术要求较高,出现故障时不易找出原因。 【1 】液压冲击:液压系统中的流动油液突然变速活换向时,造成压力在某一瞬间急剧升高, 产生一个油压峰值,并形成压力传播于充满油液管路的现象。 【2】气穴现象:在流动液体中,因某点处得压力降低而产生气泡,使系统系统中原来连续的油液变成不连续的状态,从而使液压装置产生噪声和振动使金属表面受到腐蚀的现象称气穴现象。 【1】液压泵的基本工作条件:1,它必须构成密封容积,并且这个密封容积只在不断地变化中能完成吸油和压油过程2,在密封容积增大的吸油过程中油箱必须与大气相通,这样液压泵在大气压力的作用下降油液吸入泵内,这是液压泵的吸油条件。在密封容积减小的过程中液压泵的压力取决于油排除时的阻力即液压泵的压力由外负载决定,这是形成压油的条件3,吸,压油腔要互相分开,并且有良好的密封性。 【2 】齿轮泵的结构特点:?泄露。(三条途径:泵体内表面和齿顶径向间隙的泄露;齿面啮合处间隙的泄漏;齿顶端面间隙的泄漏)??液压径向不平衡力。(减小的三种方法:减小压油口直径;增大泵体内表面与齿轮齿顶圆的间隙;开压力平衡槽)???困油现象。在齿轮泵工作时有两对齿轮同时啮合,因此就有一部分油液困在两对齿轮所形成的封闭空腔之内,这个封闭容积先随齿轮转动逐渐减小,以后又逐渐增大。封闭容积的减少会是被困油液受挤压而产生高压,并从缝隙中流出,导致油液发热,轴承等机件也受到附加的不平衡负载作用,封闭容积的增大会造成局部真空,使溶于油液中的气体分离出来,产生气穴,这就是齿轮泵的困油现象。?危害:产生强烈的噪声并引起振动和气蚀,降低容积效率影响工作平稳性,缩短使用寿命。?消除困油现象的方法:在两端的盖板上开一对矩形卸载槽。 【3】柱塞泵与齿轮泵和叶片泵相比的特点:1,工作压力高。2,易于变量。3,流量范围 大。 【1】缸有多种形式,(1 按其结构特点不同可分为活塞式,柱塞式和摆动式。 按作用方式不同又可分为单作用和双作用两种。 【2】缸筒内孔不需要精加工,工艺性好,成本低 【3】缸由缸体组件,活塞组件,密封件和连接件等基本部件组成

液压传动知识点复习要点

液压传动复习资料 系统压力取决于负载,速度取决于流量。 液压传动组成部分【能源装置执行装置控制调节装置辅助装置】 粘性【液体在外力作用下流动时,分子间内聚力的存在使其流动受到牵制,从而延其界面产生内摩擦力,这一特性称为液体的粘性】 粘性度量【绝对粘度u 运动粘度v 相对粘度】 温度对粘度影响【温度变化使液体内聚力发生变化,因此液体粘度对温度变化十分敏感:温度升高,粘度下降。粘度指数高,说明粘度随温度变化小】 液压污染后果【1、固体颗粒加速元件磨损,堵塞元件中的小孔、缝隙及过滤器,使泵、阀性能下降,产生噪声】 液压污染措施【1、严格清洗元件和系统; 2、防止污染物从外界侵入; 3、采用高性能的过滤器; 4、控制液压液的温度; 5、保持系统所有部位良好的密封性; 6、定期检查和更换液压液并形成制度】 压力表示方法【1、绝对压力 2、相对压力单位:MPa 1Pa=1N/m^2 1MPa=10^6Pa】 绝对压力【以绝对零压力为基准所表示的压力】 相对压力【以当地大气压为基准所表示的压力】 理想液体【把既无粘性又不可压缩的假想液体称为理想液体】 恒定流动【液体流动时,如液体中任何一点的压力、速度和密度都不随时间而变化,便称液体是在作恒定流动】 一维流动【当液体整个作线形流动时,称为一维流动】 液流流量的连续性方程【q=vA=常数 V1A1=V2A2 它说明在恒定流动中,通过流管各截面的不可压缩液体的流量是相等的】 理想液体能量方程【p/pg+z+u^2/2g=常数】意义【理想液体作恒定流动时具有压力能、位能和动能三种能量形式,在任一截面上这三种能量形式之间可以相互转换,但三者之和为一定值,即能量守恒】 液体流动状态【层流湍流】状态用【雷诺数】判别 Re=vd/v

液压传动考试复习试题总汇(含答案)

液压传动考试复习题总汇(含答案) 第一章绪论 一、填空 1.液压系统由、、、四个主要组成部分。 2.液压传动是以为传动介质,依靠液体的来传递动力。 3.液压系统工作时外界负荷,所需油液的压力也越大,反之亦然,负载为零,系统压力。 4.活塞或工作台的运动速度取决于单位时间通过节流阀进入液压缸中油液的,流量越大,系统的速度,反之亦然。流量为零,系统速度。 5.液压元件的职能符号只表示元件的、及,不表示元件的、及连接口的实际位置和元件的。 二、判断 1.液压传动不易获得很大的力和转矩。() 2.液压传动装置工作平稳。能方便地实现无级调速,但不能快速起动、制动和频繁换向。( ) 3.液压传动适宜在传动比要求严格的场合采用。() 4.液压系统故障诊断方便、容易。() 5.液压传动适宜于远距离传动。() 第二章液压油和液压流体力学基础 一、填空 1.油液在外力作用下,液层间作相对运动而产生内摩擦力的性质,叫做油液的,其大小用表示。常用的粘度有三种:即、和。 2.液体的粘度具有随温度的升高而,随压力增大而的特性。 3.各种矿物油的牌号就是该种油液在40 ℃时的的平均值, 4.当液压系统的工作压力高。环境温度高或运动速度较慢时,为了减少泄漏。宜选用粘 度较的液压油;当工作压力低,环境温度低或运动速度较大时,为了减少功率损失, 宜选用粘度较的液压油。 5.液压系统的工作压力取决于。 6.在研究流动液体时,将既又的假想液体称为理想液体。 7.当液压缸的有效面积一定时,活塞的运动速度由决定。 8.液体的流动状态用来判断,其大小与管内液体的、和管道的有关。 9.在液压元件中,为了减少流经间隙的泄漏,应将其配合件尽量处于状态。 二、判断 1.液压传动中,作用在活塞上的推力越大,活塞运动的速度越快。() 2.油液在无分支管路中稳定流动时,管路截面积大的地方流量大,截面积小的地方流量

液压与气压传动总结(全)培训资料

液压与气压传动总结 (全)

一、名词解释 1.帕斯卡原理(静压传递原理):(在密闭容器内,施加于静止液体上的压力将以等值同时传到液体各点。) 2.系统压力 :(系统中液压泵的排油压力。) 3.运动粘度 :(动力粘度μ和该液体密度ρ之比值。) 4.液动力 :(流动液体作用在使其流速发生变化的固体壁面上的力。) 5.层流 :(粘性力起主导作用,液体质点受粘性的约束,不能随意运动,层次分明的流动状态。) 6.紊流 :(惯性力起主导作用,高速流动时液体质点间的粘性不再约束质点,完全紊乱的流动状态。) 7.沿程压力损失 :(液体在管中流动时因粘性摩擦而产生的损失。) 8.局部压力损失:(液体流经管道的弯头、接头、突然变化的截面以及阀口等处时,液体流速的大小和方向急剧发生变化,产生漩涡并出现强烈的紊动现象,由此造成的压力损失) 9.液压卡紧现象 :(当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。)

10.液压冲击 :(在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。) 11.气穴现象;气蚀 :(在液压系统中,若某点处的压力低于液压油液所在温度下的空气分离压时,原先溶解在液体中的空气就分离出来,使液体中迅速出现大量气泡,这种现象叫做气穴现象。当气泡随着液流进入高压时,在高压作用下迅速破裂或急剧缩小,又凝结成液体,原来气泡所占据的空间形成了局部真空,周围液体质点以极高速度填补这一空间,质点间相互碰撞而产生局部高压,形成压力冲击。如果这个局部液压冲击作用在零件的金属表面上,使金属表面产生腐蚀。这种因空穴产生的腐蚀称为气蚀。) 12.排量 :(液压泵每转一转理论上应排出的油液体积;液压马达在没有泄漏的情况下,输出轴旋转一周所需要油液的体积。) 13.自吸泵 :(液压泵的吸油腔容积能自动增大的泵。)14.变量泵 :(排量可以改变的液压泵。) 15.恒功率变量泵 :(液压泵的出口压力p与输出流量q 的乘积近似为常数的变量泵。)

化工热力学——学习方法

学习方法 为了学好这门重要的专业基础课,同学们要重点做好以下几点: 1.树立正确的人生观和专业思想 目前,就我校来说有1/4~1/3的学生对自己的专业不感兴趣,认为化学工程是夕阳工业,他们将来会去做律师、做官、经商,就是不会做化学工程师。因此,他们对该专业的所有课程都无兴趣。 针对这种情况,首先要澄清“化学工程是夕阳工业”的错误概念。因为任何过程只要想将化学家在实验室烧杯里做出来的东西变成大规模生产,都离不开化学工程,离不开化学工程师,就像任何年代离不开医生和理发师一样。化学工程对人类作出了很大的贡献,其中1983年被美国评选出的化学工程对人类的十大杰出贡献涵盖了我们的衣食住行,例如,如果没有化学工程使青霉素大规模生产,最普通的流感都可能夺去我们的生命;如果没有化肥,那么我们可能食不果腹;如果没有合成纤维,那么就不会有我们今天的美丽。因此“化学工程绝对不是夕阳工业” !这可以从美国各个行业工程师的年收入得到佐证,例如,在网上查到,2004年美国化学工程师的年收入5.2万美元,排名第二,仅次于电脑工程师5.3万美元,连90年代末很吃香的电机工程师(EE,即所谓的Double E)也在其后。 第二,对于那些一心想脱离化学工程“苦海”的同学,提请他们回答一个问题,“当你去经商时,你准备在什么领域一展宏图?——是IT行业吗?是水利吗?是农业吗?如果是的话,你与那些专业毕业的同龄人相比,你有什么优势?答案只有一个,那就是你学了四年的化学工程就是你的优势,即使学得不怎么样。无数的前辈的经历告诉我们,不要说经商,就是做官,其走向都与这四年的专业脱不了干系。因此,你喜欢别的职业这无可非议,而且你应该为之时刻准备着,准备着这方面的知识、这方面的能力,最不应该的是认为投错了胎,入错了行,然后自暴自弃,浪费了很多宝贵的青春年华。另一方面,认真学好专业知识将为你将来更好的经商、做官增加砝码。 第三,对于那些除了游戏对其他任何事情包括自己将来的前途都不感兴趣的同学,则需要棒喝其责任心,因为它是做人的底线。例如,有调查表明,64%的世界500强企业的CEO认为,他现在的职业并不是当年的理想,那么为什么会做的这么好呢,他们的回答是“责任”!而你的父母亲含辛茹苦盼着你上大学,练就生存的本领,结果你拿着可能是他们卖血的钱去打游戏,或无所事事,这对得起谁?有句话说得好:一个人不可以强迫自己喜欢什么,但可以强迫自己去做什么,不做什么,这就是责任!一个人如果能把不喜欢的课程学好,说明他的责任心是相当可贵的,学习能力也非常高,那么这样的人以后做什么事都会成功。 2.化繁为简,将各个知识点有机联系起来

液压传动课程的心得体会

《液压传动》课程的心得体会 《液压传动》这门课程是我们机械工程系各专业学生必修的一门专业基础课,同时是为培养学生们在机械制造方面创新精神和实践能力而开设的一门重要课程。该课程主要目的是让学生掌握液压传动的基础知识,掌握各种液压元件的工作原理、特点、应用和选用方法,熟悉各类液压传动基本回路的功用、组成和应用场合等。 对于该门功课的心得体会,我想从教与学两方面谈谈自己的想法。 一、学 从学生的角度出发,该怎么学好这门功课呢?无可否认,我们必须培养对其的兴趣。通过对《液压传动》这门功课兴趣的培养,深入学习其基本原理和操作技能,培养我们的分析解决能力,并且努力发挥自身主观能动,积极思考,激发学习当中的潜能。当然除了具备以上这些就想学好这门功课,说实话——很难,不管做什么或者学习什么,都要讲究方法,“常胜将军”为什么总是能够打“大胜仗”呢?关键就在于凡事都讲究方法。对于我们所学的《液压传动》这门课的学习方法是怎样的呢? 1)安排好学习中的诸多环节 学习《液压传动》理论课时,按照预习→听讲→巩固(做作业、讨论)→复习这个环节进行着每一节课程,特别是上课一定要时刻保持着清醒的头脑,认真听讲,勤于思考,提高上课效率,掌握每一个理论的作用,尤其那些特别重要的概念,我们要反复思考,不懂的知识点要及时与同学交流或者请教老师将其解决。

2)善想、勤问、乐看 由于《液压传动》的理论涉及面广,教材上只是最基本的理论内容,当中其实留有很大的空间给学生思考,想象。因此最好的读书方法就是对书中的每一知识点都问一个为什么。 3)适当做习题 尽量多做习题是学好《液压传动》的前提,因为概念、理论的掌握是以反复做习题为基础的,教材和网站上的许多习题都是课堂上内容的精选,多做习题可以更加深刻的认识和理解书中的各个概念。同时通过做习题,可以进一步发现问题,并且带着问题去复习,这样可以达到事半功倍的效果。 4)参考相关的文献 学生学习完某一章后,应通过阅读网站提供的参考资料,扩大知识面,丰富课堂上教师所授的知识点。 以上2)、3)、4)点是对就是对1)点中的各个环节进行详细的阐述,除了对理论课的学习,当然实践环节是必不可少的,正所谓实践是检验真理的唯一标准。 5)认真对待实验课 液压传动是实践性很强的课程,通过实验来验证所学的理论,来巩固概念,开拓思路,提高分析问题、解决问题的能力,锻炼心理素质,提高心理承受能力。 学生应该充分重视每一次实验课,课前应认真学习教师提供的实验指导书,弄明白每一次实验的目的、实验的内容,设计合理的实验

相关主题
文本预览
相关文档 最新文档