当前位置:文档之家› 构造法求数列通项公式教学设计

构造法求数列通项公式教学设计

构造法求数列通项公式教学设计

高中数学必修5 用构造法求数列的通项公式

用构造法求数列的通项公式 在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。下面给出几种我们常见的构造新数列的方法: 一.利用倒数关系构造数列。 例如:}{n a 数列中,若),(41 1, 21 1N n a a a n n ∈+= =+求a n n n n n b b a b == +1,1 则设+4, 即n n b b -+1=4, n b {∴}是等差数列。 可以通过等差数列的通项公式求出n b ,然再求后数列{ a n }的通项。 练习:1)数列{ a n }中,a n ≠0,且满足),(,311 ,2 111N n a a a n n ∈+==+求a n 2)数列{ a n }中,,2 2,111+= =+n n n a a a a 求a n 通项公式。 3)数列{ a n }中,),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-?+≠=--且求a n . 二.构造形如2 n n a b =的数列。 例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52 2 11∈-==+ 解:设4,4,112 -=--==++n n n n n n b b b b a b 即则 ) ,71(,429429429)4()1(25254}{2 2 11N n n n a n a n n b a b b n n n n ∈≤≤-=∴-=-=-?-+=∴==-即,是等差数列,公差是数列 练习:已知正数数列{ a n }中,),2(2,211N n n a a a n n ∈≥==-, 求数列{ a n }的通项公式。 三.构造形如n n a b lg =的数列。 例:正数数列{ a n }中,若a 1=10,且),,2(,lg 2 1 lg 1N n n a a n n ∈≥=-求a n . 解:由题意得: n n n n a b a a lg 2 1 lg lg 1=∴=-可设,, 即 ,2 1 1=-n n b b 110lg 2 1 1==∴b b n ,是等比数列,公比为 )(,)2 1 ()21(111N n b n n n ∈=?=∴--. 即1)21 (1 10,)2 1(lg -=∴=-n n n n a a 练习:(选自2002年高考上海卷) 数列{ a n }中,若a 1=3,2 1n n a a =+,n 是正整数,求数列{ a n }的通项公式。 四.构造形如m a b n n +=的数列。 例:数列{ a n }中,若a 1=6,a n+1=2a n +1, 求数列{ a n }的通项公式。 解:a n+1+1=2a n +2, 即a n+1+1=2(a n +1) 设 b n = a n +1, 则b n = 2 b n-1 则数列{ b n }是等比数列,公比是2,首项b 1= a 1+1=7, 11271,27--?=+?=∴n n n n a b 即 1271-?=∴-n n a ,)(N n ∈ 构造此种数列,往往它的递推公式形如: 的形式和2)1(,1+=+≠+?=+n a S c d a c a n n n n 。 如:a n+1=c a n +d,设可化成a n+1+x=c(a n +x), a n+1=c a n +(c-1)x 用待定系数法得: (c-1)x =d

求数列通项专题高三数学复习教学设计

假如单以金钱来算,我在香港第六、七名还排不上,我这样说是有事实根据的.但我认为,富有的人要看他是怎么做.照我现在的做法我为自己内心感到富足,这是肯定的. 求数列通项专题高三数学复习教学设计 海南华侨中学邓建书 课题名称 求数列通项(高三数学第二阶段复习总第1课时) 科目 高三数学 年级 高三(5)班 教学时间 2009年4月10日 学习者分析 数列通项是高考的重点内容 必须调动学生的积极让他们掌握! 教学目标 一、情感态度与价值观 1. 培养化归思想、应用意识. 2.通过对数列通项公式的研究 体会从特殊到一般 又到特殊的认识事物规律 培养学生主动探索 勇于发现的求知精神 二、过程与方法 1. 问题教学法------用递推关系法求数列通项公式 2. 讲练结合-----从函数、方程的观点看通项公式 三、知识与技能 1. 培养学生观察分析、猜想归纳、应用公式的能力; 2. 在领会函数与数列关系的前提下 渗透函数、方程的思想 教学重点、难点 1.重点:用递推关系法求数列通项公式 2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足 若不满足必须写成分段函数形式;若满足

则应统一成一个式子. 教学资源 多媒体幻灯 教学过程 教学活动1 复习导入 第一组问题: 数列满足下列条件 求数列的通项公式 (1);(2) 由递推关系知道已知数列是等差或等比数列即可用公式求出通项 第二组问题:[学生讨论变式] 数列满足下列条件 求数列的通项公式 (1);(2); 解题方法:观察递推关系的结构特征 可以利用"累加法"或"累乘法"求出通项 (3) 解题方法:观察递推关系的结构特征 联想到"?=?)" 可以构造一个新的等比数列 从而间接求出通项 教学活动2 变式探究 变式1:数列中 求 思路:设 由待定系数法解出常数

数列之 求通项公式之 构造新数列之 其他方法

数列之 求通项公式之 构造新数列之 其他方法 1.已知数列{}n a 满足n n n a a n n a a 求,1 ,3211+==+ 2.设{a n }是首项为1的正项数列,且(n +1)a n +12-na n 2+a n +1a n =0(n ∈N *),则它的通项公式a n =_______________ 4.()n f pa a n n +=+1 ())(b kn n f +=。 解法(待定系数法):只需把原递推公式转化为:)1(1+++n g a n =p [)(n g a n +],其中s tn n g +=)(,再构造等比数列)}({n g a n +求解。 4.已知数列{}n a 中,11=a ,1231-+=+n a a n n ,求n a . 5.n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 解法:一般地,要先在原递推公式两边同除以1+n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 11+=+再待定系数法解决。 5.在数列{}n a 中,11a =,122n n n a a +=+,求n a 。 6.已知数列{}n a 满足321=a ,n n a n n a 1 1+=+,求n a 。 7.已知数列{a n }满足a 1=1,且1n n a a +=1n n +,则a 2012=() A.2010 B.2011 C.2012 D.2013 8.已知各项均不为零的数列{}n a ,定义向量()1,+=n n n a a c ,()1,+=n n d n ,n ∈*N . 下列命题中真命题是( ) A .若n ?∈*N 总有n n d c ⊥成立,则数列{}n a 是等差数列 B .若n ?∈*N 总有n n d c ⊥成立,则数列{}n a 是等比数列 C .若n ?∈*N 总有n n d c //成立,则数列{}n a 是等差数列 D .若n ?∈*N 总有n n d c //成立,则数列{}n a 是等比数列 答案 1.解:由条件知,1 1+=+n n a a n n 分别令n=1,2,3, ……(n-1), 代入上式得(n-1) 个等式累乘之,即 n a a n n a a a a a a a a n n n 1143322111342312=?-??????????=????????- 又∵,321=a ∴n a n 32= 2.n 1

高中数学必修五《等差数列的概念、等差数列的通项公式》优秀教学设计

2.2等差数列 2.2.1等差数列的概念、等差数列的通项公式 教学重点理解等差数列的概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题 教学难点(1)等差数列的性质,等差数列“等差”特点的理解、把握和应用 (2)概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式. 三维目标 一、知识与技能 1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列 2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项 二、过程与方法 1.通过对等差数列通项公式的推导培养学生的观察力及归纳推理能力; 2.通过等差数列变形公式的教学培养学生思维的深刻性和灵活性 三、情感态度与价值观 通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新 知的创新意识 教学过程 导入新课 师上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子 (1)0,5,10,15,20,25, (2)48,53,58,63, (3)18,15.5,13,10.5,8, (4)10 072,10 144,10 216,10 288,10 366, 请你们来写出上述四个数列的第7项 生第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为 师我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说 生这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为 师说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征 生1 每相邻两项的差相等,都等于同一个常数 师作差是否有顺序,谁与谁相减? 生1 作差的顺序是后项减前项,不能颠倒 师以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列 这就是我们这节课要研究的内容 推进新课 等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示

构造法求数列通项公式

构造法求数列通项公式 求数列通项公式就是高考考察的重点与热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。 一、构造等差数列求数列通项公式 运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为 (1)()f n f n +-=A(其中A 为常数)形式,根据等差数列的定义知)(n f 就是等差数列,根据等 差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。 例1 在数列{}n a 中,1a = 12 ,1n a +=33n n a a +(n N + ∈),求数列{}n a 通项公式、 解析:由a n+1=33+n n a a 得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,= -+n n a a 11 13 1 , 设b n =n a 1 ,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }就是首相b 1=2,公差d=31的等差数列, 根据等差数列的通项公式得b n =2+31(n-1)=31n +35 ∴数列通项公式为a n =53 +n 评析:本例通过变形,将递推公式变形成为 A a a n n =- +1 11 形式,应用等差数列的通项公式,先求出 n a 1 的通项公式,从而求出n a 的通项公式。 例2 在数列{a n }中,S n 就是其前n 项与,且S n ≠0,a 1=1,a n =12 22-n n S S (n ≥2),求S n 与a n 。 解析:当n ≥2时,a n =S n -S n-1 代入a n =1 2 22-n n S S 得,S n -S n-1= 1 222-n n S S ,变形整理得S n -S n-1= S n S n-1两 边除以S n S n-1得,n S 1-11-n S =2,∴{ n S 1}就是首相为1,公差为2的等差数列 ∴ n S 1=1+2(n-1)=2n-1, ∴ S n = 121 -n (n ≥2),n=1 也适合,∴S n = 1 21-n (n ≥1) 当n ≥2时,a n =S n -S n-1= 1 21-n -321-n =- 3 8422+-n n ,n=1不满足此式, ∴a n = { 2 11 3 8422 ≥=+--n n n n 评析:本例将所给条件变形成A n f n f =-+)()1(,先求出)(n f 的通项公式,再求出原

等差数列概念及通项公式经典教案

等差数列的概念及通项公式 【学习目标】 1. 准确理解等差数列、等差中项的概念,掌握等差数列通项公式的求解方法,能够熟练应用通项公式解 决等差数列的相关问题 2. 通项对等差数列概念的探究和通项公式的推导,体会数形结合思想、化归思想、归纳思想,培养学生 对数学问题的观察、分析、概括和归纳的能力 3?激情参与、惜时高效,禾U 用数列知识解决具体问题,感受数列的应用价值 【重点】:等差数列的概念及等差数列通项公式的推导和应用 【难点】:对等差数列中“等差”特征的理解、把握和应用 【学法指导】 1.阅读探究课本上的基础知识,初步掌握等差数列通项公式的求法 ; 2.完成教材助读设置的问题,然后结 合课本的基础知识和例题,完成预习自测; 3.将预习中不能解决的问题标出来,并写到后面“我的疑惑” 一、知识温故 1?数列有几种表示方法? 2?数列的项与项数有什么关系? 3函数与数列之间有什么关系? 教材助读 1?一般地,如果一个数列从第 ________ 项起,每一项与它的前一项的差等于 ____________ 常数,那么这个数列 就叫做等差数列,这个常数叫做等差数列的 ___________ ,公差通常用字母 ___________________________ 表示。 2.由三个数a 、A 、b 组成的 ___________ 数列可以看成最简单的等差数列。这时 A 叫做a 与b 的等差数列即 3. 如果数列{a n }是公差为d 的等差数列,则a 2 a 1 a 5 a 1 4.通项公式为a n =an+b (a,b 为常数)的数列都是等差数列吗?反之,成立吗? ,a 3 a 1 a 4 a 1 1. 等差数列a 2d , a ,a 2d ?' A . a n a (n 1)d B. C . a n a 2(n 2)d D. 2.已知数列{, a n } 的通项公式为 a n A . 2 B. 3 C. 2 3. 已知a 1 b - 1 ?的通项公式是( a (n 3)d a 2nd 2n ,则它的公差为( D. 3 ,则a 与b 的等差中项为 【预习自测】 a n a n

(精选)构造法待定系数法求一类递推数列通项公式

构造法、待定系数法求一类递推数列通项公式 陕西省周至中学 尚向阳 邮编710400 摘要:求数学通项公式是学习数列时的一个难点,在教学过程中,笔者发现求解递推数列通项公式是学生学习的难点,这也是高考考查的重点、热点问题,如何来突破这个难点,很好的解决这个问题,其核心思想是构造新的数列,转化为学生熟悉的等差数列或等比数列来解决,下面笔者重点介绍用构造法和待定系数法来求下列六类递推数列模型通项公式的解决策略。 关键字:数列、数列通项、构造法、待定系数法、叠加法 由等差数列联想推广到的递推数列模型: 【模型一】b ka a n n +=+1 (0≠kb )。 (1) 当1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2) 当1≠k 时,采用待定系数法,构造新的数列---等比数列 }1{-+k b a n 解:由已知1≠k 时,可设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-=k b m ∴构造 新的数列 }1{-+k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n 例1:已知}{n a 满足31=a ,121+=+n n a a 求通项公式。 解:设)(21m a m a n n +=++ m a a n n +=+21 ∴ 1=m ∴ }1{1++n a 是以4为首项,2为公比为等比数列 ∴ 1241-?=+n n a ∴ 121-=+n n a 【模型二】叠加法(或迭代法)求解)(1n f a a n n =-+ 由已知)(1n f a a n n =-+,若)(n f 可求和,则可用叠加(或迭代法)消项的方法求解。 例2:已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5; (II )求{ a n }的通项公式.

求数列通项公式的十种方法

求数列通项公式的十种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 1 1==为首项,以2 3 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 二、利用 { 1(2)1(1) n n S S n S n n a --≥== 例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解 : 22(1) 4 2 31a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--… …2分 当1,35811n T b ===--=-时 当2,62 6 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等 比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 2.(2006年全国卷I )设数列{}n a 的前n 项的和

等差数列及其通项公式公开课教案

《等差数列及其通项公式》公开课教案教学时间:2009年12月25日上午第四节 授课班级:08商外 授课地点:职三(3) 授课教师:郭玲 一、教学任务及职业背景分析: 商务外语班学生多数数学基础较差,对数学学习也不够重视。但数学作为基础学科,是培养学生分析问题、解决问题的能力及创造能力的载体,特别是本专业学生多数准备出国,更应该加强能力的培养,以适应国外激烈竞争的环境。所以在学习数学过程中,我更强调学习的过程,强调学生探索新知识的经历和获得新知的体验,不能再让教学脱离学生的内心感受。在设计本节课时,我所考虑的不是简单告诉学生等差数列的定义和通项公式,而是通过分组分享法,创造一些数学情境,让学生自己去讨论、去发现,去分享,去体验成功。学生在课堂上的主体地位得到充分发挥,激发学习兴趣,培养团队精神,也提高他们提出问题、解决问题的能力和创造力。等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。 二、教学目标: 1.知识目标:理解等差数列定义,掌握等差数列的通项公式,能根据通项公式解决 a n 、a 1 、d、n中的已知三个求另一个的问题。 2.能力目标:培养学生观察、推理、归纳能力,应用数学公式解决实际问题的能力。3.德育目标:体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。 三、教学重点:等差数列的定义理解和对通项公式的熟悉与应用 四、教学难点:对等差数列概念中“等差”特点的理解及通项公式的灵活运用 五、教学方法:分组分享法 六、教学手段:多媒体辅助教学 七、教学过程: 【雅思、托福考试常识】 美国、英国、澳大利亚等国家都要求申请留学人员应具备雅思、托福成绩。如果达不到,就需要在国外就读价格昂贵的语言学校。雅思、托福考试词汇量一般在8000个单词左右。 (1)雅思要求:考试科目为阅读、听力、口语、写作4科,每科满分为9分,成绩一般要求平均分5分以上,费用为1450元。(2)托福要求:考试科目也为是阅读、听力、口语、写作4科,每科满分30分,总分为120,成绩一般要求总分达80分以上,费用为1370元。 (一)复习回顾:数列的定义 引例:(1)莺生原来只会500个单词,她决定从今天起每天背记15个单词,那么从今天起她的单词量逐日依次递增为: 500,515,530,545,560,575,…… (2)靓靓目前会1000个单词,她打算从今天起不再背单词了,结果不知不觉每周忘掉20个单词,那么从今天起她的单词量逐周依次递减为:1000 ,980,960,940,920 ,900,…… 【说明】:通过两个具体的数列,复习数列的定义,为后面学习等差数列的定义和等差数列的通项公式建立基础。 (二)导入新课: 这节课我们将学习这一类有特点的数列: 1000,980,960,940,920 ,900 ……① 500, 515 ,530,545,560,575 ……② 问题1:观察这些数列有什么共同的特征?请同学们思考后作答。 共同特点:从第2项起,后一项与它的前一项的差都等于同一个常数。也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列, 我们把它叫做等差数列。 【说明】:通过例题(1)和(2)引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学 生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的 总结又培养学生由具体到抽象、由特殊到一般的认知能力。每相邻两项的 差相等——作差的顺序是后项减前项 问题2:请同学们分别用文字语言和数学语言描述等差数列的定义: 文字语言:一般的,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么,这个数列就叫等差数列,这个常数叫做等差数列的公 差,用字母d表示。 数学语言:a 2 – a 1 = a 3 - a 2 = a 4 - a 3 = ··· = d 即:a n - a n-1 = d (n∈N+且n≥2) 或a n= a n-1 +d (n∈N+且n≥2) 问题3:分组比赛抢答,观察下列数列是否为等差数列,如果是求出公差d (1)25,20,15,10,5……√d=-5

求数列通项公式的方法教案例题习题定稿版

求数列通项公式的方法 教案例题习题 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

求数列的通项公式的方法 1.定义法:①等差数列通项公式;②等比数列通项公式。 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列, 255a S =.求数列{}n a 的通项公式. 解:设数列{}n a 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123 a a a =, 即)8()2(1121d a a d a +=+d a d 12=? ∵0≠d , ∴d a =1………………………………① ∵255a S = ∴211)4(2 455d a d a +=??+…………② 由①②得:531=a ,5 3=d ∴n n a n 5 353)1(53=?-+= 点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。 练一练:已知数列 ,32 19,1617,815,413试写出其一个通项公式:__________; 2.公式法:已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2) n n n S n a S S n -==-≥。

例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。 解:由1121111=?-==a a S a 当2≥n 时,有 ,)1(2)(211n n n n n n a a S S a -?+-=-=-- ,)1(22221----?+=n n n a a ……,.2212-=a a 经验证11=a 也满足上式,所以])1(2[3 212---+=n n n a 点评:利用公式???≥???????-=????????????????=-2 11n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能 合写时一定要合并. 练一练:①已知{}n a 的前n 项和满足2log (1)1n S n +=+,求n a ; ②数列{}n a 满足11154,3 n n n a S S a ++=+=,求n a ; 3.作商法:已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =??=?≥?-?。 如数列}{n a 中,,11=a 对所有的2≥n 都有2321n a a a a n = ,则=+53a a ______ ; 4.累加法: 若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-+ +-1a +(2)n ≥。 例3. 已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。

构造法求数列通项公式(完整资料).doc

【最新整理,下载后即可编辑】 构造法求数列通项公式 求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。 一、构造等差数列求数列通项公式 运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。 例1 在数列{}n a 中,1a = 1 2,1n a +=33n n a a +(n N +∈),求数列{}n a 通 项公式. 解析:由a n+1= 3 3+n n a a 得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a 11131, 设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首相b 1=2,公差d=31的等差数列, 根据等差数列的通项公式得b n =2+31(n-1)=31 n +35 ∴数列通项公式为a n =53 +n 评析:本例通过变形,将递推公式变形成为A a a n n =- +1 11 形式,应用等差数列的通项公式,先求出 n a 1 的通项公式,从而求 出n a 的通项公式。 例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1 2 22-n n S S (n ≥2),求S n 与a n 。 解析:当n ≥2时,a n =S n -S n-1 代入a n =1 2 22-n n S S 得,S n -S n-1=1 2 22-n n S S , 变形整理得S n -S n-1= S n S n-1两边除以S n S n-1得,n S 1-1 1-n S =2,∴{n S 1}是首相为1,公差为2的等差数列 ∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴

数列求通项公式教学设计

数列求通项公式教学设计 教学目标: 1、知识目标:使学生掌握数列通项公式的基本求法:(1)利用 公式求通项(2)累加法求通项(3)累乘法求通项, (4)构造法求通项并能灵活地运用。 2、能力目标:通过例题总结归纳数列通项公式基本求法,培养 学生观察、辨析、运用的综合思维能力,掌握由特 殊到一般、无限化有限的化归转化的数学思想,提高 学生数学素质。 3、情感目标:通过本节的学习,进一步培养学生的“实践—认识 —再实践”的辨证唯物主义观点。 教学重点、难点: 重点:数列通项公式的基本求法 $ 难点:复杂问题的化归转化 教学方法与教学手段: 教学方法:引导发现法(注重知识的发生过程,培养学生创新精神和实践能力) 教学手段:多媒体辅助教学 教学过程: 一、创设情境,引出课题: 1、数列在历年的高考中都占有非常重要的地位。以近三年的高考为例:每年都出一道选择或填空、一道解答题,总分值为17分,占高考总成绩的百分之十。所以,希望同学们认真总结归纳基本方法,

灵活运用解题。请同学们思考解决数列问题的关键是什么(同学们一起回答:通项公式),那么这节课我们就来总结一下数列通项公式的基本求法。 《板书标题:数列通项公式的求法》 ( [设计意图] 使学生掌握数列在高考中的地位,从而使学生对数列的学习引起足够的重视,提高学习的积极性。 二、启发诱导、总结方法 1、回顾上节课讲过的公式法,已知n S 求n a ,累加法及其简单应用 给出练习题目,引导学生自主做题,并让一位学生黑板演示 教师引导学生分析例题题干,总结特点:“明确数列是用何种求和方法” 《多媒体》给出同类的练习让学生巩固方法及解题过程。 、 2、累乘法求通项 回忆等比数列定义及通项公式的推导过程,引出“累乘法求通项”,利用类比的方法引导学生自己总结累乘法所适合的结构类型:已知数列相邻两项之比。给出例题让学生分析叙述解题过程。 例:已知数列}{n a ,满足 n n a a n n 11+=+,且21=a ,求该数列的通项公式 引导学生类比累加法,思考解题方法。并逐步给出答案,引导学生怎样分析解决问题。给出练习 练习1.已知数列}{n a 满足n n n a a 2.1=+,且11=a ,求该数列的通项公式 [

构造法求数列通项公式

构造法求数列通项公式 河南省三门峡市卢氏一高(472200)赵建文 E-mail:zhaojw1968@https://www.doczj.com/doc/d02002298.html, 求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。 一、构造等差数列求数列通项公式 运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为 (1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据 等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。 例1 在数列{}n a 中,1a = 12,1n a +=33 n n a a +(n N + ∈),求数列{}n a 通项公式. 解析:由a n+1=33+n n a a 得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,= -+n n a a 11 13 1 , 设b n =n a 1 ,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首相b 1=2,公差d=31的等差数列, 根据等差数列的通项公式得b n =2+31(n-1)=31n +35 ∴数列通项公式为a n =53 +n 评析:本例通过变形,将递推公式变形成为 A a a n n =- +1 11 形式,应用等差数列的通项公式,先求出 n a 1 的通项公式,从而求出n a 的通项公式。 例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1 222-n n S S (n ≥2),求S n 与a n 。 解析:当n ≥2时,a n =S n -S n-1 代入a n =1 2 22-n n S S 得,S n -S n-1= 1 2 22-n n S S ,变形整理得S n -S n-1= S n S n-1 两边除以S n S n-1得,n S 1-1 1 -n S =2,∴{n S 1}是首相为1,公差为2的等差数列 ∴n 1=1+2(n-1)=2n-1, ∴ S n = 1 21 -n (n ≥2),n=1也适合,∴S n = 1 21 -n (n ≥1) 当n ≥2时,a n =S n -S n-1= 121 -n -321-n =-3 8422+-n n ,n=1不满足此式, ∴a n = { 2 11 3 842 2≥=+--n n n n

(完整版)用构造法求数列的通项公式汇总.docx

用构造法求数列的通项公式 上海外国语大学嘉定外国语实验学校徐红洁 在高中数学教材中,有很多已知等差数列的首项、公比或公差 (或者通过计算 可以求出数列的首项,公比),来求数列的通项公式。但实际上有些数列并不是等差、等比数列 ,给出数列的首项和递推公式 ,要求出数列的通项公式。而这些题目往往可 以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列 的通项公式。对于不同的递推公式,我们当然可以采用不同的方法构造不同的 类型的新数列。下面给出几种我们常见的构造新数列的方法: 一.利用倒数关系构造数列。 例如:数列 { a n} 中,若 a12, 1 14(n N ), 求a n a n 1a n 设 b n1,则 b n 1 b n+4, a n 即 b n 1b n=4, { b n}是等差数列。 可以通过等差数列的通项公式求出b n,然再求后数列{ a n}的通项。 练习: 1)数列 { a n}n1, a n 11, (n n 中, a ≠ 0,且满足 a1 21N ), 求a 3 a n 2)数列 { a n } 中,a11,a n 12a n, 求a n通项公式。 a n2 3)数列 { a n } 中, a11, a n 0, 且 a n2a n a n1 a n10(n2,n N ), 求 a n. 二.构造形如 b n a n2 的数列。 例:正数数列 { a n } 中,若 a15, a n12a n24(n N ),求 a n 解:设 b n a n2,则b n1b n4,即 b n1b n4 数列 { b n } 是等差数列,公差是4, b1 2 25 a1 b n25( n1)(4)294n 即 a n 2 4n 29 a n294n , (1n7, n N ) 练习:已知正数数列 { a n } 中, a12, a n2a n 1 (n2, n N ) ,求数列 { a n } 的通项公式。 三.构造形如 b n lg a n的数列。 例:正数数列 { a n }中,若 11 lg a n 1 ,( n2, n N ), 求 a n . a =10,且lg a n2 解:由题意得: lg a n1 ,可设 b n lg a n,lg a n2 1 即b n 1 , b n 12 1

【精品】等差数列通项公式教案

等差数列通项公式教案 教学目标 1.明确等差数列的定义. 2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题 3.培养学生观察、归纳能力. 教学重点 1.等差数列的概念; 2.等差数列的通项公式 教学难点 等差数列“等差”特点的理解、把握和应用 教学方法 启发式数学 教具准备 投影片1张(内容见下面) 教学过程 (I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片) (Ⅱ)讲授新课 师:看这些数列有什么共同的特点? 1,2,3,4,5,6;① 10,8,6,4,2,…;② ③ 生:积极思考,找上述数列共同特点。 对于数列①(1≤n≤6);(2≤n≤6) 对于数列②-2n(n≥1) (n≥2) 对于数列③(n≥1) (n≥2) 共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。 师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义: 等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。 如:上述3个数列都是等差数列,它们的公差依次是1,-2,。 二、等差数列的通项公式 师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:若将这n-1个等式相加,则可得: 即:即:即:…… 由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。 如数列①(1≤n≤6) 数列②:(n≥1) 数列③:(n≥1) 由上述关系还可得:即:则:=如:三、例题讲解 例1:(1)求等差数列8,5,2…的第20项

构造法求数列通项解答题

1.设数列{}n a 满足11a =,121n n a a +=+. (1)求{}n a 的通项公式; (2)记()2log 1n n b a =+,求数列{}n n b a ?的前n 项和n S . 答案: (1) 21n n a =- ; (2)()()1 11222 n n n n ++-+- ? . 解答: (1) 11111 211211201021 n n n n n n n a a a a a a a a ++++=+∴+=++=≠∴+≠∴ =+,()(),,,, ∴{1}n a +是以2为公比、2为首项的等比数列,12n n a ∴+=, ∴21n n a -=; (2) 22211221()(2)n n n n n n n n n a b log a log n b a n n n -∴+?∴?-?-=,===,==, 记122112222212122n n n A n A n n +=?+?++?∴=?++-?+?,(), ()211121222222212212 n n n n n A A A n n n +++-∴-=-=++ +-?= -?=-?--(), 1122n A n +∴=-?+(), ()()()1 11212 22 n n n n S A n n ++=-+++-+- ?=. 2. 已知数列{}n a ,0n a >,其前n 项和n S 满足1 22n n n S a +=-,其中*n ∈N . (1) {}n b 是等差数列; (2)设2n n n c b -=?,n T 为数列{}n c 的前n 项和,求证:3n T ; (3)设1 4(1)2n b n n n d λ-=+-?(λ为非零整数,*n ∈N ) ,试确定λ的值,使得对任意*n ∈N ,都有n n d d >+1成立. 答案: (1)1n b n =+;

数列通项公式常用求法及构造法

数列通项公式的常用求法 构造法求数列通项公式 一、构造等差数列求数列通项公式 运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。 例1 在数列{}n a 中,1a =1 2 ,133n n n a a a +=+(n N +∈),求数列{}n a 通项公式. 解析:由31 3n n a n a a ++=得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得, =-+n n a a 11 1 31 , 设b n =n a 1 ,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首项b 1=2,公差d=31的等差数列, 根据等差数列的通项公式得b n =2+31(n-1)=31n +35 ∴数列通项公式为a n =53 +n 例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1 2 22-n n S S (n ≥2), 求S n 与a n 。 解析:当n ≥2时,a n =S n -S n-1 代入a n =12 22-n n S S 得,S n -S n-1=12 22-n n S S ,变形整理得S n -S n-1= S n S n-1?两边除以S n S n-1得,n S 1-11-n S =2,∴{n S 1}是首相为1,公差为2的等差数列 ∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1) 当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式, ∴a n ={2 11 3 8422 ≥=+--n n n n 二、构造等比数列求数列通项公式

相关主题
文本预览
相关文档 最新文档