当前位置:文档之家› _检测电力变压器绕组变形的扫频阻抗法研究

_检测电力变压器绕组变形的扫频阻抗法研究

_检测电力变压器绕组变形的扫频阻抗法研究
_检测电力变压器绕组变形的扫频阻抗法研究

变压器绕组变形测试讲义

讲义 变压器绕组变形测试技术及其应用Transformer Winding Deformation Test Technology & Application 临沂供电公司

目录 1 前言 1.1 什么是绕组变形? 1.2 绕组变形的原因 1.3 绕组变形的危害 2 绕组变形的测量方法 2.1 阻抗法 2.2 低压脉冲法 2.3 频率响应法 3 频率响应法的原理 3.1.1 变压器线圈的等值电路 3.1.2 空心电感的电感量计算及变化分析 3.2 绕组变形种类以及变形在等值电路中的等效分析3.2.1 整体变形 3.2.2 局部变形 4 变压器绕组变形测试仪 4.1 测试仪组成 4.2 主要技术参数 4.3 特点 5 现场测试过程中的注意事项 5.1 对测试环境的要求 5.2 对变压器状态的要求 5.2.1对引线、周围接地体和金属悬浮物的要求 5.2.2 对分接位置的要求 5.2.3 对接地的要求 5.2 测试接线方式 5.2.1 YN接线 5.2.2 Y接线 5.2.3 对于Δ接线 5.2.4 有平衡绕组的变压器

5.2.5 套管末屏取信号的问题 5.2.6 其它注意事项 6 绕组变形波形分析 6.1 频率响应图谱的特征 6.1.1 差异是绝对的 6.1.2 具有相对的一致性 6.1.3 低压绕组的一致性较好 6.1.4 厂用变压器的一致性较差 6.1.5 三相变压器的一致性较好 6.2 变形测试的判断 6.2.1 低压绕组为主,高、中压绕组为辅 6.2.2 横向比较为主,纵向比较为辅 6.2.3 低频段为主,中、高频段为辅 6.2.4 波形观察为主,相关系数判断为辅 6.2.5 综合判断 6.3 绕组变形程度的分类 6.4 变压器绕组变形判断程序 7 绕组变形测试仪的检验 8绕组变形测试实例 9利用频率响应法辅以阻抗电压法进行变压器绕组变形测试的应用研究

变压器电压调整率与短路阻抗的关系

变压器电压调整率与短路阻抗的关系 1 说明 从变压器厂家订制变压器时,与变压器厂家的技术人员进行沟通,要求对方在变压器参数上标明电压调整率。对方回答“已经注明短路阻抗了,短路阻抗与电压调整率等效,不需要注明电压调整率。”当时没有考虑清楚,没有进行反驳。自己进行了资料查找与计算,经过查找计算,以前自己的理解不准确,厂家的技术人员的理解也不正确,下面试分析短路阻抗与电压调整率的关系: 2 名词定义 ? 电压调整率:变压器某一个绕组的空载电压和同一绕组在规定负载和功率因数时 的电压之差与该绕组满载电压的比,称为电压调整率,通常用百分数表示。 %10022 2×?= ΔN N U U U U U Δ:电压调整率; N U 2:二次侧空载时的输出电压,额定电压; 2U :在规定的功率因数额定负载时二次侧的输出电压。 ? 短路阻抗:变压器短路阻抗也称阻抗电压,在变压器行业是这样定义的:当变压 器二次绕组短路(稳态),一次绕组流通额定电流而施加的电压称阻抗电压Uz 。通常Uz 以额定电压的百分数表示。 %10011×= N Z Z U U U Z U :短路阻抗; Z U 1:二次侧短路,一次侧流额定电流时,一次侧的电压; N U 1:一次侧的额定电压。 3 电压调整率计算公式 ? 电压调整率的计算公式: 参考《电力变压器手册》(保定天威保变电气股份有限公司组编—谢毓城主编—机械工业出版社),电压调整率的计算公式为:

% )sin cos (2001sin cos % 100*% 100*212122 2?? ? ??????+?+?=?=?= Δ? ????KR KX KX KR N N N N U U U U U U U U U U U %20021 cos ??? ? ????+=Δ=KX KR U U U ? U Δ:电压调整率; N U 2:二次侧空载时的输出电压,额定电压; 2U :在规定的功率因数额定负载时二次侧的输出电压; N U 1:一次侧的额定电压; ? 2U :是2U 折算到一次侧的电压; KR U :短路阻抗的电阻分量; KX U :短路阻抗的电抗分量; ?cos :负载功率因数; 说明:上述公式是在N I I 22?的条件下得出,如果负载电流不是额定值,则计算出的U Δ应乘以N I I 22/。 ? 计算用向量图:

变压器绕组变形测试仪校验装置

变压器绕组变形测试仪校验装置 北京圣泰实时电气技术有限公司 频率响应分析法(FRA)检测电力变压器绕组变形,已在电力行业广泛使用,具有较高的检测灵敏度和准确性,能够在变压器不吊罩的情况下,检测出变压器存在的绕组变形故障。 尽管在DL/T911《电力变压器绕组变形的频率响应分析法》行业标准中,对绕组变形测试仪的技术指标要求及绕组变形的诊断方法均已做出明确的规定,但由于绕组变形测试仪的测量参数及使用方式较为特殊,传统方法通常难以对其技术指标进行全面检验。对于绕组变形测试仪的扫描频率精确度、检测精确度、选频滤波特性、阻抗匹配方式等关键技术指标,通常均需借助专用装置进行检验。特别是检测精确度的校验,即使采用昂贵的高精度电压表,通常也只能测量频率低于300kHz、幅度高于100mV的信号,无法满足对微弱高频信号(幅度<1mV,频率>1MHz)的精确测量,因此必须借助专用的衰减校正器来实现,且要求衰减校正器具备至少-80~20dB的调节范围和整个频段内不低于0.5dB的输出精度。此外,选频滤波特性也是决定绕组变形测试仪抗干扰能力的关键指标,将会严重影响绕组变形诊断结果的准确性,但如何对该参数进行检验,目前同样存在许多困难和不便。 为此,北京圣泰公司根据10多年来推广TDT系列变压器绕组变形测试仪的经验,加之参与编写和修订DL/T911行业标准时的调研情况,开发出FRAT-1型变压器套组变形测试仪(频响法)校验装置,可按照DL/T911标准的要求,对绕组变形测试仪的技术指标和测试附件的性能,开展全面、精确、快捷的校验工作。 FRAT-1型变压器套组变形测试仪(频响法)校验装置具备如下功能: 1、检验变压器绕组变形测试仪输出扫频信号的范围及频率、幅度的精度; 2、检验变压器绕组变形测试仪的频响检测范围及精度,可精确模拟各种频响信号; 3、检验变压器绕组变形测试仪的选频滤波的频带宽度及其带外抑制性能; 4、检验变压器绕组变形测试仪测试回路的阻抗匹配方式及测试电缆的性能; 5、提供丰富的人机对话接口和通讯接口,由外部计算机控制各项设置和操作,以EXCEL 格式保存检测数据,便于出具测试报告;

绕组变形试验

变压器绕组变形试验 一、试验目的 1、什么是变压器绕组变形 变压器绕组变形是指绕组受机械力和电动力的作用,绕组的尺寸和形状发生了不可逆转的变化。如:轴向和径向尺寸的变化,器身的位移,绕组的扭曲、鼓包和匝相间短路等。 2、变压器绕组发生变形的原因 电力变压器在运行中难以避免的要承受各种短路冲击,其中出口短路对变压器的危害尤其严重。尽管现代化的断路器能够快速的将短路故障从电路切除,但往往因某种原因自动装置不动作,使得变压器线圈在短路电流热和电动力的作用下,在很短时间内造成线圈变形,严重的甚至会导致相间短路,绕组烧毁;同时,变压器在运输安装过程中也可能受到碰撞冲击。 3、变压器绕组变形试验的目的 变压器发生绕组变形后,有的会立即损坏发生事故,更多的是仍能运行一段时间。由于常规电气试验如电阻测量、变比测量及电容量测量等很难发现绕组的变形,这对电网的安全运行存在严重威胁。这种变压器一是由于绝缘距离发生变化或缘结纸受到损伤,当遇到过电压时,绕组会发生饼间或匝间击穿,或者在长期工作电压的作用下,绝缘损伤逐渐扩大,最终导致变压器损坏。二是绕组变形后,机械性能下降,再次遭受短路事故后时,会承受不住巨大的冲击力的作用而发生损坏事故。 第31届国际大电网会议指出,变压器绕组变形是变压器发生损坏事故的重要原因之一。因此,对承受过机械力及电动力作用的变压器进行绕组变形的试验和诊断是十分必要的。 二、变压器绕组变形诊断方法 目前,各国普遍采用的变压器绕组变形诊断方法是短路阻抗法、低压脉冲法和频率响应分析法。 短路阻抗法的特点是测量简单,能较好地再现评估结果。当参数偏离规定值时,可相当可靠地估计是否存在故障,但是需动用庞大试验设备,灵敏度不高。 低压脉冲法克服了短路阻抗法的缺点,其灵敏度高,能检测出2~3mm的弯曲变形,但现场应用时抗

GDRB-B变压器绕组变形测试仪说明书

尊敬的用户: 感谢您购买本公司GDRB-B 变压器绕组变形测试仪。在您初次使用该产品前,请您详细地阅读本使用说明书,将可帮助您熟练地使用本仪器。 我们的宗旨是不断地改进和完善公司的产品,如果您有不清楚之处,请与公司售后服务部联络,我们会尽快给您答复。 注意事项 1、使用前,请先检查测试仪的外观,检查电源开关位置是否在“关”的位置、各接线端子是否正常。 2、变压器的测量接地没有连接正确前,请不要开始绕组变形测试。 3、试验前应将被试变压器线端充分放电。 4、绕组变形测试应在解开变压器所有引线(包括架空线、封闭母线和电缆)的前提下进行,并使这些引线尽可能的远离变压器套管(周围接地体和金属悬浮物需离开变压器套20cm以上),尤其是与封闭母线连接的变压器。 5、测试时必须正确记录分接开关的位置。应尽可能将被试变压器的分接开关放置在第1分接,特别对有载调压变压器,以获取较全面的绕组信息。对于无载调压变压器,应保证每次测量在同一分接位置,便于比较。 6、变压器铁芯必须与外壳可靠接地。 7、应保证测量接线钳与套管线夹紧密接触。如果套管线夹上有导电膏或锈迹,必须使用砂布或干燥的棉布擦拭干净。 8、测量线正确使用:放线时应展开不要卷曲、收线时应平直绕成环形存放,测量夹子在测量结束时应与测量线脱开,避免在变压器上挂住,有损测量

线。 9、测试使用过程中,不得打开与测试无关的其他软件。 10、测试仪不具有防水功能,不得在雨天露天使用。 11、测试仪及测试配件不用时放入包装箱,包装箱平时至于平放状态。 12、图片仅供参考,请以实物为准。 本手册内容如有更改,恕不通告。没有国电西高的书面许可,本手册任何部分都不许以任何(电子的或机械的)形式、方法或以任何目的而进行传播。

变压器绕组变形程度检测案例

电力变压器在系统运行中将受到短路冲击,随着电网容量的增大,短路电流也越来越大,因此变压器绕组将会受到很大的电动力,在变压器故障中,因短路冲击导致绕组变形的约占百分之30左右。 下面以变压器绕组变形程度检测案例,结合变压器三相对比频谱图,给大家讲解一下绕组发生变形后一些现象。 实例1 变压器绕组扭曲变形 某变电所电缆头故障,开关重合,引起66kV变压器低压侧三绕组短路,轻瓦斯动作。事后进行了色谱分析,和电气绝缘试验未发现异常。由于用电紧张,在3天后进行了变压器高压绕组变形试验。其频响曲线见图1。由图可知,总体趋势一致性尚好,但三相谐振频率依次发生偏移,谐振幅值电路有变化。初步判断变压器高压绕组可能出现局部扭曲或器身整体位移。

图1:66KV变压器高压绕组三相对比频谱图 经吊芯检查发现:高压绕组B、C相整体扭曲,部分垫块已蹦出且扭斜;B 相一个压钉碗破碎;A、C相中间一匝导线收缩严重变形;器身铁轭中间拱起。 实例2 变压器绕组突起性变形 某一次变220kV变压器由于施工不慎造成变压器出口短路,由C相对地短路而发展为三相相间短路。持续1.2s,短路电流11200A,重瓦斯动作。然后进行绝缘电阻、变比;直流电阻等试验和色谱分析,未见异常。过10天后进行了绕组变形试验,试验结果如图1及图2所示。由图中可知,高压绕组三相一致性较好,基本无明显变形,低压绕组在30kHz以下一致性较好,30kHz以上发生明显差异,说明低压绕组已发生变形。A、B相较C相谐振点向低频方向移动,谐振幅值升高,并有峰谷反向现象,说明电感量可能减小,对地电容量可能增大,

A、c相绕组可能发生辐向变形。经吊芯检查发现:高压绕组基本无变形,低压绕组A相从第5撑条发生突起性变形,B相从第25层到100层的第5到第9撑条间也发生类似的突起性变形,C相无变形。 图2:220KV变压器高压绕组三相对比频谱图实例3 变压器绕组严重变形 某变电所一台有载调压变压器,SFP7 - 180000/220型,180MVA,220kV。额定电流1574A。在一次现场施工中,由于起吊钢丝绳悬挂点开焊使避雷针落地,砸在一块角铁上,角铁反弹造成66kV侧单相接地,0.64s发展为三相短路,1.15s主变压器重瓦斯动作。此时短路电流达到11200A,为7倍额定电流,短路电动力为正常的49倍。色谱分析和部分高压试验未见明显异常,但乙炔、氢气和乙烯含量有增长,说明内部有放电现象,但CO和C02无明显增大,故未

二级承修、承装、承试类资质主要试验设备配置表

售前服务承诺 1、提供详细资料。在1小时之内将您所需要的技术资料寄出,争取为您能在36小时内收到。 2、提供专业咨询。在1小时之内答复您提出的专业技术问题。 3、提供合理报价。在2小时之内提供您所咨询设备的最佳配置方案以及产品合理报价。 4、提供考察接待。随时接待您的考察,并尽力为您的考察工作提供各种便利条件。 售中服务承诺 1、采用全国统一的《工业品买卖合同》与您签订合同和技术协议。 2、自觉遵守合同法的规定,严格执行合同规定的各项条款,确保合同及技术协议顺利履行。 3、竭力按时按量为您提供优质产品,并采用最优运输方式,确保您收到货物完好无缺。 4、积极与使用人员沟通,尊重用户安排,为用户提供周到的技术支持。 5、按合同的规定为您提供送检、安装、调试及培训等各项服务。 6、无论合同大小我们都将认真、公正、严谨、诚信地对待,确保所有客户在价格及服务方面都是公平的。 售后限时服务承诺 1. 我们将按照客户的要求提供相关的技术资料,现场调试指导及性能验收等技术培训。 2、我们保证在15分钟内进行电话指导,由您自行排除设备的简单故障。 3、对于所销售的设备三年免费维护,终生维修,长期提供备品备件,软件免费升级及后期装置的调试工作。 4. 产品有质量问题,三年免费保修,终身免费技术咨询,终生维护,有合同约定的按合同约定。 一、研发实力:中试高测具备与中试所等省级单位合作开发新项目的能力。

二、管理规范:中试高测全面推行ISO9001质量管理体系。 三、性能可靠:中试高测愿于与同行业内各个厂家进行公平竞争。 武汉中试高测电气有限公司(原武汉市中试电力仪表设备厂),致力于电力系统高压试验设备的研发、生产、销售、调试为一体的高新技术企业。产品开发以国家相关行业标准和规程为依据,充分利用最新微电脑技术,实现产品的精确智能、稳定高效、轻巧便携、简单操作、安全耐用的特点,确保了产品质量的高可靠性。公司制造的各类产品广泛应用于电力、水利、石油、铁路、矿山、化工等行业。 公司坐落于国家级科技园区武汉江汉经济开发区的中心地带,拥有现代化标准的生产厂房和完善的制造、加工、检测设备,并依托华中科技大学、武汉理工大学、武汉高压研究所等院校的人力资源和技术力量,结合优良的硬件设施与优秀的集体智慧,形成企业的核心竞争力。公司具有强大的产品研发、生产、制造能力,以雄厚的技术力量为基础,优化改革,推陈出新,从而使产品质量和生产工艺得到不断的提高。 公司本着“质量第一,以质为根”的生产理念,严格贯彻 ISO9001 质量管理体系,决心为顾客提供最为优质的产品。并在高压测试方面为用户提供全套电气试验设备,解决电力设备配套方案。为用户提供快速及时、全方位的售前、售中、售后服务。 面对经济全球化的挑战,中试高测人高瞻远瞩:以品牌为旗帜,以科技为动力,以创新为根本,决心立志电力事业。坚持“国际化、科技化、产业化”多方向发展,以“心怀九州,放眼世界”的博大胸怀,积极响应国家“发展电力,造福人类”的号召,开创电力事业新的辉煌篇章! 发展历程 【1994年7月】开发完成新一代高精度接触电阻测试仪。 【1996年3月】绝缘油介电强度测试仪技术比武荣获第二名。举办单位:湖北省质量技术监督局计量协会。【1998年1月】被武汉市政府、市科委授予高新技术企业和科技型生产单位。 【2000年9月】“武汉市中试电力仪表设备厂”正式更名为“武汉中试高测电气有限公司”。 【2001年3月】通过中国质量认证中心(SGS)ISO9001质量管理体系认证。 【2002年4月】被国家发改委、武汉高压研究所选为“电力行业标准制订成员”。 【2002年6月】荣获国家科技部中小企业创新基金扶持,国家立项代码:02C26254213929。 【2003年4月】武汉市发改委和科技局,财政局联合评比中评为创新品牌。 【2003年9月】参与制定“工频高压试验装置 DL/T 848.2-2004”、“无局放试验变压器 DL/T 848.3-2004”、“三倍频试验变压器装置 DL/T 848.4-2004”行业标准。国国家发展和改革委员会于2004年3月9日发布,2004年6月1日实施《高压试验装置通用技术条件》标准。 【2004年3月】荣获武汉市高新技术企业。 【2005年1月】荣获市级“重合同、守信用”企业称号。 【2006年4月】成功开发“CVT工频串联谐振升压装置”。 【2007年7月】GK-9A高压开关动特性测试仪荣获武汉高压研究所技术比武荣获二等奖。 【2008年2月】技术攻关突破,10A、20A直流电阻快速测试仪直流源,仅需2秒钟就可以完成一个点的测量。 【2008年9月】湖北省计量协会邀请我公司加入该会。我公司成为该会的会员单位,会员号为089号。【2009年6月】江汉开发区授予我公司高新技术企业证书,认定编号为09052128 。 【2010年2月】新一代互感器伏安变比极性综合测试仪成功升级并推出,解决了电压互感器和电流互感器的伏安特性测试在一台仪器上的应用问题,该产品比同行同类产品技术领先,体积和重量更轻,应用更广泛。 【2011年8月】我公司自主研发的串联谐振电源荣获得国家知识产权局实用新型专利证书。 【2012年1月】荣获“湖北省著名商标。

变压器并列运行及负荷分配的计算

变压器并列运行及负荷 分配的计算 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、变压器并列运行的条件是什么 1.变比相等。变压器比不同,二次电压不等,在二次绕组中也会产生环流,并占据变压器的容量,增加变压器的损耗。差值最多不超过±%。 2.联结组序号必须相同。接线组别不同在并列变压器的二次绕组中会出现电压差,在变压器的二次侧内部产生循环电流。 3.两台变压器容量比不超过3:1。容量不同的变压器短路电压不同,负荷分配不平衡,运行不经济。 4.短路电压相同。 关于短路电压要求相同的说明:实际上是非常接近即可,因为试验值往往与设计理论值有一定的偏差,铭牌上写的都是试验值,即实际值。 如果短路电压相差过大,会导致短路电压小的发生过负荷现象,建议允许差一般不超过10%。至于为什么,请看文末的变压器并列运行负荷分配计算。 二、什么叫变压器的短路电压 这里要先说一下变压器的阻抗电压 变压器的阻抗电压百分数由电抗电压降和电阻电压降组成。在数值上与变压器的阻抗百分数相等,表明变压器内阻抗的大小。阻抗电压百分数表明了变压器在满载(额定负荷)运行时变压器本身的阻抗压降的大小。它对于变压器在二次侧发生短路时,将产生的短路电流大小有决定性意义,对变压器制造价格和变压器的并联运行也有重要意义,也是考虑短路电流热稳定和动稳定及继电保护整定的重要依据。此数值在变压器设计时遵从国家标准。

阻抗电压百分数的大小与变压器的容量有关,一般变压器容量越大短路阻抗也就越大(一般情况哦)。我国生产的电力变压器,阻抗电压百分数一般在4%~24%的范围内。 再说变压器的短路电压 变压器的短路电压百分数是当变压器一侧短路,而另一侧通以额定电流时的电压,此电压占其额定电压百分比。实际上此电压是变压器通电侧和短路侧的漏抗在额定电流下的压降。同容量的变压器,其电抗愈大,这个短路电压百分数也愈大,同样的电流通过,大电抗的变压器,产生的电压损失也愈大,故短路电压百分数大的变压器的电抗变化率也越大。 所以说:短路电压百分数=阻抗电压百分数(有时说成短路阻抗百分数)。 三、变压器短路阻抗大好,还是小了好(我习惯叫短路阻抗,最直观) 变压器的短路阻抗大小各有利弊。如果选择大的,当变压器的负载端发生短路时,短路电流会小些,变压器所承受的短路力会小,所受破坏也相对小些。但平时线路压降会增大,线路损耗增加、发热量加大,有时靠分接开关甚至调不过来,使设备无法获得合适电压,从而影响设备的正常运转。 另一方面,短路阻抗大的,产品的几何尺寸相对增加,即材料要增加,制造成本加大。如果太小,短路电流大,变压器所承受的短路力会大,为防止对设备的破坏,设备选型等都要增加短路容量,经济不划算。 所以,在选取变压器短路阻抗这个数值时要综合考虑,综合考虑,综合考虑。重要的事要说3遍,因为我不懂。 四、变压器并列运行负荷分配计算

绕组变形的检测 频响法

NDBX-Ⅳ变压器绕组变形测试仪(频响法) 产品简介 变压器设计制造完成后,其内部结构和各项参数基本保持不变,因此每个线圈的频域响应也随之确定,正常绕组的变压器,其三相频域响应曲线耦合程度基本一致。当变压器在试验过程中出现匝间、相间短路,在运行中出现短路或其他故障因电磁拉力造成线圈移位,在运输过程中发送碰撞造成线圈相对移位,这些因素都会使变压器分布参数发生变化,其频域响应也发生变化,根据频域响应曲线即可判断变压器的变形程度。基于以上思想和先进的测量技术,本公司研发生产了NDBX-Ⅳ变压器绕组变形测试仪,该仪器能准确绘制各相频域响应曲线,通过测量曲线的横向、纵向对比,可以准确的判断变压器的变形程度。 NDBX-Ⅳ变压器绕组变形测试仪符合DL/T911 2004《电力变压器绕组变形的频率响应分析法》标准。 产品特征 ☆、采用先进的DDS扫频技术

☆、采用双电源供电:市电AC220V±10%,内电源6V5AH蓄电池☆、采用高速,高集成化微处理器设计 ☆、输出正弦波幅值可通过软件设置 ☆、双通道16位AD采样 ☆、8寸彩色触摸屏,亮度可调 ☆、可以保存120组测量数据,供随时查阅或上传至PC机 ☆、有强大的上位机软件,曲线分析、打印和生成word文档☆、USB2.0接口,支持数据上传和联机测试 ☆、主机尺寸:35mm x 210mm x 210mm ☆、主机重量:约5kg。 产品参数 ☆、设置6种不同的扫描方式: 线性1K~1000kHz_1.0步进1kHz(1000点) 线性1K~1000kHz_0.5步进0.5kHz(2000点) 线性1K~2000kHz_1.0步进1kHz(2000点) 线性1K~2000kHz_0.5步进0.5kHz(4000点) 分段100HZ~1000kHz(1440点) 分段100HZ~2000kHz(2440点) ☆、测量范围:(-100dB)~(+20dB) ☆、测量精度:0.1dB ; ☆、扫描频率精度:0.01%; ☆、信号输入阻抗:1MΩ; ☆、信号输出阻抗:50Ω; ☆、同相测试重复率:99.5%;

变压器绕组变形试验方案

遵义220kV海龙变I号主变增容工程变压器绕组变形试验方案 批准: 审核: 编写: 葛洲坝集团电力有限责任公司试验中心 二〇一六年九月

变压器绕组变形试验方案 1、范围 本作业指导书适用于电力生产、基建、试验研究等单位和部门。本作业指导书规定了交接验收、预防性试验、检修过程中的变压器绕组变形试验(频率响应法)的试验项目的引用标准、仪器设备要求、试验人员资质要求和职责、作业程序、试验结果判断方法和试验注意事项等。制定本指导书的目的是规范试验操作,保证试验结果的正确性,为设备运行、监督、检修提供依据;指导设备管理人员应用变压器绕组变形测试技术对电力变压器进行检测和诊断,为变压器设备运行检修提供依据,提高变压器设备运行的可靠性。 变压器绕组变形测试技术是根据测得的变压器各绕组频率响应特性的一致性,结合设备结构、运行情况及其他项目进行全面的、历史的、综合的分析比较。以判断变压器绕组变形程度。本作业指导书提出的判断方法和注意值仅适用于使用差值判断变压器绕组变形的方法。 2规范性引用文件 下列文件中的条款通过本作业指导书的引用而成为本作业指导书的条款。凡是注日期的引用文件,其随后所有的修改单或修订版均不适用于本作业指导书,然而,鼓励根据本作业指导书达成协议的各方研究是否可使用这些文件的最新版本。凡是不注明日期的引用文件,其最新版本适用于本作业指导书。 GB1094.1电力变压器第一部分总则 GB1094.2电力变压器第二部分温升 GB1094.3电力变压器第三部分绝缘水平和绝缘试验 3定义 本作业指导书采用下列定义。 3.1变压器绕组变形 变压器在运行中不可避免地要遭受出口短路或近区短路故障冲击,在运输安装过程中也可能受到碰撞冲击。在这些冲击力(包括电动力和机械力)作用下,变压器绕组变就可能发生轴向、径向尺寸变化、位移、扭曲、鼓包等变形。 3.2变形程度正常 指变压器牌原始状态或不存在明显变形,可以继续运行,绕组不需要整修。 3.3一般变形 指变压器存在明显变形加强监督,应在适当电动机安排检修,再次短路或其他冲击将有很大可能造成变压器损坏,需要整修或更换绕组。 3.4严重变形

电力变压器绕组变形检测技术(2)

电力变压器绕组变形检测技术(2) 由于变压器绕组变形测试国内开展时间不长,目前尚未达到普及,IEC及国家标准, 包括电力设备预防性试验规程都没有明确的规定和可供执行的标准,但一些电力科研机构已作了大量的探索和实践,总结了大量的现场经验,并摸索出一些相当可贵的科学客观规律,以作为目前开展从事变压器绕组变形测试的参考和判据。 (1)110kV 及以上大、中型变压器三相频响特性曲线相关性很好,可以作三相之间相互比较;也可以用同一相投运前的频响曲线为基准与运行后某一时期频响曲线作比较,进行绕组变形分析。 (2)应用频响曲线在1-500kHz频段的相关系数R,可以分析绕组整体变形状况。当R 大于0.95 时,绕组无可见变形;当R 接近0.9 时有轻微变形;当R大大小于0.9 时,有可见的较严重的变形,甚至有匝间、饼间短路故障。 (3)分析绕组频响曲线在1-200 kHz低频段的峰值点数减少,起伏幅度变小,以及在频率方向的位移,可以诊断绕组的局部变形。如10kV 及35kV 内柱绕组变形时,受到挤压,频响值一般向低频方向移动;110kV 和220kV 外柱绕组变形时,

受向外拉张力,频响峰值点一般向高频方向移动。 (4)频响曲线相关系数是绕组变形诊断的必要判据,峰值点数的减少、移动变化是变形诊断的充分判据,二者应综合应用、全面分析。 (5)完好的变压器绕组对于同一相来说,不同分接位置的频响曲线相关性很好,若调压绕组发生变形或分接开关有故障,位置装错,则频响曲线相关性会变坏。因此比较同一相不同分接位置的频响相关性,可以诊断调压绕组、分接开关的变形和故障。 (6)绕组频谱曲线出现严重的毛刺,表明分接开关触头有严重烧伤,绕组焊头、导电杆接触不良。

NT3000扫频短路阻抗法变压器绕组变形测试仪

NT3000扫频短路阻抗法变压器绕组变形测试仪 产品说明书 国电南京自动化股份有限公司

一、系统简介 电力变压器作为重要的电气设备,其安全可靠运行对电力系统极为重要。对变压器进行绕组变形测试,已经成为变压器在受到短路电流冲击后重要的测试项目。国内应用较广泛的主要采用以下两种方法:一是频率响应分析法(简称频响法);二是低电压短路阻抗法。 频响法是利用精确的扫频测量技术,对被试绕组施加lkHz ~1MHz 的低压扫频信号(<10Vp-p ),测量绕组的频率响应特性曲线。如果绕组发生了机械变形现象,等值网络中的分布参数随之变化,其幅频特征曲线的谐振点就会发生变化。 短路阻抗法现场应用时,通常在变压器的高压绕组侧加工频的低电压,低压绕组侧短路,测量工频时变压器的短路阻抗。短路阻抗值主要是漏电抗分量,由绕组的几何尺寸所决定,变压器绕组结构状态的改变势必引起变压器漏电抗的变化,从而引起变压器短路阻抗数值的改变。 频响法和短路阻抗法在变压器绕组变形测试已经有了成功的应用经验,并取得一定的效果,相关的标准也已经颁布。但是,两种方法都各有优缺点,对不同类型的变形敏感程度不同。在实际应用中也发现,某些变形在频响法中有反映但在低电压短路阻抗中没有反映,相反的情况也存在。但许多变形在两种方法中都有反映,因此同时利用两种方法,可以有效减少误判。为此,一般要利用两台仪器进行两次测试,更换两次接线,极为耗时耗力,给现场测试工作带来了很大不便。另外也存在两种方法都无法判定变形程度的情况。 NT3000绕组变形测试仪,一次测试可以同时获得全频段的短路阻抗曲线和频响曲线,使新型测试设备兼顾传统的扫频法测试系统和低电压短路阻抗仪的优点,同时通过对短路阻抗频率曲线数据的进一步分析、处理,能够更灵敏地检测电力变压器绕组变形情况,使现场工作人员更容易判断变形的情况,为分析判断绕组的工作状态提供了一种更有效新的手段。二、扫频短路阻抗法测试原理 扫频短路阻抗法结合频响法和短路阻抗法测试技术的优点,在测试原理和分析方法上实现突破,测试时实现一次测量可以同时取得变压器绕组的短路阻抗-频率特征曲线和频响特性曲线。采用该测试方法,可获得50Hz 下的变压器短路阻抗值,与铭牌值进行比较,参照低电压短路电抗法进行判断;同时中高频段的测试曲线与以前的频响法曲线可以相比较,可以参照频响法进行判断,同时又可以利用阻抗-频率特征曲线、电阻-频率特征曲线、电抗-频率特征曲线等进一步进行判断。 电力变压器

030 变压器零序阻抗的实测与计算

变压器零序阻抗的实测与计算   袁凌   (武汉大学电气工程学院,湖北武汉430072)   摘要:文章阐述了变压器零序电抗的实测方法并给出了折算成标幺值的公式,同时分析了常用的变压器零序电抗与正序阻抗之间的关系,为简化计算提供了方便。 关键词:变压器;零序阻抗;实测;简化   1变压器零序阻抗及等值电路图 电力系统中为了对接地性质的系统短路故障采用相应的有效的保护措施,需要确定系统中各电气设备的零序参数,变压器的零序阻抗便是其中之一。 变压器零序阻抗是指零序电流流过变压器三相对称电路时遇到的阻抗。 变压器的零序等值电路可以用三端T型电路来表示,见图 1。X G0、X Z0相当于零序漏电抗,X m0为零序激磁电抗。     2 实测与计算目的 三相变压器的零序阻抗特性与绕组的连接方式有关。在有三角形接线绕组时,在三角形接线绕组形成的平衡安匝作用的情况下,电压与电流间的关系是线性的,也就是说,零序阻抗是个定值。但对于没有三角形接线绕组的变压器,例如全星形三相三芯式自耦变压器来说,其零序阻抗由于油箱外壳磁化作用的影响,是一个变化的数值。图2所示为全星形三相三芯式自耦变压器做零序开路试验的特性曲 线,Z1,0(%)、Z2,0(%)、Z3,0(%)代表从高、中、低三侧加压时,Z0(%)

随着外施零序电压U0(%)的变化而呈现的非线性变化关系。因此其零序阻抗的稳定饱和值要实测确定。     零序阻抗还取决于绕组和铁芯之间的结构布置,因此在不同绕组上测量时就会有差异。零序阻抗也与铁芯结构型式有关。三相三柱式铁芯结构的变压器,零序磁通必须通过铁芯与油箱之间的空气隙和油箱形成回路,其零序阻抗较小。而三相五柱式铁芯结构的变压器,零序磁通则可通过旁轭形成回路,因此其零序阻抗较大。 即使2台相同规格,但绕组排列方式不同的变压器,例如Y0/y0/Δ型接线与Y0/Δ/y0接线的变压器零序阻抗也有差别。因此,在实际计算中,变压器零 序阻抗最好取实测值。 3不同类型变压器零序阻抗实测、计算与等值电路图 根据变压器接线组别、中性点引出线的不同,零序阻抗的测试方法有所不同,下面对电网中应用广泛的几种变压器的零序阻抗的测量、计算方法逐一论述。 3.1Y0/y0/Δ和Y0/Δ型接线变压器 Y0/Δ接线双绕组变压器与Y0/y0/Δ接线三绕组变压器,只有一个中性点引出线,其Y、Δ绕组中零序电流无法流通,零序阻抗的测量只需在带有中性点的Y0绕组上进行,将单相电压U0施加于Y0绕组中接在一起的

电力变压器绕组变形的测试方法及对比分析

电力变压器绕组变形的测试方法及对比分析 十九冶电装分公司任兆兴 容摘要:本文从变压器绕组变形的测试原理、测试接线方法、变形的判断方法、现场检测要点等几个方面,分别介绍了低压电抗法和频率响应法在变压器绕组变形现场测试中的应用方法,并对比分析了低压电抗法和频率响应法之间的优点与不足。 关键词:变压器绕组变形、低压电抗法、频率响应法、现场检测要点、对比分析。 一、前言: 电力变压器是电力系统中最重要的设备之一,直接关系着电网的安全运行。据电网公司不完全统计,变压器绕组变形引起的事故占变压器事故的1/4以上。因此,目前世界各国都在积极开展电力变压器绕组变形诊断测试,电网公司在《防止电力生产重大事故的二十五项重点要求》中,已明确把绕组变形试验列入变压器出厂、交接和发生短路事故后的必试项目。 变压器绕组变形是指电力变压器绕组在机械力或电动力作用下发生的轴向或径向尺寸变化,通常表现为绕组局部扭曲、鼓包或移位等特征。变压器在遭受短路电流冲击或在运输过程中遭受冲撞时,均有可能发生绕组变形现象[1]。变压器绕组发生变形后,其部的电感、电容分布参数必然发生相对变化。用常规方法(如测量变比、直阻和电容)判断变压器绕组是否发生变形是很困难的,一般只能通过变压器吊罩检查来验证,但吊罩检查不仅要花费大量的人力物力,而且对变压器本身也有一定的危害性。因此能在现场不吊罩检查情况下快速判断变压器绕组有无变形的试验方法和仪器出现后,很快便得到了广泛的运用。 二、变压器绕组变形测试方法介绍: 1、短路阻抗法: 变压器绕组变形测试最早使用的方法是由前苏联提出的短路阻抗法。其原理是通过测量变压器绕组在50Hz工频电压下变压器绕组的短路阻抗或漏抗,由阻抗或漏抗值的变化来判断变压器绕组是否发

变压器短路阻抗测试和计算公式

概述 变压器短路阻抗试验的目的是判定变压器绕组有无变形。 变压器是电力系统中主要电气设备之一,对电力系统的安全运行起着重大的作用。在变压器的运行过程中,其绕组难免要承受各种各样的短路电动力的作用,从而引起变压器不同程度的绕组变形。绕组变形以后的变压器,其抗短路能力急剧下降,可能在再次承受短路冲击甚至在正常运行电流的作用下引起变压器彻底损坏。为避免变压器缺陷的扩大,对已承受过短路冲击的变压器,必须进行变压器绕组变形测试,即短路阻抗测试。 变压器的短路阻抗是指该变压器的负荷阻抗为零时变压器输入端的等效阻抗。短路阻抗可分为电阻分量和电抗分量,对于110kV及以上的大型变压器,电阻分量在短路阻抗中所占的比例非常小,短路阻抗值主要是电抗分量的数值。变压器的短路电抗分量,就是变压器绕组的漏电抗。变压器的漏电抗可分为纵向漏电抗和横向漏电抗两部分,通常情况下,横向漏电抗所占的比例较小。变压器的漏电抗值由绕组的几何尺寸所决定的,变压器绕组结构状态的改变势必引起变压器漏电抗的变化,从而引起变压器短路阻抗数值的改变。 二、额定条件下短路阻抗基本算法

三、非额定频率下的短路阻抗试验 当作试验的电源频率不是额定频率(一般为50Hz)时,应对测试结果进行校正。由于短路阻抗由直流电阻和绕组电流产生的漏磁场在变压器中引起的电抗组成。可以认为直流电阻与频率无关,而由绕组电流产生的漏磁场在变压器中引起的电抗与试验频率有关。当试验频率与额定频率偏差小于5%时,短路阻抗可以认为近似相等,阻抗电压则按下式折算: 式中u k75 --75℃下的阻抗电压,%; u kt—试验温度下的阻抗电压,%; f N --额定频率(Hz); f′--试验频率(Hz); P kt --试验温度下负载损耗(W); S N --变压器的额定容量(kVA); K—绕组的电阻温度因数。 四、三相变压器的分相短路阻抗试验 当没有三相试验电源、试验电源容量较小或查找负载故障时,通常要对三相变压器进行单相负载试验。 1、供电侧为Y接法 当高压绕组为Y联结时,另一侧为y或d联结时,分相试验是将试品低压三相线端短路,由高压侧AB、BC、CA分别施加试验电压。此时折算到三相阻抗电压和三相负载损耗可

DCBXS变压器绕组变形测试仪

DCBX-S变压器绕组变形测试仪 信息来源: 仪器使用方法 1.仪器面板 ◇仪器面板上安装有电源自锁开关, 按下时电源打开,指示灯点亮,关闭时按下松开, 指示灯熄灭; 变压器绕组变形测试仪前面板图 ◇仪器背板上安装有电源插座内藏保险丝。 ◇USB通信端口连接笔记本电脑和无线蓝牙天线。 ◇测量信号端口:K9插座外标颜色与测量电缆外标颜色一致,请对颜色连接;变压器绕组变形测试仪后面板图 2.变压器的几种常用检测接线方式 变压器绕组变形频率响应测试仪主要是由主测量单元和笔记本电脑构成,并行三根专用测量电缆以及测量夹子和接地线组成。

主测量单元系统与试品之间采用50高频同轴电缆联接,扫频信号经输出端口(激励输出),通过连接电缆将信号夹子(黄色)向被试品注入信号;由信号测量夹子(绿色)从被试品获取信号,经电缆传输到(响应输入);由信号测量从被试品注入点获取同步参考信号,经电缆传输到输入(参考输入)。被试品外壳与测试电缆的屏蔽层必须可靠连接并接地,大型变压器一般以铁芯接地套管引出线与油箱的连接点,作为公共接地点,变压器外壳点接地 三相Yn形测量接线 Yn形测量A相接线示意图 ◇测量系统共一点接地,取变压器铁芯接地。 ◇黄夹子定义为输入,钳在Yn的‘O’点、绿夹子定义为测量,钳在A相上。 ◇地线连接网依次由绿夹子地线孔插入接地线至黄夹子地线孔,再由一根地线转接到铁芯接地。将黑夹子连接至铁芯接地,钳在低压侧A相上。 ◇接地导线为5米。 ◇仪器的接地由测量线导入。

Yn形测量B相接线示意图 ◇测量系统共一点接地,取变压器铁芯接地。 ◇黄夹子为输入,钳在Yn的‘O’点、绿夹子为测量,钳在B相上。 ◇地线连接网依次由绿夹子地线孔插入接地线至黄夹子地线孔,再由一根地线转接到铁芯接地。将黑夹子连接至铁芯接地,钳在低压侧B相上。 ◇接地导线为5米。 ◇仪器的接地由测量线导入。 Yn形测量C相接线示意图 ◇测量系统共一点接地,取变压器铁芯接地。 ◇黄夹子为输入,钳在Yn的‘O’点、绿夹子为测量,钳在C相上。 ◇地线连接网依次由绿夹子地线孔插入接地线至黄夹子地线孔,再由一根地线转接到铁芯接地。将黑夹子连接至铁芯接地,钳在低压侧C相上。 ◇接地导线为5米。 ◇仪器的接地由测量线导入。

电力变压器绕组变形试验频响法应用

龙源期刊网 https://www.doczj.com/doc/dc407409.html, 电力变压器绕组变形试验频响法应用 作者:罗玲张东志 来源:《世界家苑·学术》2017年第09期 摘要:本文介绍了检测并判断110kV及以上油浸变压器绕组变形试验方法之一的频率响 应分析法原理,同时分析了用频响法判断变压器绕组是否变形受各种因素影响的干扰,总结出测试过程及接线需注意的主要事项及辅助判别方法。对变压器交接、故障检修试验提供借鉴。 关键词:电力变压器;绕组变形;频率响应比较 地铁主变压器作为供电系统中核心的设备之一,其能否安全运行将直接影响整个系统正常运营。变压器绕组在多种情况下都有可能产生变形,建设的运输、吊装过程保护措施不到位易受到碰撞,运行期系统短路事故都有可能使变压器绕组产生变形。以前常规的方法用短路阻抗法是否变形,阻抗法现场应用简单,但多数情况下现场很难获得所需的试验电流,对试验仪器的精度及灵敏度要求也很高。电力行业标准《电力变压器绕组变形测试导则(频率响应法)》(DL/T911-2004),该导则的出台对频响法检测推广起到了很好的指导作用。据了解,各省电网公司应用该导则预试发现变压器绕组变形,并都通过吊芯检查得到确认,使隐患变压器得到及时维护检修,避免事故造成损失。如何应用导则(频率响应法)中的诊断分析方法中的横向比较、纵向比较及相关系数比较,本文通过西安地铁供电系统主变压器更换安装实例对以上方法进行介绍。 1.频率响应法原理 当在高频率段时,可以不考虑变压器铁芯的影响,此时可将其绕组等效成是由电阻、电感、电容等构成的分布参数电路,如图1所示。 其中L、C和K分别代表绕组电感、对地及分布电容。又可以将这些参数电路看作为一二端口网络,这些特性可用函数H(jw)表达。函数的极点和零点分布模拟二端网络的代标参数值。如绕组发生变形,那么其内部电容、电抗必然发生变化,函数参数关系也相应发生变化。频响法便可直观的看作是对变压器绕组进行x扫描,并绘制频谱曲线,其中,vs为外施扫频信号源,Ki、R0分别为输入输出匹配电阻,vi、vo分别为等效网络的激励电压和响应端电压;。通过对绕组频谱曲线进行对比分析,可以判断绕组的结构变化。用对数形式表示频率响应曲线:H(f)=201gV2(f)/V1(f)。式中,H(f)为频率f时传递函数的摸lH(jw))I;V2(f)/,v1(f)分别为频率为f时相应端和激励端电压的峰值或有效值IV2(jw)I,IVl (jw)I。 为了定律表示曲线的相识程度,引入相关系数R作为量化结果表示比较特性曲线的相识程度,R值越大,表示曲线的相识程度越好。可按下列公式计算。设两个长度为N的传递函数幅度序列x(k)和Y(k),k=0,1,…,N_I,且x(k)和Y(k)为实数。

一分钟搞明白变压器短路阻抗

一分钟搞明白变压器短路阻抗 1、什么是变压器的短路阻抗? 变压器的短路阻抗,是指在额定频率和参考温度下,一对绕组中、某一绕组的端子之间的等效串联阻抗Zk=Rk+jXk。由于它的值除计算之外,还要通过负载试验来确定,所以习惯上又把它称为阻抗电压。 2、怎么测量变压器的短路阻抗? 用试验测量的方法为:将变压器二次侧短路,在一次侧逐渐施加电压,当二次绕阻通过额定电流时,一次绕阻施加的电压Uz与额定电压Un之比的百分数,即: Uz%=Uz/Un×100%。 3、变压器的短路阻抗实质是什么? 变压器的短路阻抗是变压器的一个重要参数,它表明变压器内阻抗的大小,即变压器在额定负荷运行时变压器本身的阻抗压降大小。 4、为什么说“变压器阻抗的实质是绕组间的漏抗”? 我们知道,变压器短路阻抗是由两部分组成,是变压器线圈及其他的电阻分量与变压器线圈之间的漏抗的向量和组成,即Zk=Rk+jXk。但在大型变压器中,电阻分量远远小于电抗分量,其数值与电抗分量相比,可以忽略不计,所以工程计算时往往将电抗分量的值,替代阻抗值,所以有“变压器阻抗的实质是绕组间的漏抗”的说法。 当然,还可以这样理解:如果没有漏抗时,变压器副边短路,电压为0,原边电压也应该等于0。但是大家都知道,副边短路时,变压器原边电压不等于零,是因为有漏抗。所以说,变压器阻抗的实质是绕组间的漏抗。 5、实际学习时,怎么理解变压器的短路阻抗? 1)如果把变压器当作一个电源来看的话,它的阻抗相当于任何一个电源的

内阻。这个内阻只有在有电流(负载电流)流过时,才表现出来。空载 时,它就反映不出了,但不等于它不存在。当变压器满载运行时,短路 阻抗的高低对二次侧输出电压的高低有一定的影响,短路阻抗小,电压 降小,短路阻抗大,电压降大。 2)如果把变压器作为电网的一个负载来看的话,它是一个感性负载(电阻 部分很小)。短路阻抗所表现出来的特性,就是它的负载特性--电感。 此电感就是两两线圈间的互感,由漏磁通产生(漏磁通由变压器负载电 流产生)。 6、系统设计时,如何选择变压器短路阻抗? 1)当负载的功率因数一定时,变压器的电压调整率与短路阻抗基本成正比, 变压器的无功损耗与短路阻抗的无功分量成正比。短路阻抗大的变压器,电压调整率也大,短路阻抗越小,供电电压质量也更高。因此,短路阻 抗小较为适宜。 2)然而,短路电流倍数与短路阻抗成反比,短路阻抗越小,则短路电流倍 数越大,电网所受的影响大,系统中断路器开断的短路电流也大。对变 压器则是,当变压器短路时,绕组会遭受巨大的电动力,并产生更高的 短路温升。为了限制短路电流,则希望较大短路阻抗。 3)对心式变压器而言,当取的短路阻抗越大,需要要增加绕组的匝数就越 多,即增加了导线重量,或者增大漏磁面积和降低绕组的电抗高度,从 而增加了铁芯的重量。由此可见,高阻抗变压器,要相应增加变压器的 制造成本。 4)所以,短路阻抗的选择,需要在(损耗、制造成本)和短路电流之间做

相关主题
文本预览
相关文档 最新文档