当前位置:文档之家› 函数图像知识点梳理、经典例题及解析、高考练习题带答案

函数图像知识点梳理、经典例题及解析、高考练习题带答案

函数图像知识点梳理、经典例题及解析、高考练习题带答案
函数图像知识点梳理、经典例题及解析、高考练习题带答案

函数的图像

【考纲说明】

1、掌握基本函数的图象的特征,能熟练运用基本函数的图象解决问题。

2、掌握图象的作法、描点法和图象变换法。

【趣味链接】

你一定知道乌鸦喝水的故事吧!如图一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不到瓶中的水.于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随着石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中的水面就下降到乌鸦够不着的高度.乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,呱呱的飞走了.

【知识梳理】

一、函数的图像

1、作图方法:描点法和利用基本函数图象变换作图;作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象。

2、识图:分布范围、变化趋势、对称性、周期性等等方面. 二、函数图像的变化

1、平移变换:(1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;

(2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移

||a 个单位即可得到.

① y=f(x)h

左移→y=f(x+h); ② y=f(x) h

右移→y=f(x -h); ③y=f(x) h

上移→y=f(x)+h; ④y=f(x) h

下移→y=f(x)-h.

2、对称变换:(1)函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; (2)函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; (3)函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; (4)函数1

()y f

x -=的图像可以将函数()y f x =的图像关于直线y x =对称得到.

①y=f(x) 轴x →y= -f(x); ②y=f(x) 轴

y →y=f(-x); ③y=f(x)

a

x =→直线y=f(2a -x); ④y=f(x) x

y =→直线y=f -1(x);

⑤y=f(x) 原点

→y= -f(-x).

提示:a.若f (a +x )=f (b -x ),x ∈R 恒成立,则y =f (x )的图象关于x =a +b

2

成轴对称图形,若f (a +x )=-f (b

-x ),x ∈R ,则y =f (x )的图象关于点(

a +b

2

,0)成中心对称图形.

b.函数y =f (a +x )与函数y =f (b -x )的图象关于直线x =1

2

(b -a )对称.

3、翻折变换:(1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;

(2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留

()y f x =在y 轴右边部分即可得到.

4、伸缩变换:(1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长

(1)a >或压缩(01a <<)为原来的a 倍得到;

(2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的

1

a

倍得到. ①y=f(x)ω

?→x y=f(

ω

x

);② y=f(x)ω

?→y y=ωf(x).

【经典例题】

【例1】函数()y f x =与()y g x =的图像如下图:则函数()()y f x g x =?的图像可能是( )

A. B. C. D.

【解析】∵函数()()

y f x g x

=?的定义域是函数()

y f x

=与()

y g x

=的定义域的交集(,0)(0,)

-∞+∞,图像不经过坐标原点,故可以排除C、D。由于当x为很小的正数时()0

f x>且()0

g x<,故()()0

f x

g x

?<。∴选A. 【例2】说明由函数2x

y=的图像经过怎样的图像变换得到函数3

21

x

y--

=+的图像.

【解析】方法一:(1)将函数2x

y=的图像向右平移3个单位,得到函数3

2x

y-

=的图像;

(2)作出函数3

2x

y-

=的图像关于y轴对称的图像,得到函数3

2x

y--

=的图像;

(3)把函数3

2x

y--

=的图像向上平移1个单位,得到函数3

21

x

y--

=+的图像.

方法二:(1)作出函数2x

y=的图像关于y轴的对称图像,得到2x

y-

=的图像;

(2)把函数2x

y-

=的图像向左平移3个单位,得到3

2x

y--

=的图像;

(3)把函数3

2x

y--

=的图像向上平移1个单位,得到函数3

21

x

y--

=+的图像.

【例3】设曲线C的方程是3

y x x

=-,将C沿x轴、y轴正方向分别平移t、s(0)

t≠个单位长度后得到曲线

1

C,

(1)写出曲线

1

C的方程;

(2)证明曲线C与

1

C关于点(,)

22

t s

A对称;

(3)如果曲线C与

1

C有且仅有一个公共点,证明:

2

4

t

s t

=-.

【解析】(1)曲线

1

C的方程为3

()()

y x t x t s

=---+;

(2)证明:在曲线C上任意取一点

111

(,)

B x y,设

222

(,)

B x y是

1

B关于点A的对称点,则有

1212,2222

x x t y y s

++==,∴12

1

,x t x y s y =-=

-代入曲线C 的方程,得22,x y 的方程:

3222()()

s y t x

t x -=--- 即3222()()y x t x t s =---+可知点222(,)B x y 在曲线1C 上. 反过来,同样证明,在曲线1C 上的点A 的对称点在曲线C 上. 因此,曲线C 与1C 关于点A 对称.

(3)证明:因为曲线C 与1C 有且仅有一个公共点,

∴方程组3

3

()()y x x

y x t x t s

?=-??=---+??有且仅有一组解, 消去y ,整理得223

33()0tx t x t t s -+--=,这个关于x 的一元二次方程有且仅有一个根, ∴4

3

912()0t t t t s ?=---=,即得3

(44)0t t t s --=,

因为0t ≠,所以3

4

t s t =-.

【例4】(1)试作出函数1

y x x

=+

的图像; (2)对每一个实数x ,三个数2

,,1x x x --中最大者记为y ,试判断y 是否是x 的函数?若是,作出其图像,讨论其性质(包括定义域、值域、单调性、最值);若不是,说明为什么? 【解析】(1)∵1

()f x x x

=+

,∴()f x 为奇函数,从而可以作出0x >时()f x 的图像,又∵0x >时,()2f x ≥, ∴1x =时,()f x 的最小值为2,图像最低点为(1,2), 又∵()f x 在(0,1)上为减函数,在(1,)+∞上是增函数,

同时1

()(0)f x x x x x

=+>>即以y x =为渐近线,

于是0x >时,函数的图像应为下图①,()f x 图象为图②:

(2)y 是x 的函数,作出2123(),(),()1g x x g x x g x x ==-=-的图像可知,()f x 的图像是图③中实线部分.定义

域为R ;值域为[1,)+∞;单调增区间为[1,0),[1,)-+∞;单调减区间为(,1),[0,1)-∞-;当1x =±时,函数有最小值1;函数无最大值.

【例5】已知函数f (x )=|x 2

-4x +3|

(1)求函数f (x )的单调区间,并指出其增减性;

(2)若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围. 【解析】作出图象如图所示.

(1)递增区间为[1,2],[3,+∞),递减区间为(-∞,1],[2,3].

(2)原方程变形为|x 2

-4x +3|=x +a ,于是,设y =x +a ,在同一坐标系下再作出y =x +a 的图象.如图. 则当直线y =x +a 过点(1,0)时a =-1;

当直线y =x +a 与抛物线y =-x 2+4x -3相切时,由 ?

????

y =x +a y =-x 2

+4x -3?x 2

-3x +a +3=0. 由Δ=9-4(3+a )=0.得a =-3

4.

由图象知当a ∈[-1,-3

4]时方程至少有三个不等实根.

【例6】 作图:(1)y =a |x -1|,(2)y =log |x -1|

a ,(3)y =|log a (x -1)|(a >1). 【解析】

(1)的变换是:y =a x

→y =a |x |

→y =a |x -1|

,而不是:y =a x →y =a x -1→y =a |x -1|

,这需要理解好y =f (x )→y =f (|x |)的交换.(2)题同(1),(3)与(2)是不同的变换,注意区别.

【课堂练习】

1、下列每组两个函数的图象中,正确的是( )

A. B. C. D.

2、已知函数f(x)=(x-1)/a (a>0,a≠1),在同一坐标系中,y=f-1(x)与y=a|x-1|的图象只可能是( )

3、在下列图象中,二次函数y=ax2+bx与指数函数y=x

a

b

)

(的图象只可能是()

4、已知函数y=a/x与y=ax2+bx, 则下列图象正确的是()

5、函数y=|

1|2x

-的图象是()

6、函数y=(3x-1)/(x+2)的图象()

A. 关于点(-2,3)对称

B. 关于点(2,-3)对称

C. 关于直线x= -2对称

D. 关于直线y= -3对称

7、若第一个函数y=f(x), 它的反函数是第二个函数,又第三个函数图象与第二个函数的图象关于直线x+y=0对称,那么第三个函数的图象是()

A. y= -f-1(x)

B. y= -f-1(-x)

C. y= -f(x)

D. y= -f(-x)

8、设函数y=f(x)定义在实数集上,则函数y=f(x-1)与y= -f(1-x)的图象关于()对称

A.直线x=0

B.直线x=1

C.点(0,0)

D.点(1,0)

9、在以下四个按对应图象关系式画出的略图中,不.正确

..的是()

A.y=|log2x| B. y=2|x| C. y=log0.5x2 D. y=|x-1/3

|

10、已知函数y=f(x)的图象如图,则y=f(1-x)的图象是()

11、下列命题中:①函数y=f(x)的图象与x=f(y)的图象关于直线y=x 对称;②若f(x)= -f(-x),则f(x)的图象关于原点对称;③若f(x)=f(-x)则f(x)的图象关于y 轴对称;④y=f(x)的图象与y= -f(x)的图象关于y 轴对称,其中真命题是( )

A 、②③

B 、②③④

C 、①②③

D 、全都是

12、把函数y=cosx 的图象向右平移1/2个单位,再把图象上点的横坐标缩小到原来的1/2,所得图象的解析式为 .

13、画出下列函数的图象:(1)y=lg|x+1|; (2)y=(x+2)/(x+3).

14、若函数y=log 2|ax -1|图象的对称轴是x=2,则非零实数a 的值为 . 15、函数y=f(|x -m|)的图象与y=f(|x|)的图象关于直线 对称.

16、将函数y=f(x)的图象向右平移2个单位,再把图象上点的横坐标变为原来的1/3,所得图象的解析式为_______. 17、如下图所示,向高为H 的水瓶,,,A B C D 同时以等速注水,注满为止;

A. B. C. D.

(1)若水深h 与注水时间t 的函数图象是下图中的a ,则水瓶的形状是 ; (2)若水量v 与水深h 的函数图像是下图中的b ,则水瓶的形状是 ; (3)若水深h 与注水时间t 的函数图象是下图中的c ,则水瓶的形状是 ; (4)若注水时间t 与水深h 的函数图象是下图中的d ,则水瓶的形状是 .

a b c d 18、已知f(x)=ax 3+bx 2+cx+d 的图象如图所示,则b 的取值范围是 .

19、说出作出函数y=log 2(1-x) 的图象的过程

.

20、方程|x 2+2x -3|=a(x

-2)有四个实数根,求实数a 的取值范围.

【课后作业】

1、函数y =ln

1

|2x -3|

的图象为( )

2、下列函数的图像中,经过平移或翻折后不能与函数y =log 2x 的图象重合的函数是( )

A .y =2x

B .y =log 12x

C .y =4x 2

D .y =log 21x

+1

3、若函数f (x )在(4,+∞)上为减函数,且对任意的x ∈R ,有f (4+x )=f (4-x ),则( )

A .f (2)>f (3)

B .f (2)>f (5)

C .f (3)>f (5)

D .f (3)>f (6) 4、(2009安徽)设a

5、已知下图①的图象对应的函数为y =f (x ),则图②的图象对应的函数在下列给出的四式中,只可能是( )

A .y =f (|x |)

B .y =|f (x )|

C .y =f (-|x |)

D .y =-f (|x |)

6、函数f (x )=1

1+|x |

的图象是( )

7、已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如下图所示,则函数f (|x |)的图象大致是( )

8、若对任意x ∈R ,不等式|x |≥ax 恒成立,则实数a 的取值范围是( ) A .a <-1 B .|a |≤1 C .|a |<1 D .a ≥1

9、f (x )定义域为R ,对任意x ∈R ,满足f (x )=f (4-x )且当x ∈[ 2,+∞)时,f (x )为减函数,则( ) A .f (0)

10、若函数y =(12

)|1-

x |+m 的图像与x 轴有公共点,则m 的取值范围是________.

11、若直线y =x +m 和曲线y =1-x 2有两个不同的交点,则m 的取值范围是________. 12、设函数f (x )、g (x )的定义域分别为F 、G ,且F G .若对任意的x ∈F ,都有g (x )=f (x ),则称g (x )为f (x )在G 上

的一个“延拓函数”.已知函数f (x )=(1

2

)x (x ≤0),若g (x )为f (x )在R 上的一个延拓函数,且g (x )是偶函数,则函数

g (x )的解析式为________.

【参考答案】

【课堂练习】

1、 D

2、 C D

3、 A

4、 C

5、 C

6、 A

7、D

8、D

9、 C 10、 C 11、 C

12.y=cos(2x-1/2). 设P1(x1,y1)为原图象上的点,通过变换后得到新图象上一点P(x,y),则x=(x1+1/2)/2, ∴x1=2x-1/2, y1=y, 代入y1=cosx1得到 y=cos(2x-1/2).

13. (1)此函数由函数y=lg|x|向左平移1个单位而得到;

(2)y=1-1/(x+3)由函数y=1/x向左平移3个单位再向上平移1个单位而得到,注意渐近线的变化。

14. 1/2 15. x=m/2 16. y=f(3x-2)。

17. (1)C;(2)A;(3)D;(4)B. 18. (-∞,0)

19.先作y=log2x关于y轴对称的图象,再沿x轴向右平移一个单位得到。

20. x2+(2+a)x-2a-3=0, 由Δ=0以及-(2+a)/2<1可得a= -6+25,

∴-6+25

【课下作业】

1、A

2、C

3、D

4、C

5、C

6、C

7、B

8、B

9、C

10、-1≤m<0

11、1≤m< 2

12、g(x)=2|x|

高考复习函数知识点总结

高考复习 函数知识点总结 一.函数概念的理解以及函数的三要素 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则(函数关系式)也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ; 满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做 [,)a b ,(,]a b ; 满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b < . (3)求函数的定义域时,一般遵循以下原则: ① 分式的分母不为0; ② 偶次根式下被开方数大于0; ③ 0y x = ,则有0x ≠ ; ④ 对数函数的真数大于0,底数大于0切不等于1 注意:①解析式为整式的函数定义域为R ; ②若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则

其定义域一般是各基本初等函数的定义域的交集; ③对于求复合函数定义域问题,一般步骤是:若已知() f x的定义域 为[,] a g x b ≤≤解出. f g x的定义域应由不等式() a b,其复合函数[()] (4)求函数的值域或最值 常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量 的取值范围确定函数的值域或最值. ③判别式法:若函数() =可以化成一个系数含有y的关于x的二次方程 y f x 2 ++=,则在()0 a y x b y x c y ()()()0 a y≠时,由于,x y为实数,故必须有 2()4()()0 ?=-?≥,从而确定函数的值域或最值. b y a y c y ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代 数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的 值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. (5)函数解析式 ①换元法;(用于求复合函数的解析式) ②配凑法;(用于求复合函数的解析式)

[高考数学]高考数学函数典型例题

?0x时,总有 00 ?01}的四组函数如下: ①f(x)=x2,g(x)=x;②f(x)=10-x+2,g(x)=2x-3 x;

③ f(x)= , g(x)= ; ④ f(x)= , g(x)=2(x-1-e -x ) . 年 高 考 江 苏 卷 试 题 11 ) 已 知 函 数 f ( x ) = ? x + 1, x ≥ 0 , 则 满 足 不 等 式 ) 剪成两块,其中一块是梯形,记 S = ,则 S 的最小值是____▲____。 2 x 2 +1 xlnx+1 2x 2 x lnx x+1 其中, 曲线 y=f(x) 和 y=g(x) 存在“分渐近线”的是( ) A. ①④ B. ②③ C.②④ D.③④ 33. (20XX 年 高 考 天 津 卷 理 科 16) 设 函 数 f ( x ) = x 2 - 1 , 对 任 意 3 x x ∈[ , +∞) , f ( ) - 4m 2 f ( x ) ≤ f ( x - 1) + 4 f (m ) 2 m 恒成立,则实数 m 的取值范围是 。 34 .( 20XX ? 2 ?1, x < 0 f (1- x 2 )> f ( 2x 的 x 的范围是__▲___。 35.(20XX 年高考江苏卷试题 14)将边长为 1m 正三角形薄片,沿一条平行于底边的直线 (梯形的周长) 梯形的面积 36 已知函数 f ( x ) = ( x + 1)ln x - x + 1 . (Ⅰ)若 xf '(x) ≤ x 2 + ax + 1 ,求 a 的取值范围; (Ⅱ)证明: ( x - 1) f ( x ) ≥ 0 .

高考函数知识点总结

高中函数大全 一元二次函数 定义域区间 定 义 对应法则一元二次不等式 值域 指 根式分数指数 映射数 函 数指数函数的图像和性质 指数方程 对数方程 函 数 性 质奇偶性 单调性 对数的性质 积、商、幂与周期性 根的对数 对数 反函数互为反函数的 函数图像关系 对 数 对数恒等式 和不等式 函 数常用对数 自然对数 对数函数的图像和性质 函数概念 (一)知识梳理 1.映射的概念 设 A、B是两个集合,如果按照某种对应法则f,对于集合A中的任意元素,在集合B中都有唯一确定的 元素与之对应,那么这样的单值对应叫做从A到B的映射,通常记为f:A B,f表示对应法则 注意:⑴A中元素必须都有象且唯一;⑵B中元素不一定都有原象,但原象不一定唯一。 2.函数的概念 (1)函数的定义: 设 A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中的每一个数x,在集合B中都有唯一 确定的数和它对应,那么这样的对应叫做从A到B的一个函数,通常记为y f(x),x A (2)函数的定义域、值域 在函数y f(x),x A中,x叫做自变量,x的取值范围A叫做y f(x)的定义域;与x的值相对应的y值

叫做函数值,函数值的集合 f(x)x A称为函数y f(x)的值域。 (3)函数的三要素:定义域、值域和对应法则 3.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式来表示。 4.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 (二)考点分析 考点1:映射的概念 例1.(1)A R,B{y|y0},f:x y|x|; (2)* A{x|x2,x N},B y|y0,y N, 2 f:x y x2x2; (3)A{x|x0},B{y|y R},f:x y x. 上述三个对应是A到B的映射. 例2.若A{1,2,3,4},B{a,b,c},a,b,c R,则A到B的映射有个,B到A的映射有个,A到B 的函数有个 例3.设集合M{1,0,1},N{2,1,0,1,2},如果从M到N的映射f满足条件:对M中的每个元素x与 它在 N中的象f(x)的和都为奇数,则映射f的个数是() (A)8个(B)12个(C)16个(D)18个 考点2:判断两函数是否为同一个函数 例1.试判断以下各组函数是否表示同一函数? (1) 2 f(x)x, 3 3 g(x)x; (2) x f(x), x g(x) 1 1 x x 0, 0; (3)212 1 n x n f(x), 2n x) 12n1 *);g(x)((n∈N 2 (4)f(x)x x1,g(x)x x; 2x2t (5)()2 1 f x x,g(t)t2 1 考点3:求函数解析式

高考数学专题练习--函数图像

高考数学专题练习--函数图像 1. 【江苏苏州市高三期中调研考试】已知函数()2 21,0 ,0 x x f x x x x ->?=? +≤?,若函数()()g x f x m =-有三个零点,则实数m 的取值范围是__________. 【答案】1 ,04 ?? - ??? 【解析】 2. 【江苏省苏州市高三暑假自主学习测试】已知函数31 1, ,()11,, x f x x x x ?>?=?-≤≤??若关于x 的方程 ()(1)f x k x =+有两个不同的实数根,则实数k 的取值范围是 ▲ . 【答案】1 (0,)2 【解析】 试题分析:作函数()y f x =及(1)y k x =+图像,(11), (1,0)A B -,,由图可知要使关于x 的方程()(1)f x k x =+有两个不同的实数根,须满足1 (0,)(0,).2 AB k k ∈=

3. 【江苏省南通市如东县、徐州市丰县高三10月联考】设幂函数()f x kx α=的图象经过点 ()4,2,则k α+= ▲ . 【答案】 32 【解析】 试题分析:由题意得11,422 k α α==?=∴32k α+= 4. 【泰州中学第一学期第一次质量检测文科】已知幂函数()y f x =的图象经过点1 (4,)2 ,则 1 ()4 f 的值为 . 【答案】2 【解析】 试题分析:设()y f x x α ==,则11422α α=?=-,因此1 211()()244 f -== 5. 【江苏省南通中学高三上学期期中考试】已知函数2 +1, 1, ()(), 1, a x x f x x a x ?-?=?->??≤ 函数 ()2()g x f x =-,若函数()()y f x g x =- 恰有4个零点,则实数的取值范围是 ▲ . 【答案】23a <≤ 【解析】

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

近五年高考数学函数及其图像真题及其答案

1. 已知函数()f x =32 31ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) 2. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 3. 设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4. 函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是 A .()y g x = B .()y g x =- C .()y g x =- D .()y g x =-- 5. 已知函数f (x )=????? -x 2+2x x ≤0ln(x +1) x >0 ,若|f (x )|≥ax ,则a 的取值范围是 A .(-∞,0] B .(-∞,1] C .[-2,1] D .[-2,0] 6. 已知函数3 2 ()f x x ax bx c =+++,下列结论中错误的是

A .0x R ?∈,0()0f x = B .函数()y f x =的图象是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减 D .若0x 是()f x 的极值点,则0'()0f x = 7. 设3log 6a =,5log 10b =,7log 14c =,则 A .c b a >> B .b c a >> C .a c b >>D .a b c >> 8. 若函数()2 11=,2f x x ax a x ?? ++ +∞ ??? 在是增函数,则的取值范围是 A .[]-1,0 B .[)+∞-,1 C .[]0,3 D .[)+∞,3 9. 函数()()21=log 10f x x x ??+> ? ?? 的反函数()1 =f x - A .()1021x x >- B .()1021 x x ≠-C .()21x x R -∈D .()210x x -> 10. 已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为 A .()1,1-B .11,2? ?-- ??? C .()-1,0 D .1,12?? ??? 11. 已知函数()()x x x f -+= 1ln 1 ,则y=f (x )的图像大致为 A . B .

高中数学函数知识点总结

高中数学函数知识点总结 (1)高中函数公式的变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 (2)一次函数:①若两个变量 ,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。②当 =0时,称是的正比例函数。(3)高中函数的一次函数的图象及性质 ①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。 ②正比例函数 =的图象是经过原点的一条直线。 ③在一次函数中,当 0, O,则经2、3、4象限;当 0, 0时,则经1、 2、4象限;当 0, 0时,则经1、 3、4象限;当 0, 0时,则经1、2、3象限。 ④当 0时,的值随值的增大而增大,当 0时,的值随值的增大而减少。(4)高中函数的二次函数: ①一般式: ( ),对称轴是 顶点是; ②顶点式: ( ),对称轴是顶点是; ③交点式: ( ),其中(),()是抛物线与x轴的交点 (5)高中函数的二次函数的性质 ①函数的图象关于直线对称。 ②时,在对称轴()左侧,值随值的增大而减少;在对称轴()右侧;的值随值的增大而增大。当时,取得最小值

③时,在对称轴()左侧,值随值的增大而增大;在对称轴()右侧;的值随值的增大而减少。当时,取得最大值 9 高中函数的图形的对称 (1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。 (2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

高考数学-对数函数图像和性质及经典例题

对数函数图像和性质及经典例题 第一部分:回顾基础知识点 对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数其中x 是自变量,函数的定义域是(0,+∞). 对数函数的图象和性质 ○ 1 在同一坐标系中画出下列对数函数的图象; (1) x y 2log = (2) x y 2 1log = (3) x y 3log = (4) x y 3 1log = ○ 2 对数函数的性质如下: 图象特征 函数性质 1a > 1a 0<< 1a > 1a 0<< 函数图象都在y 轴右侧 函数的定义域为(0,+∞) 图象关于原点和y 轴不对称 非奇非偶函数 向y 轴正负方向无限延伸 函数的值域为R 函数图象都过定点(1,1) 11=α 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 0log ,1>>x x a 0log ,10><x x a ○ 3 底数a 是如何影响函数x y a log =的. 规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.

第二部分:对数函数图像及性质应用 例1.如图,A ,B ,C 为函数x y 2 1log =的图象上的三点,它们的横坐标分别是t , t +2, t +4(t ≥1). (1)设?ABC 的面积为S 。求S=f (t ) ; (2)判断函数S=f (t )的单调性; (3) 求S=f (t)的最大值 . 解:(1)过A,B,C,分别作AA 1,BB 1,CC 1垂直于x 轴,垂足为A 1,B 1,C 1, 则S=S 梯形AA 1B 1B +S 梯形BB 1C 1C -S 梯形AA 1C 1C . )44 1(log )2(4log 2 3223 1t t t t t ++=++= (2)因为v =t t 42+在),1[+∞上是增函数,且v ≥5, [)∞++=.541在v v 上是减函数,且1

高中数学常见函数图像

高中数学常见函数图像1. 2.对数函数:

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++???? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高中部分三角函数知识点总结

★高中三角函数部分总结 1.任意角的三角函数定义: 设α为任意一个角,点),(y x P 是该角终边上的任意一点(异于原点),),(y x P 到原点的距离为22y x r += ,则: )(tan ),(cos ),(sin y x x y x r x y r y ?=== 正负看正负看正负看ααα 2.特殊角三角函数值: sin30°=1/2 sin45°=√2/2 sin60°=√3/2 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3 cot30°=√3 cot45°=1 cot60°=√3/3 sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4 cos75°=(√6-√2)/4(这四个可根据sin (45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (这个值 3.同角三角函数公式: αααααααααα αtan 1 cot ,sin 1csc ,cos 1sec 1cos sin ,cos sin tan 22= ===+= 4.三角函数诱导公式: (1))(;tan )2tan(,cos )2cos( ,sin )2sin(Z k k k k ∈=+=+=+απααπααπα (2);tan )tan(,cos )cos( ,sin )sin(απααπααπα=+-=+-=+ (3);tan )tan(,cos )cos(,sin )sin(αααααα-=-=--=- (函数名称不变,符号看象限)

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

高中数学函数知识点总结

高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||2 2301 若,则实数的值构成的集合为B A a ? 3. 注意下列性质: {}()集合,,……,的所有子集的个数是;1212a a a n n 要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n 个子集。 当然,我们也要注意到,这2n 种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n - ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 有些版本可能是这种写法,遇到后要能够看懂 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式 的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 注意映射个数的求法。如集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 的映射个数有n m 个。 如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。 函数)(x y ?=的图象与直线a x =交点的个数为 个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型?

(word完整版)高中数学函数图象高考题.doc

B 1 .函数 y = a | x | (a > 1)的图象是 ( y y o x o A B B ( ) y o 1 x -1 o 函数图象 ) y 1 1 x o x C y y x x o 1 y 1 o x D y -1 o x A B C B 3.当 a>1 时,函数 y=log a x 和 y=(1 - a)x 的图象只可能是( ) y A4.已知 y=f(x) 与 y=g(x) 的图象如图所示 yf ( x ) x O 则函数 F(x)=f(x) ·g(x) 的图象可以是 (A) y y y O x O x O x A xa x B C B 5.函数 y (a 1) 的图像大致形状是 ( ) | x | y y y O f ( x) 2x x O 1 O x ( D 6.已知函数 x x x 1 ,则 f x ( 1- x )的图象是 log 1 2 y y y A B C 2 。 。 1 。 - 1 D y y g( x) O x y O x D y O ) x y D 2

O x

A B C D D 7.函数 y x cosx 的部分图象是 ( ) A 8.若函数 f(x) =x 2 +bx+c 的图象的顶点在第四象限,则函数 f /(x)的图象是 ( ) y y y y o x o x o x o x A B C D A 9.一给定函数 y f ( x) 的图象在下列图中,并且对任意 a 1 (0,1) ,由关系式 a n 1 f (a n ) 得到的数列 { a n } 满足 a n 1 a n (n N * ) ,则该函数的图象是 ( ) A B C D C10.函数 y=kx+k 与 y= k 在同一坐标系是的大致图象是( ) x y y y y O x O x O x O x A 11.设函数 f ( x ) =1- 1 x 2 (- 1≤ x ≤0)的图像是( ) A B C D

高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 2. 已知).(323 2)(23R a x ax x x f ∈--= (1)当41||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ) . (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈ 有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2g x f x '= . (1)证明:当t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明: 3()2 f x ≥. 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 题型三:利用导数研究方程的根 例4:已知函数a x ax x f 313)(23-+-=. (I)讨论函数)(x f 的单调性; (Ⅱ)若曲线()f x 上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,求实 数a 的取值范围.

高考复习文科函数知识点总结

函数知识点 一.考纲要求 注:ABC分别代表了解理解掌握 二.知识点 一、映射与函数 1、映射f:A→B 概念 (1)A中元素必须都有象且唯一; (2)B 中元素不一定都有原象,但原象不一定唯一。 2、函数f:A→B 是特殊的映射 (1)、特殊在定义域A 和值域B都是非空数集。函数y=f(x)是“y是x 的函数” 这句话的数学表示,其中x是自变量,y是自变量x的函数,f 是表示对应法则, 它可以是一个解析式,也可以是表格或图象,

也有只能用文字语言叙述.由此可知函数图像与 x 轴至多有一个公共 点,但与 y 轴的公共点可能没有,也可能是任意个。(即一个x 只能对应一个y ,但一个y 可以对应多个x 。) (2)、函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决 定作用的 要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 二、函数的单调性 它是一个区间概念,即函数的单调性是针对定义域内的区间而言的。判断方法如下: 1、作差(商)法(定义法) 2、导数法 3、复合函数单调性判别方法(同增异减) 三.函数的奇偶性 ⑴偶函数:)()(x f x f =- 设(b a ,)为偶函数上一点,则(b a ,-)也是图象上一点. 偶函数的判定:两个条件同时满足 ①定义域一定要关于y 轴对称,例如:12+=x y 在)1,1[-上不是偶函数. ②满足)()(x f x f =-,或0)()(=--x f x f ,若0)(≠x f 时,1) () (=-x f x f . ⑵奇函数:)()(x f x f -=- 设(b a ,)为奇函数上一点,则(b a --,)也是图象上一点. 奇函数的判定:两个条件同时满足 ①定义域一定要关于原点对称,例如:3x y =在)1,1[-上不是奇函数. ②满足)()(x f x f -=-,或0)()(=+-x f x f ,若0)(≠x f 时, 1)() (-=-x f x f ※四.函数的变换 ①()()y f x y f x =?=-:将函数()y f x =的图象关于y 轴对称得到的新的图像 就是()y f x =-的图像; -a -c -b d c b a y=f(x) o y x ? -a -c -b d c b a y=f(-x) o y x ②()()y f x y f x =?=-:将函数()y f x =的图象关于x 轴对称得到的新的图像就是()y f x =-的图像;

高中数学-经典函数试题及答案

(满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <xy a

高中数学必修1函数知识点总结

高中数学必修1函数知识总结 一、函数的有关概念 1.函数的概念:设A 、B 是非空的 ,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有 的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .函数的三要素为 找错误:①其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域; ②与x 的值相对应的y 值叫做函数值,所以集合B 为值域。 注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式. 专项练习1.求函数的定义域: 类型1.⑴22153x x y x --= + ⑵0 (21)y x =- ⑶2214log (1) y x x = +-+ 总结: 能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零 (7)实际问题中的函数的定义域还要保证实际问题有意义. (注意:求出不等式组的解集即为函数的定义域。) 类型2 抽象函数求定义域: 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 方法总结 练习1.已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域为 练习2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域方法总结 练习1.若函数(1)f x +的定义域为[]-23,,求函数()f x 的定义域. 练习2. 已知函数2 (22)f x x -+的定义域为[]03,,求函数()f x 的定义域. 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域方法总结 练习1.若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 练习2、已知函数的定义域为,则y=f(3x-5)的定义域为________。

高考数学函数图像

函数图像与变换 一、 图像变换 1.平移变换: (1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单 位即可得到; (2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单 位即可得到. 2.对称变换:(1)函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; (2)函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; (3)函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; (4)函数1()y f x -=的图像可以将函数()y f x =的图像关于直线y x =对称得到. 3.翻折变换: (1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分, 并保留()y f x = 的x 轴上方部分即可得到; (2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留 ()y f x =在y 轴右边部 分即可得到. 4.伸缩变换: (1)函数()y af x = (0a >)的图像可以将函数()y f x =的图像的纵坐标伸长到原来的(0)k k >倍(横坐标不变) 得到。 (2)函数()y af x = (0a >)的图像可以将函数()y f x =的图像的横坐标伸长到原来的(0)k k >倍(纵坐标不变) 得到。 二、典型例题 1、 函数的图象变换 函数的图象变换这一节的知识点是高考考查的重要方面,一些复杂的函数是可以通过一些较为简单的函数由相应的变换得到,从而我们可以利用之研究函数的性质。 例1、(1)设()2,()x f x g x -=的图像与()f x 的图像关于直线y x =对称,() h x 的图像由()g x 的图像 右平移1个单位得到,则()h x 为__________ (2)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移3个单位而得到 (3)将函数()y f x =的图像上所有点的横坐标变为原来的13 (纵坐标不变),再将此图像沿x 轴方向向左平移2个单位,所得图像对应的函数为_____ 例2、已知f(x+199)=4x 2+4x+3(x ∈R),那么函数f(x)的最小值为____. 例3、设函数y=f(x)的定义域为R,则函数y=f(x-1)与y=(1-x)的图象关系为( ) A、直线y=0对称 B、直线x=0对称 C、直线y=1对称 D、直线x=1对称 2 、函数图象的画法 以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段。用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换。

文本预览
相关文档 最新文档