当前位置:文档之家› 液压油中水含量过高的危害与处理指导方法

液压油中水含量过高的危害与处理指导方法

液压油中水含量过高的危害与处理指导方法
液压油中水含量过高的危害与处理指导方法

液压油中水含量过高的危害与处理指导

方法

(2011/10/09 12:01)

目录:参考资料

浏览字体:大中小液压油中水含量过高的危害与处理指导方法

在目前的润滑管理中,越来越多的人已经深刻意识到只有有效的控制液压油的污染水平,才能保障液压设备减少磨损,从而达到提高设备可靠性和可利用率的目的。

一、水污染对液压油的危害

在各种液压油的污染物中,除了空气和各种固体颗粒外,最主要的就是水。水污染会给液压系统带来严重影响。这些影响包括:

·润滑油粘度上升或油膜变薄(使得液压油的流动性变差或流动性太好,导致油品不适宜该部位的润滑)

·增加了液压油的可被压缩性(即液压油可提供的压力不稳定,导致工作的不稳定)

·添加剂被溶解在水里导致损耗(降低了液压油的性能)

·使油氧化变质(减少了油品的使用寿命)

·降低油品的润滑性(使得设备工作不稳定)

·加速金属表面疲劳(对金属部件的保护不够,容易生锈或受到腐蚀,降低了金属部件的使用寿命)

·在低温时凝结成冰,降低液压油的流动性,淤塞运动部件

·容易使系统内滋生细菌(降低了油品的使用寿命,增加了换油成本)

·堵塞过滤器,降低精滤效果(直接增加了过滤器成本,还间接的影响着设备部件的使用寿命)。

水的进入,特别是大量的游离水,在液压系统内破坏了润滑油膜的形成,油品润滑性能急剧下降,使运动表面产生磨损、粘着和金属疲劳,产生了一些金属磨粒。另外,液压油里的水会在较高的工作温度下与油产生氧化反应。而这些金属小颗粒,尤其是铜或铁颗粒的存在,又会成为水与油品产生氧化分解反应的催化剂,使反应速度加快。反应将生成酸性腐蚀性产物,不溶性污染物等有害物质,使得零部件收到腐蚀,阀门卡滞或形成油泥等。

水对液压的危害,我们可以从一下的几个图表中得到分析。

由表1可以清楚地看到,在有铜或铁催化的情况下,受到水污染的液压油寿命会缩短到只有原来的数十分之一。

在表2里,由于含水油液可被压缩性增加,导致齿轮泵的容积效率下降;而润滑油膜的变薄,使得叶片泵的磨损增加。

在图2中,可以看到,由于水的存在,不论是游离水还是溶解水,都会使滚动轴承的寿命大大缩短。

在研究所做的试验中,选用SAE20(大约为46厘斯)的矿物油,温度为65.6℃,轴承工作压力2.03GPa,以2700转/分钟的速度旋转。试验含水量分别为25.100和400PPM的情况。

如果以100PPM含水量时所作的轴承寿命作为标准1,那么在油中含水量降到

25PPM时,油品的寿命可延长到2.3倍;含水量增加到400PPM时,轴承寿命缩短到0.43倍的寿命。

从图3还可以看到,水污染导致过滤器的堵塞。

二、水污染的来源

液压油的水污染主要来自:

水冷却器的泄漏,这是最常出现的漏水原因

空气中的冷凝水,在潮湿的环境下,加上昼夜的温差,如果油箱呼吸器没有干燥或防潮措施,会导致油箱里有较多的冷凝水。

·由于温度降低,从油里析出来的溶解水。

三、水存在的形式

水在油中存在的形式有3种:

1、溶解水

在我们的印象中,水和油是不能混在一起。但实际上,润滑油中总是含有少量以分子水平存在的水分,这种水被成为溶解水。溶解水存在数量的多少,与基础油的类型,添加剂配方,以及油的温度有关。在一定的温度下,调配好的油品只能溶解一定数量的水。油里不能溶解更多的水时,我们称之为饱和。当温度下降时,油溶解水的能力下降,溶解水会从油里析出,形成游离水。

在达到油品的溶解水饱和度之前,油的外观是清亮透明的。

2、游离水

由于温度降低,溶解水从油里析出,或是外界有水侵入液压系统,就会形成一些小水滴悬浮在油里,并随着水的增多逐渐形成大水滴。通常,液压油的密度<1,因此水滴会沉入油箱底部。

3、乳化液

但如果游离水收到油泵的剧烈搅拌或是阀件剪切作用,而形成微小的悬浮在油里,无法沉淀到油箱底部,就会形成油的乳化。液压油的颜色也因此变得模糊或是浑浊发白。乳化液会使液压系统受到严重的危害。

四、如何检验水含量

现场测试:当怀疑油品被水污染时,在现场最简单的方法就是“热板测试”:找一块表面平整的薄金属板,擦拭干净,在其上滴上一滴测试油。然后将金属板用打火机或酒精灯加热到120℃左右。观察油滴内是否有气泡产生或是有轻微的噼啪声,如果有,就表明液压油的含水量超标。此为简单的定性分析。

实验室测试:实验室内常用的水分含量测试方法是卡尔费休法,可以准确的判定液压油里水含量的具体数量。

五、控制与去除超标水量指导方法

可选择ZJD液压油专用真空滤油机快速脱除油液中的水分、气体、杂质和挥发物(少量汽油、煤油等),提高油液品质,恢复润滑油粘度、闪点及使用性能。保证液压系统、动力系统、润滑系统的正常运行。

通瑞ZJD液压油专用真空滤油机采用世界领先的微克闪蒸技术“气穴”原理和聚结分离技术,配合特制高分子材料的破乳化装置,既能迅速容易分离出油中的液态水和游离水,也能脱除油中的溶解水。并能有效杜绝处理后的油再次反弹乳化,能使乳化严重的润滑油变得清澈透明,达到液压润滑设备的使用要求。

氨氮废水常用处理方法

氨氮废水常用处理方法 来源:作者:发布时间:2007-11-14 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。

王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。 Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。

液压油污染的来源、危害及其控制对策

液压油污染的来源、危害及其控制对策 摘要:液压油在液压系统中主要作用是传递动力,同时还对液压系统中的运动部位进行润滑与防护。本文介绍了液压油污染的来源,分析了污染对装备液压系统的危害,提出了液压油污染控制对策。 关键词:液压油污染来源危害控制对策 0 引言 液压传动设备在各行各业已经得到广泛的应用,在现代化的工程机械上体现得尤为充分。液压传动技术有其不可比拟的优点,这是它得以迅猛发展的主要原因。与此同时,液压传动设备又有其脆弱的一面,其中抗污染能力低是突出的弱点。据有关资料记载,液压故障有70%~80%是由液压油污染导致的。要证液压系统正常、可靠的运行,必须要保持整个液压系统的清洁。 液压油是否清洁,直接关系机械能否正常工作。液压油是液压机械的血液,具有传递动力、减少元件间的摩擦、隔离磨损表面、虚浮污染物、控制元件表面氧化、冷却液压元件等功能。因此液压机械的故障直接与液压油污染度有关,所以控制液压油污染是十分重要的。 1 液压油污染物的来源 1.1固体污染物 来自液压系统的管道、液压元件如液压缸,胶管、泵、马达、阀、液压油箱等,在系统使用前未冲洗干净,在液压系统工作时,污染物就进入到液压油中。 1.2外界侵入的污染物 外界的空气、水、灰尘、固体颗粒,在液压系统工作过程中,通过液压缸活塞杆、胶管接头、液压油箱、空气滤清器等进入液压油中。液压油中混入空气,可使液压系统产生噪声,引起汽蚀、爬行及振动;空气还会加速油液的氧化,使液压油的性能变差。水分混入液压油会使液压系统在高温高压时产生汽蚀现象,降温后凝结成水。水分腐蚀金属,并加速油的氧化劣化,使油液润滑性能降低,温度低于0℃时,甚至会结成冰,阻碍油液流动,堵塞油路。 1.3内部生成污染物 液压系统组装、运转、调试及液压油变质也不断产生污染,直接进入液压油中,如金属和密封材料的磨损颗粒,吸油、回油滤芯脱落的颗粒和纤维,液压油因油温升高、氧化变质而生成胶状物,吸油管路密封不严造成吸入空气等。

液压油液的污染及控制

液压油液的污染及控制-工程论文 液压油液的污染及控制 王兵WANG Bing (大唐辽源发电厂,辽源136200) (Liaoyuan Power Plant of China Datang Corporation,Liaoyuan 136200,China) 摘要:分析液压油液污染的原因和对液压系统工作性能的危害,提出了防止液压油液污染的具体措施,为液压系统的设计、使用提供一定的参考。Abstract: The paper analyzes the cause of pollution in hydraulic fluids and its harm to the operation performance of hydraulic system.Measures for controlling such pollution are proposed, which provides reference to the design and operation of the hydraulic system.关键词:液压油液;污染;控制 Key words: hydraulic fluid;pollution;control 中图分类号:TH137 文献标识码:A 文章编号:1006-4311(2014)34-0064-02 作者简介:王兵(1968-),女,吉林辽源人,助理工程师,研究方向为燃煤机械。 0 引言 在实现高压、高速、低噪声、经久耐用、高度集成化等方面液压技术取得了长足进展,并且在完善比例控制、伺服控制等方面也取得一定的成就。在发展国民经济的过程中,液压技术得到推广性使用,进一步使得液压系统出现故障的频率

液压油液污染度等级标准

液压油液污染物等级标准 NAS 1638标准 NAS 是National Aerospace Standard (美国航空标准)的缩写,现行的版本为1992年修订版,用一个二位数以内的数字描述流体中颗粒物的含量。一个等级代码值下有不同尺寸范围相应的颗粒物数量(每100毫升流体中颗粒物的个数)。等级代码值越小表明流体越洁净,或者说流体污染程度越轻。参见下表: NAS等级代码数 例如NAS 8(差不多是很多常规全新油品的颗粒物含量等级)中有5-15微米的颗粒物64000个,15-25微米的颗粒物11400个,依此类推。这些数为某一等级代码数的上限。 反之如果在实验室做颗粒物含量检测时,判读标准原则上以超过上限就需要升级。该标准中将颗粒物尺寸范围分得太细而起点又太粗,给实际工作中的判读带来很大的麻烦,因为实际检测结果往往与标准中的上限发生交叉。实际中判读的准确程度依赖专业人员的经验和其他辅助信息的综合判断。同时不难看出NAS标准描述颗粒物的下限是5-15微米,对5-15微米以下颗粒物不做描述,有其相当的局限性,因为流体中5微米以下(含5微米)的颗粒物数量庞大,往往是5-15微米颗粒物的数倍。所以忽略5微米以下颗粒物是不够准确的。同时为便于提高判读效率和准确性于是有很多公司使用ISO标准。很多颗粒物自动检测读数仪器一般可同时输出NAS1638和ISO 4406(MTD)代码值。目前中国企业多数参照NAS标准,但新国标的实施会逐步改变这一现状。 ISO 4406标准 现行的ISO标准为ISO4406(1999年修订版)。该标准也称为ISO 4406:1999或ISO 4406 (MTD)。MTD 是Medium Test Dust 的缩写,用三组数据描述流体中颗粒物的含量。之前也有ISO4406 –ACFTD(Air Cleaner Fine Test Dust)标准,但由于其描述起点为2微米,在实际应用中很难正确判读,所以现在已经被ISO4406:1999版所正式取代。也有一些专业

高氨氮废水处理方法

高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比

例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 1.4MAP沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 1.5 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。

液压油的污染与控制

仅供参考[整理] 安全管理文书 液压油的污染与控制 日期:__________________ 单位:__________________ 第1 页共7 页

液压油的污染与控制 摘要:液压系统工作性能的好坏,直接影响工程机械的作业性能。本文分析了液压系统中液压油的污染原因以及对液压系统工作性能的 危害,提出了防止液压油污染的具体措施,。 关键词:液压系统油液的污染危害控制 近年来,液压传动入了一个新的发展阶段。机械工程中液压油的应用越来越广泛。液压油是液压机械的血液,具有传递动力、减少元件间的摩擦、隔离磨损表面、虚浮污染物、控制元件表面氧化、冷却液压元件等功能。液压油是否清洁,不仅影响液压系统的工作性能和液压元件的使用寿命,而且直接关系机械能否正常工作。液压机械的故障直接与液压的污染度有关,因而了解液压油污染和掌握控制液压油污染是液压系统正常工作的保障之一。 液压油液被污染的原因是复杂的,多方面的。不仅仅是内部的,还包括外部的。油液的污染源可概括为系统残留的,内部生成的,以及外界的侵入。 1.1潜在原因造成的污染 在液压设备设计之初,就没能将污染的客观渠道堵死。首先,没有合理选用滤油器。过滤是控制液压油污染最直接、最容易的手段。在泵的吸油口、重要元件的进油口、油箱的入口处均要设置不同精度的滤油器和合理的过滤精度。其次就是在制造、安装阶段、对元件和系统必须进行清洗。液压元件在加工制造过程中,每一个元件都需要采用净化措施。在液压元件的制造过程中,还可采用一些新的加工工艺,如采用“喷砂”工艺可去除阀块内孔的毛刺。为保证液压系统的可靠性和延长元件的使用寿命。元件组装时,必须保持环境的清洁,所有元件装配时,需 第 2 页共 7 页

液压油被污染的原因

液压系统中液压油污染的原因分析 液压油在液压系统中能够在较长时间循环使用,其作用主要是传递动力、润滑、密封和冷却。 据资料介绍,各类机械故障中,有40%以上的故障是因液压系统出现的,而在液压系统中有80%以上的故障是因液压油的污染造成的。油液污染直接影响液压系统的工作可靠性和元件的使用寿命。造成液压油污染的原因有很多,主要包括如下几个方面: 一、固体污染------主要是颗粒物。 1.因液压元件如泵、马达、阀等在经由铸件或毛坯件机械加工时,元件内会积有少量铸造砂、金属切屑或淬火盐等污染物。 2.液压系统的各个元件使用管道经过焊接加工装配起来,这就会产生焊瘤和焊渣。 3.新的液压油经过制造、储藏、输送和灌装等过程后,多少都会含有少量固态杂质。 4.由于液压系统中液压缸的往复运动,温度变化时对油的膨胀或损失造成油箱中的油面晃动,与空气产生交换,这样尘埃就会进入油箱和油液中。 5.液压系统中的元件在使用过程中会产生磨损,磨损将造成恶性循环,使得油液中的污染物越来越多。 6、一般企业液压系统中都有过滤精度在3-10微米的在线过滤装置,可以过滤一部分的杂质,但固体颗粒物杂质是以 1.5-2微米的颗粒物聚集成团状造成泵、阀等设备故障。 二、液体污染------主要是水污染。 1、油箱盖因冷热交替而使空气中的水分凝结成水珠落人油中。 2、冷却器或热交换器产生的冷凝水通过油箱的焊接部位漏人油中。 3、通过液压缸活塞杆密封不严密处进入系统的潮湿空气凝聚成水珠。 油液中混入一定量的水分后,会使液压油乳化。乳化油进入液压系统内部,使液压元件内部生锈,剥落的铁锈在液压系统管道和液压元件内流动,将导致整

氨氮去除方法

根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。 故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。 物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术 目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。1.折点氯化法去除氨氮 折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。 折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。

液压油污染原因、危害及如何防治

精心整理 液压油污染原因、危害及如何防治 本文简介了液压油污染的原因、危害、防止及相关标准 液压系统的故障至少有75%以上是由于液压油的污染所造成的。液压油的污染使液压系统产生故障或损坏的形式有以下几种类型: 1)性能不稳定 2)性能恶化 3)元件损坏 液压油被污染会大大降低了液压系统工作的可靠性和寿命,耗费油液造成经济损 所列: 1.1潜在污染

自制的零件在加工、装配、试验、贮存、运输等过程中,铸造型砂、切屑、磨料、焊渣、锈片、涂料细片、橡胶碎块及灰尘等有害物质在液压系统开始工作之前,就已潜伏在系统中,同样,在外购件中也会潜伏着上述污染物。 1.2侵入污染 液压系统在工作过程中,外来污染物(如灰尘、潮气、异种油等)可经油箱通气孔和加油口侵入系统,如通过往复运动的活塞杆、注入系统中的油液、油箱中流动的空气、溅落或凝结的水滴、流回油箱中的漏油等使污染物侵入系统中,造成污染。 一般认为,新购进的液压油是清洁的。其实不然,如容器的漆料和镀层、注油软 100 漂移。当污染物颗粒嵌入阀芯滑动面间,使移动阻力增大,反应迟钝,动态响应速度变慢,严重时阀芯被卡牢。 在液压油固体污染物中,金属颗粒约占75% ,尘埃约占15% ,其他杂质如氧化物、纤维、树脂等约占10% 。磨损使阀的泄漏增加,造成控制阀流量放大系数及控制灵敏度下降,使泵、马达、液压油缸的容积效率降低,控制系统刚性减小等。 2.2 对液压元件的影响

液压元件工作性能的下降与颗粒污染物的数量、大小、形状、密度和硬度等有关。其中数量、大小、硬度起主要作用。 液压油中固体颗粒污染物使泵的运动件表面磨损加剧,刮伤、咬死,泵的效率降低,故障频繁寿命缩短。如某注塑机的叶片泵产生噪声大、温升高和压力波动大等故障。经分解检查,发现转子端面、配油盘磨损严重,定子工作面则完全磨坏。 阀类元件的共同特点是阀芯和阀体配合精密,间隙很小,带有硬度的固体颗粒物一旦嵌入滑动面中,使阀芯移动困难或卡牢,磨损加剧阀口密封被破坏而产生故障。伺服阀污染敏感性试验表明:每100mL油液中,直径1- 5μm的颗粒超过25-500万 增加 1 供货商提出明确要求,在运输和保管过程中,所有的油口都必须加盖密封,防止污物侵入。 2)装配前所有的元件和辅件必须仔细清洗,清洗干净后,用塑料胶带封闭所有油口。 3)加强液压油的管理,液压油进厂必须进行取样检验,检验合格的油还需再过滤,才能注入油箱。 4.2 防止侵入污染

液压油污染环境的原因及控制方法

液压油污染环境的原因及控制方法 从事液压行业的人员都知道液压油就是利用液体压力能的液压系统使用的液压介质,在液压系统中起着能量传递、系统润滑、防腐、防锈、冷却等作用。但是液压油有很大的缺陷就是清洁度低,容易造成环境的污染。 一般认为新油一定是清洁的,但调查结果往往超过系统实际使用的要求,一般等级为10-14级,新油污染的原因是多方面的,包括炼制、分装,运输到储存等过程的污染。根据我国石油产品性能指标规定,固体颗粒污染含量在0.005%一下认为无机械杂质,而油液中机械杂质为0.005时,污染程度相当于NAS12级,这样,从炼油厂出厂的油液其污染度就可能超过系统油液容许的污染度。所以要求油品提供商提供合格证,单位还要进行油品化验。对清洁度不符合要求的新油,在使用前必须尽心过滤净化,新油的清洁度一般比液压系统要求的清洁度高1-2级。清洁度对元件可能造成的卡滞的说明。 由液压油造成的污染物主要分为四类:自身生产的污染物、外界侵入的污染物、生物污染物和逃脱性污染物。 自身生成的污染物主要有液压系统和液压元件两个方面产生。液压系统工作时,因压力损失而消耗的能量,使系统油温升高。当液压油处于高温时,一方面油中的高压空气与油分子直接接触,空气中的氧分子引起油液氧化,生成有机酸,对金属表面起腐蚀作用;另一方面,油液氧化析出粘滞物和浸漆物。液压元件工作时,运动件之间的金属与金属、金属与密封材料的磨损颗粒以及液流冲刷下的软管胶料、过滤材料脱落的颗粒和纤维、剥落的油漆皮等。它们会腐蚀机件,并使元件表面的污物分散到油液中去而难以清除,还降低过滤网附着污物的能力,常常使节流小孔堵塞,使液压元件失效造成事故故障。 外界侵入的污染物主要指周围环境中的污染物,例如空气、尘埃、水滴等通过一切可能的侵入点,如外露的往复运动活塞杆、油箱的通气孔和注油孔等侵入系统所造成的液压油液污染;还如维修过程中不注意清洁,将环境周围的污染物带入,以粗代细,甚至不用过滤器,过滤器常年不清洗、滤网不经常清洗、换油或补油时不注意油的过滤、脏的油桶未经过严格的清洗就拿来用,从而把污染物带入。 微生物也可能像其它微小颗粒一样侵入液压介质,如果不加以阻止,微生物将繁殖生长并表现为粘质物,污染介质。一般加杀菌剂或去除微生物繁殖的条件——水或营养物,以阻止生物污染的增长。 逃脱性污染物来自过滤器附近的潜在的液流通道(如不密封的溢流阀或旁通及滤材的裂口等),以及使被截留颗粒上的拖曳力大于过滤器纤维表面的吸附力的流量脉动。 若要控制油液的污染度,要根据系统和元件的不同要求,分别在吸油口、压力管路、伺服阀的进油口等处,按照要求的过滤精度设置滤油器,以控制油液中的颗粒污染物,使液压系统性能可靠、工作稳定。滤油器过滤精度一般按系统中对过滤精度敏感性最大的元件来选择。 在需要时,还可以增设外循环过滤系统,从而使系统的污染物控制等级得到提高;应定期检查过滤器的滤网有无破裂,若有破裂要及时更换,对变质油和清洁度超标油禁止使用,油箱内壁一般不要涂刷油漆,以免油中产生沉淀物质,为防止空气进入系统,回油管口应在油箱液面以下,液压泵和吸油管应严格密封。应根据需要,在系统的有关部位设置适当精度的过滤器,并且要定期检查、清洗或更换滤芯。

氨氮废水处理方法

高氨氮废水处理技术 介绍各类氨氮废水处理技术及其原理,包括各种方法的优缺点、适用范围、高浓度氨氮废水处理技术的研究进展。通过对比分析,明确不同类型高氨氮废水处理的选择方法,为治理高氨氮废水提供一条便捷的选择方法。 近年来,随着环境保护工作的日益加强,水体中有机物的代表指标-COD基本上得到有效控制,但是,含高氨氮废水达标排放没有得到有效控制,未经处理的含氮废水排放给环境造成了极大的危害,如易导致湖泊富营养化,海洋赤潮等。本文总结了国内外高氨氮废水处理技术及其优缺点、适用范围等。 1、废水中氨氮处理的主要技术应用与新进展 1.1吹脱法 吹脱法是将废水中的离子态铵(NH4+),通过调节pH值转化为分子态氨,随后被通入的空气或蒸汽吹出。影响吹脱效率的主要因素有:pH值、水温、布水负荷、气液比、足够的气液分离空间。 NH4++OH-→NH3+H2O 炼钢、石油化工、化肥、有机化工等行业的废水,常含有很高浓度的氨,因此常用蒸汽吹脱法处理,回收利用的氨部分抵消了产生蒸汽的高费用。石灰一般用来提高pH值。用蒸汽比用空气更易控制结垢现象,若用烧碱则可大大减轻结垢的程度。吹脱法一般采用填料吹脱塔,主要特征是在塔内装置一定高度的填料层,利用大表面积的填充塔来达到气水充分接触,以利于气水间的传质过程。常用的填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。胡允良等人研究了某制药厂生产乙胺碘呋酮时产生的一部分高浓度氨氮废水的静态吹脱效果。结果表明:当pH=10~13,温度为30~50℃时,氨氮吹脱率为70.3%~99.3%。 氨吹脱法通常用于高浓度氨氮废水的预处理,该处理技术优点在于除氨效果稳定,操作简单,容易控制。但如何提高吹脱效率、避免二次污染及如何控制生产过程水垢的生成都是氨吹脱法需要考虑的问题。 1.2化学沉淀法(MAP法)

液压油的污染与控制

第33卷 2005年第8期 149 Mining & Processing Equipment 149讲 座 在 液压传动中,当液压油液受到污染后,常常发生堵塞元件的节流孔或节流缝隙等通 道,改变系统工作性能,影响动作的可靠性等。根据国外的调查统计材料表明,液压系统的故障有 75% 是由于油液污染所造成的。 1 油液污染的主要原因 油液污染的主要原因有以下 5 个方面:(1) 环境中粉尘造成的污染液压系统在使用过程中,粉尘通过往复运动的活塞杆、注入系统中的油液、油箱中流通的空气、流回油箱中的回油等进入系统。尤其是在有色火法冶炼现场,空气中的降尘量个别工序高达 300  ̄ 400 mg/ h,污物有时直接进入系统; (2) 油液变质油液变质并腐蚀金属,出现颗粒、锈片等; (3) 磨损颗粒液压系统在工作过程中,不断产生的金属和密封材料的磨损颗粒,过滤材料脱落的颗粒或纤维,剥落的油漆碎片等; (4) 零部件不洁液压系统及其元件在加工、装配、储存过程中,砂粒、切屑、磨料、焊渣、锈片和灰尘等在液压系统尚未工作之前已经进入系统中。对于由单个零、部件所组成、装成的液压系统,零件、部件不洁而带入污染物; (5) 盛油容器和过流容器的不洁因所使用的容器、注油软管等不洁,即使是新油,但在过流后造成了油液的污染。 2油液污染的危害 液压油受污染后,主要有以下 2 个方面的危害。(1)工作性质下降由于油液中的污物部分或全部堵塞了元件的节流孔或节流缝隙,因而系统工作性能下降,动作失调,甚至完全失控。所引起的故障见表1。 根据有关资料统计表明,在机床行业污染的油液中,金属颗粒约占 75%,尘埃占 15%,其他杂质如氧化物、纤维、树脂等约占 10%。 (2)加速油液变质有色冶炼液压设备使用的液压油一般为 6  ̄ 7 个月 (月平均按两班生产计),当油液污染后,更加速了油的变质 (主要是氧化)。 变质后的油液如不及时更换,则对传动的机械效率、容积效率等性能产生很大影响。我们在试制锌锭码堆机时,由于忽视了油液的污染,结果造成换油频繁,由 5 个月更换 1 次,缩短到 3 个月、2 个月、最后只能使用 1 个月,浪费了许多液压油。当我们拆下过滤器清洗时,发现滤网有 2  ̄ 3 个小孔,后经分析是由于变质油液中的污物堵塞了滤油眼,使泵吸油困难。初期由于吸入阻力增大而引起泵吸空,产生气蚀、振动和噪 声;后期会因阻力过大而将滤网吸破,完全丧失过滤作用,造成液压系统恶性循环。 3油液污染的检测 3.1液压油的使用要求及规格 任何一种液压油在使用中应具备:适宜的粘度;良好的润滑性及稳定性;抗腐蚀性、抗泡性及相容性;凝固点低、流动性好;闪点高、抗燃性好等。选择时主要是根据作用泵的种类、工作温度、系统压力等来确定适用的粘度值,然后按有关液压油的规格,选取合适的牌号。各类油泵使用液压油的粘度范围见表 2。 对于精密的或有特殊要求的有色冶炼液压设备,应按使用说明书要求选用液压油,若无特别注明时, 可参照文献[4] 进行选取。对于一般的有色冶炼液压设 备,也可用与液压油规格相对应的机械油代替。 3.2油液污染度检测及其判断 油液的污染度检测方法主要有现场检测和在实验室对液压油的性状变化程度进行定量分析。表 3 是液 论文编号:1001-3954(2005)08-0149-151 液压油的污染与控制 刘金华明兴祖 湖南冶金职业技术学院湖南株洲412000 作者简介:刘金华,女,1964 年生,汉族,湖南人,湖南冶金职业 技术学院机械工程系,高级讲师。研究方向:机电液控制工程。 表1 液压油污染变化引起的故障 故障现象 油泵出现异常磨损,粘附或被卡住。 原因 防止措施装配时元件及配管内 的附着物脱落。元件磨损、尘埃进入。 注意清洗、安装和密封,定期抽样检查,加强过滤。 控制压力阀、流量调节阀等动作性能不良。运行中由外部混入杂质污物。注意环境污染,加强 密封和维护。过滤器堵塞较快。 滑动部分有磨损微粒。有效地使用过滤器,清洗、检查。 表2液油推荐粘度范围 cst (40 ℃) 泵运转条件 适用黏度泵型 油压力 (MPa)ISO.VG叶片泵 齿轮泵柱塞泵 数控 (NC)电液脉冲马达 轴向径向 粘度 (40℃) 223 246.68< 7 7  ̄ 14> 14 18  ̄ 2727  ̄ 9027  ̄ 90全压力范围全压力范围全压力范围 < 7> 7 27  ̄ 11727  ̄ 11745  ̄ 18020  ̄ 3030  ̄ 40 324 668324 668324 668 100324 668 1004 668 100 1502 2323 246

吹脱法处理高浓度氨氮废水

吹脱法处理高浓度氨氮废水 摘要:文章阐述了高浓度氨氮废水的来源及危害,论述了吹脱法处理高浓度氨氮废水的技术原理、影响因素,重点分析了液气比的影响和确定,提出了采用催化氧化法解决吹脱氨气的二次污染问题。 关键字:高浓度氨氮废水吹脱法液气比催化氧化 高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的应用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究应用。 1 吹脱技术 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH 4++OH-NH3+H2O (1) 氨与氨离子之间的百分分配率可用下式进行计算: Ka=Kw /K b=(C NH3·C H+)/C NH4+(2) 式中:Ka———氨离子的电离常数; Kw———水的电离常数; Kb———氨水的电离常数; C———物质浓度。

液压油的污染与处理

科力富液压油过滤机 东 莞 市 朗 拓 贸 易 有 限 公 司 科 力 富 过 滤 设 备 广 东 总 代 理

一、为什么液压系统要定期换油? 众所周知,液压系统中的液压油,每隔一年(根据不同需求,有小部分是两年换一次)液压油都要全部抽出,清洗机器以后更换新的油品。那么,为什么要换油呢? 液压油在使用过程中,会产生污染颗粒和水分,这些杂质会损坏活塞环,轴承,油路阀门及机器零配件。并且会使油品老化、变质 ,因此需要更换。 这些污染物主要是从哪里来的呢?最主要的两种污染物: ㈠ 固体颗粒: ① 输送期间污染 ② 机器制造及装配过程中 ③ 维修过程中 ④ 操作过程中 ⑤ 从排气孔进入系统 ⑥ 在活塞柱密封之间 ⑦ 接口 ⑧ 零部件或喉管磨损 ⑨ 在重新注油时用了不洁净的容器 ㈡ 水分 ① 外来水分进入油箱 ② 冷却系统损坏产生漏水 ③ 因温差而产生冷凝水 ④ 经排气口进入的水汽 固体颗粒的危害: 液压油中含有固体颗粒,会因如下原因,产生更多颗粒。 ㈠ 爆碎效应:固体微粒在高压及高速运行中发生 爆碎效应而产生磨损,磨损微粒 再经爆碎效应制造更多固体微粒。 如右图所示: ㈡ 刮伤磨损:固体微粒在间隙之间可损坏油膜 及构成磨损及刮伤磨损,从而产 生更多固体微粒。 如右图所示:

固体颗粒危害的具体表现: ① 对元件、产品有损害。微粒因动力影响产生撞击使元件表面或边缘部份脱落 (若脱落金属不及时清除便产生循环性磨损,构成更严重损害)。 ② 固体微粒产生侵蚀及刮伤磨损,从而生成新的固体微粒并在系统中产生磨 损的链式反应,会产生以下的危害: ? 间隙更大使泄漏量增加 ? 降低操作能力 ? 油压不稳,动作不顺畅 ? 系统压力不足 ? 降低系统效率 ? 增加能源消耗 ? 阻塞狭窄油路而使阀门故障 ? 加速液压油老化因此降低液压油寿命 固体微粒可保持热量,使热量在液压油中不易释放,而过热是液压油 的最大威胁:加速液压油老化、加速密封圈硬化。

液压油污染控制分析论文

液压油污染控制分析论文 论文关键词:液压系统液压油污染污染控制 论文摘要:液压系统广泛地应用于各种工业设备,一个液压系统能否正常工作,除系统设计、元件制造和维护外,油的清洁度是十分重要的因素。油液的污染将会影响系统的正常工作和使元件过度的磨损,甚至会造成设备的故障。液压油对液压设备犹如血液对生命、清洁的液压油在机械内循环流动是保证设备正常运行和润滑的重要条件。有关资料表明,现场70%-80%液压系统的工作不稳定和出现故障都与液压油的污染有关。 液压油被污染指的是液压油中含有水分、空气、微小固体颗粒及胶状生成物等杂质。液压油受到污染常常是系统发生故障的主要原因。因此,控制液压油的污染是十分重要的。 液压油被污染指的是液压油中含有水分、空气、微小固体颗粒及胶状生成物等杂质。 1.液压油污染的原因 液压油液被污染的原因是很复杂的,但大体上有以下几个方面: 1.1残留物的污染:主要指液压元件以及管道、油箱在制造、储存、运输、安装、维修过程中,带入的砂粒、铁屑、磨料、焊渣、锈片、油垢、棉纱和灰尘等,虽然经过清洗,但未清洗干净而残留下来的残留物所造成的液压油液污染; 1.2侵人物的污染:主要指周围环境中的污染物,例如空气、尘埃、水滴等通过一切可能的侵入点,如外露的往复运动活塞杆、油箱的通气孔和注油孔等侵入系统所造成的液压油液污染;还如维修过程中不注意清洁,将环境周围的污染物带入,以粗代细,甚至不用过滤器,过滤器几年不清洗、滤网不经常清洗、换油或补油时不注意油的过滤、脏的油桶未经过严格的清洗就拿来用,从而把污染物带入。 1.3生成物的污染:主要指液压传动系统在工作过程中所产生的金属微粒、密封材料磨损颗粒、涂料剥离片、水分、气泡及油液变质后的胶状物等所造成的液压油液污染。这些颗粒污物类似于研磨金属加工面使用的研磨剂,液压系统中的污染颗粒随着液压油的流动而遍布整个系统。当通过泵、缸、阀各液压元件时,

氨氮的预处理方法

氨氮预处理方法 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的p H值。当p H值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 一.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至p H<2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。

预处理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮凝沉淀法 概述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪器 100ml具塞量筒或比色管。 试剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。(2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 步骤 1、预处理步骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节p H至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 2、测定步骤

液压油的污染危害控制和选择分析正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.液压油的污染危害控制和选择分析正式版

液压油的污染危害控制和选择分析正 式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 液压油的污染将会直接影响系统的正常工作,使元件过度的磨损,甚至会造成设备的故障。液压油对液压设备犹如血液对生命、清洁的液压油在系统内循环流动是保证设备正常运行和润滑的重要条件。 随着机械自动化程度的提高,液压传动技术已广泛地应用于现代设备中。液压传动技术和各种液压设备的使用,使得机械设备的可靠性及安全性大大提高。一个液压系统能否正常工作,除系统设计、元件制造和维护外,油的清洁度是十分重要的因素。液压油的污染将会直接影响系统

的正常工作,使元件过度的磨损,造成设备的故障。液压油对液压设备犹如血液对生命、清洁的液压油在系统内循环流动是保证设备正常运行和润滑的重要条件。有关资料表明,现场70%-80%液压系统的工作不稳定和出现故障都与液压油的污染有关。因此,研究学习液压油污染和防治污染的规律性,可以更科学、更有效地开展液压油污染的防治对避免与减少液压设备及系统故障有着重要的意义。 一、液压油的污染 液压油污染物来源的具有多样性的特点,可分为外部侵入和内部产生两大途径。 1、外部侵入物的污染:

控制液压油污染的相关措施

液压英才网顾问袁工认为为确保液压系统工作正常、可靠、减少故障和延长寿命,必须采取有效措施控制油的污染。 1、控制油温油温过高往往会给液压系统带来以下不利影响: (1)油液黏度下降,使活动部位的油膜破坏、磨擦阻力增大,引起系统发热、执行元件(例如液压缸)爬行。油液黏度下降可导致泄漏增加,系统工作效率显著降低。 (2)油液黏度下降后,经过节流器时其特性会发生变化,使活塞运动速度不稳定。 (3)油温过高引起机件热膨胀,使运动副之间的间隙发生变化,造成动作不灵或卡死,使其工作性能和精度下降。 (4)当油温超过55摄氏度时,油液氧化加剧,使用寿命缩短,据资料介绍,当油温超过55摄氏度后温度每升高9摄氏度,油的使用寿命缩短一半,因此,对不同用途和不同工作条件的机器。应有不同的允许工作油温。工程机械液压系统允许的正常工作油温为35-55摄氏度,最高为70摄氏度。 2、控制过滤精度为了控制油液的污染度,要根据系统和元件的不同要求,分别在吸油口、压力管路、伺服调速阀的进油口等处,按照要求的过滤精度设置滤油器,以控制油液中的颗粒污染物,使液压系统性能可靠、工作稳定。滤油器过滤精度一般按系统中对过滤精度敏感性最大的元件来选择。 3、强化现场维护管理强化现场维护管理是防止外界污染物侵入系统和滤除系统中污染物的有效措施。 (1)检查油液的清洁度设备管理部门在检查设备的清洁度时,应同时检查系统油液、油箱和滤油器的清洁度,并建立液压设备清洁度上、中、下三级评分制度。对关键设备的液压系统都要抽查。 (2)建立液压系统一级保养制度设备管理部门在制定设备一级保养内容时,要增加对液压装置方面的具体保养内容。 (3)定期对油液取样化验应定期、定量提取油样,检查单位体积油样中杂质颗粒的大小和数量或称重量,并作定性定量分析,以便确定油液是否需要更换。A、取油样时间:对已规定了换油周期的液压设备,可在换油前一周对正在使用的油液进行取样化验;对新换的油液,经过1000h连续工作后,应对其取样化验;企业中的大型精密液压设备使用的油液,在使用600h后,应取样化验。B、取油样时,首先要把装油容器清洗干净,不许使用脏的容器,以确保数据准确,具体取油样的方法如下:当液压系统不工作时(即在静止状态下),可分别在油箱的上部、中部和下部各取相同数量的油样,搅拌后进行化验;液压系统正在工作时,可在系统的总回油管口取油样;化验所需要的油样数量,一般为300-500mL/次;按油料化验规程进行化验,将化验结果填入油料化验单,并存入设备档案。 4、定期清洗控制油液污染的另一个有效方法是,定期清除滤网、滤芯、油箱、油管及元件内部的污垢。在拆装元件、油管时也要注意清洁,对所有油口都要加堵头或塑料布密封,防止脏物侵入系统。 5、定期过滤油液、控制其使用期限油液的使用寿命或更换周期取决于很多因素,其中包括设备的环境条件与维修保养、液压系统油液的过滤精度和允许污染等级等因素。由于油液使用时间过长,油、水、灰尘、金属磨损物等会使油液变成含有多种污染物的混合液,若不及时更换,将会影响系统正常工作,并导致事故。过滤是控制油液污染的重要手段,是一种强迫滤去油中杂质颗粒的方法。油液经过多次强迫过滤,能使杂质颗粒控制在要求的等级范围内,所以对各类液压设备需制定出强迫过滤油液的精度,以确保油液的清洁度。是否换油取决于油液被污染的程度,目前有3种确定换油期的方法:

氨氮废水常用处理方法

氨氮废水常用处理方法 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。 采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。 用沸石离子交换法处理经厌氧消化过的猪肥废水时发现Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo 中Na-Zeo沸石效果最好,其次是Ca-Zeo。增加离子交换床的高度可以提高氨氮去除率,综合考虑经济原因和水力条件,床高18 cm(H/D=4),相对流量小于7.8BV/h是比较适合的尺寸。离子交换法受悬浮物浓度的影响较大。 应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。蒋展鹏等[6]采用电渗析法和聚丙烯(PP)中空纤维膜法处理高浓度氨氮无机废水可

相关主题
文本预览
相关文档 最新文档