当前位置:文档之家› SiC衬底AlGaN_GaN HEMT的热分析与测试

SiC衬底AlGaN_GaN HEMT的热分析与测试

SiC衬底AlGaN_GaN HEMT的热分析与测试
SiC衬底AlGaN_GaN HEMT的热分析与测试

差热分析__实验报告

差热分析 一、实验目的 1. 用差热仪绘制CuSO4·5H2O等样品的差热图。 2. 了解差热分析仪的工作原理及使用方法。 3. 了解热电偶的测温原理和如何利用热电偶绘制差热图。 二、实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析就是通过温差测量来确定物质的物理化学性质的一种热分析方法。 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图5-1)。A 两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 图5-1 差热分析原理图 图5-1 典型的差热图从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图5-2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小。相同条件下,峰面积大的表示热效应也大。在相同的测

定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 本实验采用CuSO 4·5H 2O ,CuSO 4·5H 2O 是一种蓝色斜方晶系,在不同温度下,可以逐步失水: CuSO 4·5H 2O CuSO 4·3H 2O CuSO 4·H 2O CuSO 4 (s ) 从反应式看,失去最后一个水分子显得特别困难,说明各水分子之间的结合能力不一样。 四个水分子与铜离子的以配位键结合,第五个水分子以氢键与两个配位水分子和SO 4 2-离子结合。 加热失水时,先失去Cu 2+ 左边的两个非氢键原子,再失去Cu 2+ 右边的两个水分子,最后失去以氢键连接在SO 4 2- 上的水分子。 三、仪器试剂 差热分析仪1套;分析物CuSO 4·5H 2O ;参比物α-Al 2O 3。 四、实验步骤 1、 开启仪器电源开关,将各控制箱开关打开,仪器预热。开启计算机开关。 2、参比物(α-Al 2O 3)可多次重复利用,取干净的坩埚,装入CuSO 4·5H 2O 样品、装满,再次加入CuSO 4·5H 2O 将坩埚填满,备用。 3、抬升炉盖,将上步装好的CuSO 4·5H 2O 样品放入炉中,盖好炉盖。 4、打开计算机软件进行参数设定,横坐标2400S 、纵坐标300℃、升温速率

电子产品热设计、热分析及热测试

电子产品热设计、热分析及热测试培训 各有关单位: 随着微电子技术及组装技术的发展,现代电子设备正日益成为由高密度组装、微组装所形成的高度集成系统。电子设备日益提高的热流密度,使设计人员在产品的结构设计阶段必将面临热控制带来的严酷挑战。热设计处理不当是导致现代电子产品失效的重要原因,电子元器件的寿命与其工作温度具有直接的关系,也正是器件与PCB中热循环与温度梯度产生热应力与热变形最终导致疲劳失效。而传统的经验设计加样机热测试的方法已经不适应现代电子设备的快速研制、优化设计的新需要。因此,学习和了解目前最新的电子设备热设计及热分析方法,对于提高电子设备的热可靠性具有重要的实用价值。所以,我协会决定分期组织召开“电子产品热设计、热分析及热测试讲座”。现具体事宜通知如下 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 一、课程提纲:课程大纲以根据学员要求,上课时会有所调整,具体以报到时的讲义为准。 一、热设计定义、热设计内容、传热方法 1 热设计定义 2 热设计内容 3 传热方法简介 二、各种元器件典型的冷却方法 1 哪些元器件需要热设计

2 冷却方法的选择 3.常用的冷却方法及冷却极限各种元器件典型的冷却方法 4. 冷却方法代号 5 各种冷却方法的比较 三、自然冷却散热器设计方法 1 自然冷却散热器设计条件 2 热路图 3 散热器设计计算 4 多个功率器件共用一个散热器的设计计算 5 正确选用散热器 6 自然冷却散热器结温的计算 7 散热器种类及特点 8 设计与选用散热器禁忌 四、强迫风冷设计方法 1 强迫风冷设计基本原则 2 介绍几种冷却方法 3. 强迫风冷用风机 4. 风机的选择与安装原则 5 冷却剂流通路径的设计 6 气流倒流问题及风道的考虑 7 强迫风冷设计举例(6个示例) 五、液体冷却设计方法

热分析实验报告

热分析实验报告 一、实验目的 1、了解STA449C综合热分析仪的原理及仪器装置; 2、学习使用TG-DSC综合热分析方法。

二、实验内容 1、对照仪器了解各步具体的操作及其目的。 2、测定纯Al-TiO2升温过程中的DSC、TG曲线,分析其热效应及其反应机理。 3、运用分析工具标定热分析曲线上的反应起始温度、热焓值等数据。 三、实验设备和材料 STA449C综合热分析仪 四、实验原理 热分析(Thermal Analysis TA)技术是指在程序控温和一定气氛下,测量试样的物理性质随温度或时间变化的一种技术。根据被测量物质的物理性质不同,常见的热分析方法有热重分析(Thermogravimetry TG)、差热分析(Difference Thermal Analysis,DTA)、差示扫描量热分析(Difference Scanning Claorimetry,DSC)等。其内涵有三个方面:①试样要承受程序温控的作用,即以一定的速率等速升(降)温,该试样物质包括原始试样和在测量过程中因化学变化产生的中间产物和最终产物;②选择一种可观测的物理量,如热学的,或光学、力学、电学及磁学等;③观测的物理量随温度而变化。

热分析技术主要用于测量和分析试样物质在温度变化过程中的一些物理变化(如晶型转变、相态转变及吸附等)、化学变化(分解、氧化、还原、脱水反应等)及其力学特性的变化,通过这些变化的研究,可以认识试样物质的内部结构,获得相关的热力学和动力学数据,为材料的进一步研究提供理论依据。 综合热分析,就是在相同的热条件下利用由多个单一的热分析仪组合在一起形成综合热分析仪,见图1,对同一试样同时进行多种热分析的方法。 图1 综合热分析仪器(STA449C) (1)、热重分析( TG)原理 热重法(TG)就是在程序控温下,测量物质的质量随温度变化的关系。采用仪器为日本人本多光太郎于1915年制作了零位型热天平(见图2)。其工作原理如下:在加热过程中如果试样无质量变化,热天平将保持初始的平衡状态,一旦样品中有质量变化时,

现代热物理测试技术一些知识点总结

第13章:红外气体分析 分子光谱: 分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱). E E E E ?=?+?+?电子振动转动 . 气体特征吸收带: 气体:1~25μ m 近、中红外 . 红外吸收的前提: 存在偶极距(对称分子无法分析)、频率满足要求 . 非分光红外(色散型)原理、特点 : 原理:课本P195 特点: 优点:灵敏度高、选择性好、不改变组分、连续稳定、维护简单寿命长. 缺点:无法检测对称分子气体(如O 2,H 2,N 2.)、测量组分受探头限制. 烟气预处理的作用 :滤除固液杂质(3224SO H O H SO +=)、冷凝保护(1.酸露点温度达 155℃ 2.冷凝器 )、 去除水气影响(1.红外吸收干扰 2.气体溶解干扰 ). 分光红外原理: ? (三棱镜分光原理) 傅立叶分光原理(属于分光红外常用一种)、特点 : 原理:光束进入干涉仪后被一分为二:一束透射到动镜(T),另一束反射到定镜(R)。透射到动镜的红外光被反射到分束器后分成两部分, 一部分透射返回光源(TT), 另一部分经反射到达样品(TR);反射到定镜的光再经过定镜的反射作用到达分束器,一部分经过分束器的反射作用返回光源(RR), 另一部分透过分束器到达样品(RT)。也就是说,在干涉仪的输出部分有两束光,这两束相干光被加和, 移动动镜可改变两光束的光程差,从而产生干涉,得到干涉图,做出此干涉图函数的傅立叶余弦变化即得光谱, 这就是人们所熟悉的傅立叶变换. 特点:优点:测试时间短、同时测多组分、可测未知组分;而且,分辨能力高、具有极低的杂散辐射、适于微少试样的研究、研究很宽的光谱范围、辐射通量大、扫描时间极快. 第12章:色谱法 色谱法的发明和命名、色谱法原理 : P173-174 色谱系统的组成:分析对象、固定相、流动相 气相色谱与液相色谱的区别 :气相色谱法系采用气体为流动相(载气)流经装有填充剂的色谱柱进行分离测定的色谱方法。物质或其衍生物气化后,被载气带入色谱柱进行分离,各组分先后进入检测器,用记录仪、积分仪或数据处理系统记录色谱信号。高效液相色谱法是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后,依次进入检测器,色谱信号由记录仪或积分仪记录。 气相色谱和液相色谱优缺点:1、气相色谱采用气体作为流动相,由于物质在气相中的流速比在液相中快得多,气体又比液体的渗透性强,因而相比液相色谱,气相色谱柱阻力小,可以采用长柱,例如毛细管柱,所以分离效率高。2、由于气相色谱毋需使用有机溶剂和价格昂贵的高压泵,因此气相色谱仪的价格和运行费用较低,且不易出故障。3、能和气相色谱分离相匹配的检测器种类很多,因而可用于各种物质的分离与检测。特别是当使用质谱仪作为检测器时,气相色谱很容易把分离分析与定性鉴定结合起来,成为未知物质剖析的有力工具。4、气相色谱不能分析在柱工作温度下不汽化的组分,例如,各种离子状态的化合物和许多高分子化合物。气相色谱也不能分析在高温下不稳定的化合物,例如蛋白质等。5、液相色谱则不能分析在色谱条件下为气体的物质,但却能分离不挥发、在某溶剂中具有一定溶解度的化合物,例如高分子化合物、各种离子型化合物以及受热不稳定的化合物(蛋白质、核酸及其它生化物质)。 色谱系统组成及各部分作用: 载气、进样、温控、分离、检测 (P176) 温控的作用:P178

DSC TG综合热分析实验(可打印修改)

华南师范大学实验报告 专业:材料化学年级:2008级 课程名字:近代材料分析测试技术实验项目:综合热分析实验 实验类型:验证实验时间:2011年5月6日指导老师:石光老师实验评分: 实验六:综合热分析实验 一、实验目的 1.了解综合热分析仪的原理及仪器装置、操作方法。 2.通过实验掌握热重分析的实验技术。 3.使用综合分析仪分析高聚物的热效应和热稳定性。 二、实验原理 在程序温度(等速升降温、恒温和循环)控制下,测量物质的质量和热量随温度变化的分析仪器。刚开始加热时,试样和参比物以相同温度升温,试样没有热效应,DSC曲线上为平直的基线。当温度上升到试样产玻璃化转时,大分子的链段开始运动。试样的热容发生明显的变化,由于热容增大需要吸收更多的热量,于是DSC曲线上方出现一个转折,该转折对应的温度,即玻璃化转变温度(Tg)。若试样是能结晶的并处于过冷的无定形状态,则在玻璃温度以上的适当温度进行结晶,同时放出大量的热量,此时DSC曲线上表现为放热峰。再进一步加热,晶体开始熔融而需要吸收热量,其DSC 曲线在相反方向出现吸热峰。当熔融完成后,加于试样的热能再使试样温度升高,直到等于参比物的温度,回复到基线位置,将熔融峰顶点对应的温度记作熔点(T m);继续加热试样可能发生其他变化,如氧化、分解(氧化是放热反应,分解是吸热反应)。因此,根据DSC曲线可以确定高聚物的转变和特征温度。 三.仪器和试剂 交联壳聚糖微球、吸附了重金属的交联壳聚糖微球,聚丙烯,高密度聚乙烯,a-Al2O3、STA409PC综合热分析仪。 四、实验步骤 (一)操作条件

1、实验室门应轻开轻关,尽量避免或减少人员走动。 2、计算机在仪器测试时,不能上网或运行系统资源占用较大的程序。 3、充入保护气体。 4、吹扫气体。 5、恒温水浴保证测量天平工作在一个恒定的温度下。 (二)试样准备 1、检查并保证测试试样及其分解物。 2、坩埚(包括参比坩埚)预先进行热处理到等于或高于其最高测量温度。 3、保证与测量坩埚底部接触良好,样品应适量,确保测量精度。 4、对于热反应剧烈或在反应过程中易产生气泡的样品,应适当减少样品量。 5、炉子内部温度必须保持恒定(室温),天平稳定后的读数才有效。 6、测试必须保证样品温度(达到室温)及天平均稳定后才能开始。 7、先将试样制成细粉状并通过80~100目的筛孔,称取聚丙烯和低压聚乙烯的混合物 (重量比3:1混合)10mg装入试样坩埚、隋性参比物a-Al2O3填充于另一坩埚中,样品量一般不超过坩埚容积的2/3,把装样的坩埚在清洁的石台上轻墩数次,使样品松紧适中。 (三)开机 (1)开机过程无先后顺序。恒温水浴及其他仪器应至少提前1h打开。 (2)开机后,首先调整保护气体及吹扫气体输出压力及流速并待其稳定。 (四)样品测试程序 以使用TG-DSC样品支架进行测试为例,升温速度除特殊要求外,一般为 10~30K/min。 (五)测试结果分析 1)仪器测试结束后打开Tools菜单,从下拉菜单中选择Run analysis program 选项,进入软件界面。 2)在分析软件界面中点击工具栏中的Segments按钮,打开Segments对话框, 去掉Segments对话框中的“1”、“2”复选项,点击OK按钮关闭对话框。 3)点击工具栏上的“X-time/X-temperature”转换开关,使横坐标由时间转换 成温度。 4)点击待分析曲线使之选中,然后点击工具栏上的“1st Derivative”一次微 分按钮,屏幕上出现一条待分析曲线的一次微分曲线。 5)完成全部分析内容后,即可打印输出,测试分析操作结束。 五、影响综合热分析的因素 1、升温速率

热分析实验

材料的综合热分析实验 一、实验目的 1、掌握两种常用的热分析方法─差热分析法和热重法的基本原理和分析方法, 2、差热分析和热重分析仪器的基本结构和基本操作。 二、差热分析和热重法的基本原理 1、差热分析法(Differential Thermal Analysis,DTA) 差热分析是在程序控温下测量样品和参比物的温度差与温度(或时间)相互关系的一种技术。物质在加热或冷却过程中会发生物理或化学变化,同时产生放热或吸热的热效应,从而导致样品温度发生变化。因此差热分析是一种通过热焓变化测量来了解物质相关性质的技术。 样品和热惰性的参比物分别放在加热炉中的两个坩埚中,以某一恒定的速率加热时,样品和参比物的温度线性升高;如样品没有产生焓变,则样品与参比物的温度是一致的(假设没有温度滞后),即样品与参比物的温差?T=0;如样品发生吸热变化,样品将从外部环境吸收热量,该过程不可能瞬间完成,样品温度偏离线性升温线,向低温方向移动,样品与参比物的温差?T<0;反之,如样品发生放热变化,由于热量不可能从样品瞬间逸出,样品温度偏离线性升温线,向高温方向变化,温差?T>0。上述温差?T(称为DTA信号)经检测和放大以峰形曲线记录下来。经过一个传热过程,样品才会回复到与参比物相同的温度。 在差热分析时,样品和参比物的温度分别是通过热电偶测量的,将两支相同的热电偶同极串联构成差热电偶测定温度差。当样品和参比物温差?T=0,两支热电偶热电势大小相同,方向相反,差热电偶记录的信号为水平线;当温差?T≠0,差热电偶的电势信号经放大和A/D转换,被记录为峰形曲线,通常峰向上为放热,峰向下为吸热。 差热曲线直接提供的信息主要有峰的位置、峰的形状和个数、峰的面积,通过它们可以对物质进行定性和定量分析,并研究变化过程的动力学。峰的位置是由导致热效应变化的温度和热效应种类(吸热或放热)决定的,前者体现在峰的起始温度上,后者体现在峰的方向上。不同物质的热性质是不同的,相应的差热曲线上的峰位置、峰个数和形状也不一样,这是差热分析进行定性分析的依据。分析DTA曲线时通常需要知道样品发生热效应的起始温度,根据国际热分析协会(ICTA)的规定,该起始温度应为峰前缘斜率最大处的切线与外推基线的交线所对应的温度T(如图2),该温度与其它方法测得的热效应起始温度较一致。DTA峰的峰温Tp虽然比较容易测定,但它既不反映变化速率到达最大值时的温度,也与放热或吸热结束时的温度无关,其物理意义并不明确。此外,峰的面积与焓变有关。

热重分析实验报告

热重分析实验报告 南昌大学实验报告 学生姓名: _______ 学号: _______专业班级:__________ 实验类型:?演示?验证 ?综合?设计?创新实验日期:2013-04-09 实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度

变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示: 三、实验仪器及试剂 HCT-2 型 TG-DTA 综合热分析仪、镊子、五水硫酸铜晶体等 四、实验步骤 1、打开炉子,将左右两个陶瓷杆放入瓷坩埚容器,关好炉子在操作界面上调零。 2、将坩埚放在天平上称量,记下数值P1,然后将测试样放入已称坩埚中称量,记下试样的初始质量。 3、将称好的样品坩埚放入加热炉中吊盘内。 4、调整炉温,选择好升温速率。 5、开启冷却水,通入惰性气体。 6、启动电炉电源,使电源按给定的速率升温。 7、观察测温表,每隔一定时间开启天平一次,读取并记录质量数值。 8、测试完毕,切断电源,待温度降低至100摄氏度时切断冷却水。 五、实验结果及数据处理

综合热分析实验

一、实验目的: 1.了解综合热分析仪的原理及仪器装置、操作方法。 2.通过实验掌握热重分析的实验技术。 3.使用综合分析仪分析高聚物的热效应和热稳定性。 二、实验原理 由于试样材料在加热或冷却过程中,会发生一些物理化学反应,同时产生热效应和质量方面的变化,这是热分析技术的基础。 热重分析方法分为静态和动态。热重分析仪有热天平式和弹簧式两种基本类型。本实验采用的是热天平动态热重分析。 当样品在热处理过程中,随温度变化有水分的排除或热分解等反应时放出气体,则在热天平上产生失重;当试样在热处理过程中,随温度变化有二价铁氧化成三价铁等氧化反应时,则在热天平上表现出增重。 示差扫描量热法(DSC)分为功率补偿式和热流式两种方式。前者的技术思想是,通过功率补偿使试样和参比物的温度处于动态的零位平衡状态;后者的技术思想是,要求试样和参比物的温度差与传输到试样和参比物间的热流差成正比关系。本实验采用的是热流式示差扫描量热法。 首先在确定的程序温度下,对样品坩埚和参比坩埚进行DSC空运行分析,得到两个空坩埚的DSC的分析结果---形成Baseline分析文件;然后在样品坩埚中加入适量的样品,再在Baseline文件的基础上进行样品测试,得到样品+坩埚的测试文件;最后由测试文件中扣除Baseline文件,即得到纯粹样品的DSC分析结果。 刚开始加热时,试样和参比物以相同温度升温,试样没有热效应,DSC曲线上为平直的基线。当温度上升到试样产玻璃化转时,大分子的链段开始运动。试样的热容发生明显的变化,由于热容增大需要吸收更多的热量,于是DSC曲线上方出现一个转折,该转折对应的温度,即玻璃化转变温度(Tg)。若试样是能结晶的并处于过冷的无定形状态,则在玻璃温度以上的适当温度进行结晶,同时放出大量的热量,此时DSC曲线上表现为放热峰。再进一步加热,晶体开始熔融而需要吸收热量,其DSC曲线在相反方向出现吸热峰。当熔融完成后,加于试样的热能再使试样温度升高,直到等于参比物的温度,回复到基线位置,将熔融峰顶点对应的温度记作熔点(T m );继续加热试样可能发生其他变化,如氧化、分解(氧化是放热反应,分解是吸热反应)。因此,根据DSC曲线可以确定高聚物的转变和特征温度。 三.仪器和试剂 仪器:a-Al 2O 3 、STA409PC综合热分析仪 试剂:高密度聚乙烯 四、实验步骤 ⒈对坩埚预先进行热处理到等于或高于需测量的最高温度

实验一综合热分析实验

实验一综合热分析实验 一、目的要求 1.了解综合热分析仪的基本构造、原理及方法。 2.了解实验条件的选择。 3.掌握热分析样品的制样方法。 4.掌握对样品的热分析图谱进行相关分析和计算。 二、综合热分析仪的结构、原理及性能 综合热分析仪是在程序控制温度下同步测定物质的重量变化、温度变化和热效应的装置。一般地,综合热分析仪主要由程序控制系统、测量系统、显示系统、气氛控制系统、操作控制和数据处理系统等部分组成。 1.TG的结构、原理及性能 热重法(TG)是在程序控制温度下,测量物质的质量与温度关系的一种热分析技术。热重法记录的是热重曲线(TG曲线),它以质量作为纵坐标,以温度或时间为横坐标,即m—T曲线。 热重法通常有下列两种类型:等温热重法:在恒温下测定物质质量变化与时间的关系;非等温热重法:在程序升温下测定物质质量变化与温度的关系。 热重法所用仪器称为热重分析仪或热天平,其基本构造是由精密天平和程序控温的加热炉组成,热天平是根据天平梁的倾斜与重量变化的关系进行测定的,通常测定重量变化的方法有变位法和零位法两种。①变位法是利用物质的质量变化与天平梁的倾斜成正比的关系,用差动变压器直接控制检测。②零位法是靠电磁作用力使因质量变化而倾斜的的天平梁恢复到原来的平衡位置,施加的电磁力与质量变化成正比,而电磁力的大小与方向是通过调节转换结构中线圈中的电流实现的,因此检测此电流即可知质量变化。天平梁倾斜由光电元件检出,经电子放大后反馈到安装在天平衡量上的感应线圈,使天平梁又回到原点。 SDTQ600综合热分析仪采用水平双杆双天平的结构设计。一臂作为水平天平零位平衡测量,另一臂作为高灵敏度DTA的热电偶。同时,一臂用来装填试样,

热重分析实验报告

南昌大学实验报告 学生姓名:_______ 学号:_______专业班级:__________ 实验类型:□演示□验证□综合□设计□创新实验日期:2013-04-09实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示:

实验十九差热分析

实验十九 差热分析 一、目的意义 差热分析(DTA ,differentialthermal analysis)是研究相平衡与相变的动态方法中的 一种,利用差热曲线的数据,工艺上可以确定材料的烧成制度及玻璃的转变与受控结晶等工 艺参数,还可以对矿物进行定性、定量分析。 本实验的目的: 1.了解差热分析的基本原理及仪器装置; 2.学习使用差热分析方祛鉴定未知矿物。 二、基本原理 差热分析的基本原理是:在程序控制温度下;将试样与参比物质在相同条件下加热或 冷却,测量试样与参比物之间的温差与温度的关系,从而给出材料结构变化的相关信息。 物质在加热过程中,由于脱水,分解或相变等物理化学变化,经常会产生吸热或放热 效应。差热分析就是通过精确测定物质加热(或冷却)过程中伴随物理化学变化的同时产生 热效应的大小以及产生热效应时所对应的温度,来达到对物质进行定性和/或定量分析的目 的。 差热分析是把试样与参比物质(参比物质在整个实验温度范围内不应该有任何热效应, 其导热系数,比热等物理参数尽可能与试样相同,亦称惰性物质或标准物质或中性物质) 置于差热电偶的热端所对应的两个样品座内,在同一温度场中加热。当试样加热过程中产生 吸热或放热效应时,试样的温度就会低于或高于参比物质的温度,差热电偶的冷端就会输出 相应的差热电势。如果试样加热过程这中无热效应产生,则差热电势为零。通过检流计偏转 与否来检测差热电势的正负,就可推知是吸热或放热效应。在与参比物质对应的热电偶的冷 端连接上温度指示装置,就可检测出物质发生物理化学变化时所对应的温度. 不同的物质,产生热效应的温度范围不同,差热曲线的形状亦不相同(如图16-2所示)。 把试样的差热曲线与相同实验条件下的已知物质的差热曲线作比较,就可以定性地确定试洋 的矿物组成。差热曲线的峰(谷)面积的大小与热效应的大小相对应,根据热效应的大小, 可对试样作定量估计。 三.仪器设备与装置 差热分析所用的设备主要由加热炉, 差热电偶,样品座及差热信号和温度的显 示仪表等所组成。 加热炉依据测量的温度范围不同有低 温型(800-1000C 0以下),中温型1200C 0以下),高温型(1400-1600C 0以下). 差热电偶是把材质相同的两个热电偶 的相同极连接在一起,另外两个极作为差 热电偶的输出极输出差热电势。差热分析 装置示意图如16-1所示。 差热分析仪是将差热分析装置中的 样品室,温度显示,差热信号采集及记录 全部自动化的一种分析仪器。依据组合方 式不同,有DTA-TG 型DAT-DSC(differen- 图17-1 差热分析装置示意图 tial scan ningcalorimetry)型,有的综 图16-1 V-电压表A-电流表 R1,R2-检流计

热分析实验指导

实验六 热分析实验 一、目的与要求 1.了解热重分析的仪器装置及实验技术。 2.了解差热分析的仪器装置及实验技术。 3熟悉综合热分析的特点,掌握综合热曲线的分析方法。 4.测绘矿物的热重曲线和差热分析曲线,解释曲线变化的原因。 二、原理 1 热重分析的仪器结构与分析方法 热重分析法是在程序控制温度下,测量物质的质量随温度变化的一种实验技术。 热重分析通常有静态法和动态法两种类型。 静态法又称等温热重法,是在恒温下测定物质质量变化与温度的关系,通常把试样在各给定温度加热至恒重。该法比较准确,常用来研究固相物质热分解的反应速度和测定反应速度常数。 动态法又称非等温热重法,是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。该法简便,易于与其他热分析法组合在一起,实际中采用较多。 热重分析仪的基本结构由精密天平、加热炉及温控单元组成。如图1所示:加热炉由温控加热单元按给定速度升温,并由温度读数表记录温度,炉中试样质量变化可由天平记录。 由热重分析记录的质量变化对温度的关系曲线称热重曲线(TG 曲线)。曲线的纵坐标为质量,横坐标为温度。例如固体热分解反应A (固)→B (固)+C (气)的典型热重曲线如图2所示。 图2 固体热分解反应的热重曲线 图中T i 为起始温度,即累计质量变化达到热天平可以检测时的温度。T f 为终止温度,即累计质量变化达到最大值时的温度。 图1 热重分析仪原理

热重曲线上质量基本不变的部分称为基线或平台,如图2中ab 、cd 部分。 若试样初始质量为W 0,失重后试样质量为W 1,则失重百分数为(W 0-W 1)/W 0×100%。 许多物质在加热过程中会在某温度发生分解、脱水、氧化、还原和升华等物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随着物质的结构及组成而异,因而可以利用物质的热重曲线来研究物质的热变化过程,如试样的组成、热稳定性、热分解温度、热分解产物和热分解动力学等。例如含有一个结晶水的草酸钙(CaC 2O 4·H 2O )的热重曲线如图3,CaC 2O 4·H 2O 在100℃以前没有失重现象,其热重曲线呈水平状,为TG 曲线的第一个平台。在100℃和200℃之间失重并开始出现第二个平台。这一步的失重量占试样总质量的12.3%,正好相当于每molCaC 2O 4·H 2O 失掉1molH 2O ,因此这一步的热分解应按 O H O CaC O H ·O CaC 242℃ 200℃100242 ~ +????→? 进行。在400℃和500℃之间失重并开始呈现第三个平台,其失重量占试样总质量的18.5%,相当于每molCaC 2O 4分解出1molCO ,因此这一步的热分解应按 CO CaCO O CaC 3℃500 ℃40042~ +????→? 进行。在600℃和800℃之间失重并出现第四个平台,其失重量占试样总质量的30%,正好相当于每molCaC 2O 4分解出1molCO 2,因此这一步的热分解应按 2℃800 ℃60042CO CaO O CaC ~ +????→? 进行。 可见借助热重曲线可推断反应机理及产物。 图3 CaC 2O 4·H 2O 的热重曲线 2、综合热分析 DTA 、DSC 、TG 等各种单功能的热分析仪若相互组装在一起,就可以变成多功能的综合热分析仪,如DTA -TG 、DSC -TG 、DTA -TMA (热机械分析)、DTA -TG -DTG (微商热重分析)组合在一起。综合热分析仪的优点是在完全相同的实验条件下,即在同一次实验中可以获得多种信息,比如进行DTA -TG -DTG 综合热分析可以一次同时获得差热曲线、热重曲线和微商热重曲线。根据在相同的实验条件下得到的关于试样热变化的多种信息,就可以比较顺利地得出符合实际的判断。 综合热分析的实验方法与DTA 、DSC 、TG 的实验方法基本类同,在样品测试前选择好测量方式和相应量程,调整好记录零点,就可在给定的升温速度下测定样品,得出综合热曲线。 综合热曲线实际上是各单功能热曲线测绘在同一张记录纸上,因此,各单功能标准热曲线可以作为综合热曲线中各个曲线的标准。利用综合热曲线进行矿物鉴定或解释峰谷产生的

热分析法讲解学习

热分析法 摘要: 热分析技术能快速准确地测定物质的晶型转变、熔融、升华、吸附、脱水、分解等变化,对无机、有机及高分子材料的物理及化学性能方面,是重要的测试手段。热分析技术在物理、化学、化工、冶金、地质、建材、燃料、轻纺、食品、生物等领域得到广泛应用。 关键词:热分析法测定高分子材料应用 一、热分析的起源及发展 ?大约公元前五万年前,人类学会使用火; ?公元前2500年,古埃及人留下了带有火与天平的壁画; ?公元前332-330年,古埃及人提炼金时,学会了热重分析方法; ?14世纪时,欧洲人将热重法原理应用于黄金的冶炼; ?1780年,英国人Higgins研究石灰黏结剂和生石灰第一次用天平测量了试样受 热时重量变化; ?1786年,Wedgwood测得粘土加热到暗红时(500-600℃)的失重曲线; ?1899年英国Roberts-Austen第一次使用了差示热电偶和参比物,大大提高了测 定的灵敏度。正式发明了差热分析(DTA)技术; ?1905年,德国人Tammann于在《应用与无机化学学报》发表的论文中首次提出 “热分析”术语,后来法国人也研究了热天平技术; ?1915年日本东北大学本多光太郎,在分析天平的基础上研制了“热天平”即热 重法(TG); ?1964年美国瓦特逊(Watson)和奥尼尔(O’Neill)在DTA技术的基础上发 明了差示扫描量热法(DSC),美国P-E公司最先生产了差示扫描量热仪,为 热分析热量的定量作出了贡献; ?1965年英国麦肯才(Mackinzie)和瑞德弗(Redfern)等人发起,在苏格兰亚伯 丁召开了第一次国际热分析大会,并成立了国际热分析协会。 二、热分析法原理

热分析实验

热分析实验(演示试验) 一、实验目的和意义 1、了解差热分析的仪器装置及使用方法。 2、掌握差热分析的基本原理和具体步骤。 二、实验原理 (一)差热分析的基本原理 差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT 试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,化合或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 在进行差热分析时,将试样和参比物分别放入坩埚,置于炉中以一定速率进行程序升温,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。则它们的升温曲线ΔT大体上是一致的,形成DTA曲线的基线。随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。 三、实验方法和步骤 (一)试样制备 1、试样过筛满足DTA分析细度要求。 2、将试样放置到DTA测试仪器的样品台。 (二)差热分析仪试验 1、首先请开启外部冷却水,开启DTA电源和配套电脑,设备预热20~30分钟。 2、开启DTA的测试软件,在相应的栏目中设定扫描温度范围、扫描速度、测试样品等各项参数。 3、启动DTA开始测试,得到DTA测试图谱。 (三)注意事项 1、做实验时,放完样品后,炉子一定要向下放好,如没有放下炉子,在实验时会把加热炉烧坏。 2、做实验前先打开电源。 3、通冷却水,保证水畅通。 4、参比物放在支撑杆左侧,测试物放在右侧。 5、每次升温,炉子应冷却到室温左右。 6、开始做实验时,放下炉子后应稳定5分钟左右开始进行数据采集(保证炉膛温度均匀)。 7、升温过程中如果出现异常情况,应先关闭仪器电源。 8、实验结束后应继续通冷却水30分钟左右。 四、主要实验装置和仪器 差热分析仪、电子天平等 五、实验数据记录与处理 (一)DTA试样制备要求

实验七 热重分析及综合热分析

实验七热重分析及综合热分析 一、实验目的与任务 1. 了解热重分析的仪器装置及实验技术。 2. 熟悉综合热分析的特点,掌握综合热曲线的分析方法。 3. 测绘矿物的热重曲线和综合热曲线,解释曲线变化的原因。 二、热重分析的仪器结构与分析方法 热重分析法是在程序控制温度下,测量物质的质量随温度变化的一种实验技术。 热重分析通常有静态法和动态法两种类型。 静态法又称等温热重法,是在恒温下测定物质质量变化与温度的关系,通常把试样在各给定温度加热至恒重。该法比较准确,常用来研究固相物质热分解的反应速度和测定反应速度常数。 动态法又称非等温热重法,是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。该法简便,易于与其他热分析法组合在一起,实际中采用较多。 热重分析仪的基本结构由精密天平、加热炉及温控单元组成。图16示出了上海天平仪器厂生产的PRT-1型普通热天平结构原理图;加热炉由温控加热单元按给定速度升温,并由温度读数表记录温度,炉中试样质量变化可由人工开启天平并记录。自动化程度高的热天平由磁心和差动变压器组成的位移传感器检测和输出试样质量变化引起天平失衡的信号,经放大后由记录仪记录。 图16 PRT-1型热天平结构原理图 由热重分析记录的质量变化对温度的关系曲线称热重曲线(TG曲线)。曲线的纵坐标为质量,横坐标为温度。例如固体热分解反应A(固)→B(固)+C(气)的典型热重曲线如图17所示。

图17 固体热分解反应的热重曲线 图中T i 为起始温度,即累计质量变化达到热天平可以检测时的温度。T f 为终止温度,即累计质量变化达到最大值时的温度。 热重曲线上质量基本不变的部分称为基线或平台,如图17中ab 、cd 部分。 若试样初始质量为W 0,失重后试样质量为W 1,则失重百分数为(W 0-W 1)/W 0×100%。 许多物质在加热过程中会在某温度发生分解、脱水、氧化、还原和升华等物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随着物质的结构及组成而异,因而可以利用物质的热重曲线来研究物质的热变化过程,如试样的组成、热稳定性、热分解温度、热分解产物和热分解动力学等。例如含有一个结晶水的草酸钙(CaC 2O 4·H 2O )的热重曲线如图18,CaC 2O 4·H 2O 在100℃以前没有失重现象,其热重曲线呈水平状,为TG 曲线的第一个平台。在100℃和200℃之间失重并开始出现第二个平台。这一步的失重量占试样总质量的12.3%,正好相当于每molCaC 2O 4·H 2O 失掉1molH 2O ,因此这一步的热分解应按 O H O CaC O H ·O CaC 242℃ 200℃100242 ~ +????→? 进行。在400℃和500℃之间失重并开始呈现第三个平台,其失重量占试样总质量的18.5%,相当于每molCaC 2O 4分解出1molCO ,因此这一步的热分解应按 CO CaCO O CaC 3℃500 ℃40042~ +????→? 进行。在600℃和800℃之间失重并出现第四个平台,其失重量占试样总质量的30%,正好相当于每molCaC 2O 4分解出1molCO 2,因此这一步的热分解应按 2℃800 ℃60042CO CaO O CaC ~ +????→? 进行。 可见借助热重曲线可推断反应机理及产物。

热分析实验方案

一、实验目的 1.了解热分析法的种类、仪器装置及使用方法。 2.掌握几种热分析法的基本原理、测试技术及影响测量准确性的因素。 3.掌握热分析法在聚合物结晶中的分析原理,并能对实验结果做出解释。 二、方法简介: 1. 热重分析法 热重分析法( TG )是在程序温度控制下,测量物质的质量随温度变化的一种实验技术。一般有静态法和动态法两种类型:静态法是在恒温下测定物质质量变化与温度的关系,将试样在各给定温度加热至恒重,该法用来研究固相物质热分解的反应速率和测定反应速度常数。动态法是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。 由热重分析记录的质量变化对温度的关系曲线称为热重曲线( TG 曲线)。 曲线横坐标为温度,纵坐标为质量,如热分解反应 A(s) → B(s)+ C(g) 的热重 曲线如图 1 所示。图中 T i 为起始温度,即累积质量变化达到热天平可检测的温度;

Tf 为终止温度,即累积质量变化达到最大值时的温度;热重曲线上质量基本不变的部分称为基线或平台。若试样初始质量为 W0 ,失重后试样质量为 W1 ,测失重百分数为 2.差示扫描量热法(DSC) DSC的技术方法是按照程序改变温度,使试样与标样之间的温度差为零。测量两者单位时间的热能输入差。就是说,使物转移过程中的温度和热量能够加以定量物质在加热过程中会在某温度下发生分解、脱水、氧化、还原和升华等一系 列的物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随物 质的结构和组成而异,因此可以利用物质的热重曲线来研究物质的热变化过程,推测反应机理及产物。 将实验以一定的升温速度加热至熔点以上,恒温一定时间,以充分消除试样的热历史,然后,迅速降温至测试温度进行等温结晶。由于结晶时放出结晶潜热,所以出现一个放热峰,见图。基线开始向放热方向偏离时,作为开始结晶的时间(t0),重新回到基线时,作为结晶结束的时间(t=t∞),则t时刻的结晶程度为 式中 xt、x∞是结晶时间为t及无限大时非晶态转变为晶态的分数;At、A∞为0~t时间及0~∞时间DSC曲线所包含的面积。

热分析常用方法及谱图

常用的热分析方法 l热重法(Thermogravimetry TG) l 差示扫描量热仪(Differential Scanning Calorimetry DSC)l 差热分析(Differential Thermal Analysis DTA) l 热机械分析(Thermomechanical Analysis TMA) l 动态热机械法(Dynamic Mechanical Analysis DMA) 谱图分析的一般方法 《热分析导论》刘振海主编 《分析化学手册》热分析分册 TGA DSC 分析图谱的一般方法——TGA 1. 典型图谱 分析图谱的一般方法——TGA的实测图谱

I、PVC 35.26% II、Nylon 6 25.47% III、碳黑14.69% IV、玻纤24.58% 已知样品的图谱分析 与已知样品各方面特性结合起来分析 如:无机物(黏土、矿物、配合物)、生物大分子、高分子材料、金属材料等热分析谱图都有各自的特征峰。 与测试的仪器、条件和样品结合起来分析 仪器条件样品 应用与举例 TGA DSC/DTA TMA 影响测试图谱结果的因素——测试条件 TGA 升温速率 样品气氛

扫描速率 样品气氛 升温速率对TGA 曲线的影响 气氛对TGA 曲线的影响 PE TGA-7 测试条件: 扫描速率:10C/min 气氛:a. 真空 b. 空气 流量:20ml/min 样品:CaCO3(AR) 过200目筛,3-5mg 扫描速率对DSC/DTA曲线的影响气氛对DSC/DTA曲线的影响 气氛的性质

两个氧化分解峰 曲线b: 一个氧化分解峰, 和一个热裂解峰 影响测试图谱结果的因素——样品方面 TGA/DSC/DTA 样品的用量 样品的粒度与形状 样品的性质 样品用量对TGA/DSC/DTA曲线的影响 样品的粒度与形状对曲线的影响——TGA/DSC/DTA 样品的性质对曲线的影响——TGA/DSC/DTA TGA/ DSC/DTA 热分析曲线的形状随样品的比热、导热性和反应性的不同而不同。即使是同种物质,由于加工条件的不同,其热谱图也可能不同。如PET树脂,经过拉伸过的PET树脂升温结晶峰就会消失。 PET 树脂的DSC 曲线 TGA应用 成分分析 无机物、有机物、药物和高聚物的鉴别与多组分混合物的定量分析。游离水、结合水、结晶水的测定,残余溶剂或单体的测定、添加剂的测定等。 热稳定性的测定 物质的热稳定性、抗氧化性的测定,热分解反应的动力学研究等 居里点的测定 磁性材料居里点的测定 可用TGA测量的变化过程

相关主题
文本预览
相关文档 最新文档