当前位置:文档之家› 航天器姿态确定和姿态控制课件

航天器姿态确定和姿态控制课件

航天器姿态确定和姿态控制课件
航天器姿态确定和姿态控制课件

point the telescope Desired Attitude

Actual Attitude

determines the desired torques, and send electrical commands

applies the desired torques

take the

measurements

Estimated Attitude

Estimates the current attitude

ACS: Single Spin

The entire spacecraft spins, which provides inertial

3ωC

3

ωPlatform

Rotor

A

A

C ′

A ′

A ′

ACS: Momentum Bias

: The momentum bias satellite is a variation of the dual spin co ncept that overcomes momentum usually spun by electric controlled momentum wheel come therefore how much angular momentum of changes

it about

Two magnetic torquers interact

ACS methods:

Active

Propellant

Reaction wheels with

Sensors

The types of sensors used for attitude determination are:

1.horizon sensors (or conical Earth scanners),

2.sun sensors,

3.star sensors,

4.magnetometers,

5.inertial reference units (IMU or attitude reference units ARU), and

6.GPS receivers.

Horizon sensors measure pitch and roll to an accuracy of about 0.1-0.5 deg. An accuracy less than 0.05

deg can be achieved by extensive calibration and accounting for the equatorial bulge. Sun and star

sensors provide directions. An horizon sensor does not provide yaw information (for momentum bias

systems it is not necessary to measure yaw). One wide-FOV or two narrow-FOV star sensors are needed

to provide attitude. Since the star sensors cannot provide continuous attitude measurements an

IMU/ARU is needed to provide the attitude between measurements. IMUs suffer from drift and biases

and need frequent updates which are provided by the star sensors. Magnetometers measure Earth's

magnetic. Accuracies no better than 1 deg can be obtained. The GPS receivers are used in an

interferometer mode to determine attitude. Accuracies as good a s 0.01 deg are expected using GPS.

Presence Sun Sensors

Entrance slit

Grid slit

Photocell at the base (b e l o w t h e slit )

Sun rays

Photocell

S h a d o w area

S h a d o w

rod

Presence sun sensors provide t h crossing time only, or the sun presence

within the sensor F O V

Used to synchronize pulsed command

(spin -u p ,spin-d o w n )to maneuvre to turn on/off onboard experiments instrumentation.

Photocells

Mirror

Image plane

mask

S u n i m a g e

Lens

Aperture Photocell 1

Photo cell 2

T

()(0)(0)cos I I d n I ?==?

Analogic Sun Sensors

Photocell #2Photocell #1

Normal

Sun rays

Normal

Photocells

Mask

Reference axis

Normal

Sensor 1

Sensor 2

Sun rays

Normal

Photocell Sensor #2

Sensor #1

Angle (deg)

O u t p u t c u r r e n t

Measurement

C o m m a n d

Measurement

o m m a n d

m m a n d:sun presence Measurement (4parts ):ATA,Sign bit,Code bits ,Interpolating bits.

Digital sensor

Photocells

Grid slits Binary code Gray code

S u n a n g l e

Binary

G r a y

D e c i m a l

Binary

G r a y

011011100101110111100010011010

011110110111101100110011011111

1112131415161718192021

10111100110111101111100001000110010100111010010101

11101010101110011000110001100111011110101111011111

Gray code consists o f t h e fact that the bit string,which the angle measure ,changes one bit only at each digital step.

Binary and Gray code

Photocells

Double Digital Sun Sensor

2Best range: 14-16 of CO (less high altitude clouds contr.)

μμRelative radiance 400 (IR) and 30,000 (visible)

allow to evaluate the Nadir direction.

H o t M o o n

Hard horizon

Hot area for cold Moon

Hot area for hot Moon

C o l d M o o n

H o t horizon position

Cold horizon position

Moon center distance

R e l a t i v e r a d i a n c e

Moon horizon

sensor

Moon temperature range: –240deg to +30deg

Meridian slit

Inclined slit

Satellite equator

D i s p l a c e m e n t a n g l e (d e g )

Earth/Sun sensors for spinning S/C

Star sensor for spinning S/C

Optical axis

Elevation slit

Azimuth slit

the CMB sky with a microwave telescope.

r

o

s

n

e

Focal Plane

Archeops –Kiruna2002

Star

Trackers

Electronics Photomultiplier

Optical system

Baffle

Star Grid

Sensors

Electronic unit

Signal processing

and Analog to digital

converter Telemetry

Link

Small precision is associated with t h e fact

that t h e E M F Models are not so accurate.

Biases not negligeable

(residuals o f magnetic fields

caused by onboard circuits)

Typical GN&C Sensors (Wertz) Attitude Determination Systems

航天器制导及控制课后题答案(西电)

1.3 航天器的基本系统组成及各部分作用? 航天器基本系统一般分为有效载荷和保障系统两大类。有效载荷:用于直接完成特定的航天飞行任务的部件、仪器或分系统。保障系统:用于保障航天器从火箭起飞到工作寿命终止, 星上所有分系统的正常工作。 1.4 航天器轨道和姿态控制的概念、内容和相互关系各是什么? 概念:轨道控制:对航天器的质心施以外力, 以有目的地改变其运动轨迹的技术; 姿态控制:对航天器绕质心施加力矩, 以保持或按需要改变其在空间的定向的技术。内容:轨道控制包括轨道确定和轨道控制两方面的内容。轨道确定的任务是研究如何确定航天器的位置和速度, 有时也称为空间导航, 简称导航; 轨道控制是根据航天器现有位置、速度、飞行的最终目标, 对质心施以控制力, 以改变其运动轨迹的技术, 有时也称为制导。姿态控制包括姿态确定和姿态控制两方面内容。姿态确定是研究航天器相对于某个基准的确定姿态方法。姿态控制是航天器在规定或预先确定的方向( 可称为参考方向)上定向的过程, 它包括姿态稳定和姿态机动。姿态稳定是指使姿态保持在指定方向, 而姿态机动是指航天器从一个姿态过渡到另一个姿态的再定向过程。关系:轨道控制与姿态控制密切相关。为实现轨道控制, 航天器姿态必须符合要求。也就是说, 当需要对航天器进行轨道控制时, 同时也要求进行姿态控制。在某些具体情况或某些飞行过程中, 可以把姿态控制和轨道控制分开来考虑。某些应用任务对航天器的轨道没有严格要求, 而对航天器的姿态却有要求。 1.5 阐述姿态稳定的各种方式, 比较其异同。 姿态稳定是保持已有姿态的控制, 航天器姿态稳定方式按航天器姿态运动的形式可大致分为两类。自旋稳定:卫星等航天器绕其一轴(自旋轴) 旋转, 依靠旋转动量矩保持自旋轴在惯性空间的指向。自旋稳定常辅以主动姿态控制, 来修正自旋轴指向误差。三轴稳定: 依靠主动姿态控制或利用环境力矩, 保持航天器本体三条正交轴线在某一参考空间的方向。 1.6主动控制与被动控制的主要区别是什么? 画出星—地大回路控制的结构图。 主动控制与被动控制的主要区别是航天器的控制力和力矩的来源不同。被动控制:其控制力或力矩由空间环境和航天器动力学特性提供, 不需要消耗星上能源。例如利用气动力或力矩、太阳辐射压力、重力梯度力矩,磁力矩等实现轨道或姿态的被动控制, 而不消耗工质或电能。主动控制:包括测量航天器的姿态和轨道, 处理测量数据, 按照一定的控制规律产生控制指令, 并执行指令产生对航天器的控制力或力矩。需要消耗电能或工质等星上能源, 由星载或地面设备组成闭环系统来实现。

航天器制导与控制课后题答案(西电)

航天器制导与控制课后题答案(西电) 1.3 航天器的基本系统组成及各部分作用? 航天器基本系统一般分为有效载荷和保障系统两大类。有效载荷:用于直接完成特定的航天飞行任务的部件、仪器或分系统。保障系统:用于保障航天器从火箭起飞到工作寿命终止, 星上所有分系统的正 常工作。 1.4 航天器轨道和姿态控制的概念、内容和相互关系各是什么? 概念:轨道控制:对航天器的质心施以外力, 以有目的地改变其运动轨迹的技术; 姿态控制:对航天器绕质心施加力矩, 以保持或按需要改变其在空间的定向的技术。内容:轨道控制包括轨道确定和轨道控制两方面的内容。轨道确定的任务是研究如何确定航天器的位置和速度, 有时也称为空间导航, 简称导航; 轨道控制是根据航天器现有位置、速度、飞行的最终目标, 对质心施以控制力, 以改变其运动轨迹的技术, 有时也称为制导。姿态控制包括姿态确定和姿态控制两方面内容。姿态确定是研究航天器相对于某个基准的确定姿态方法。姿态控制是航天器在规定或预先确定的方向( 可称为参考方向)上定向的过程, 它包括姿态稳定和姿态机动。姿态稳定是指使姿态保持在指定方向, 而姿态机动是指航天器从一个姿态过渡到另一个姿态的 再定向过程。关系:轨道控制与姿态控制密切相关。为实现轨道控制, 航天器姿态必须符合要求。也就是说, 当需要对航天器进行轨道控制时, 同时也要求进行姿态控制。在某些具体情况或某些飞行过程中,

可以把姿态控制和轨道控制分开来考虑。某些应用任务对航天器的轨道没有严格要求, 而对航天器的姿态却有要求。 1.5 阐述姿态稳定的各种方式, 比较其异同。 姿态稳定是保持已有姿态的控制, 航天器姿态稳定方式按航天 器姿态运动的形式可大致分为两类。自旋稳定:卫星等航天器绕其一轴(自旋轴) 旋转, 依靠旋转动量矩保持自旋轴在惯性空间的指向。自旋稳定常辅以主动姿态控制, 来修正自旋轴指向误差。三轴稳定: 依靠主动姿态控制或利用环境力矩, 保持航天器本体三条正交轴线在 某一参考空间的方向。 1.6主动控制与被动控制的主要区别是什么? 画出星—地大回路控制的结构图。 主动控制与被动控制的主要区别是航天器的控制力和力矩的来 源不同。被动控制: 其控制力或力矩由空间环境和航天器动力学特性提供, 不需要消耗星上能源。例如利用气动力或力矩、太阳辐射压力、重力梯度力矩,磁力矩等实现轨道或姿态的被动控制, 而不消耗工质或电能。主动控制: 包括测量航天器的姿态和轨道, 处理测量数据, 按照一定的控制规律产生控制指令, 并执行指令产生对航天器的控 制力或力矩。需要消耗电能或工质等星上能源, 由星载或地面设备组成闭环系统来实现。 2.1 利用牛顿万有引力定律推导、分析航天器受N 体引力时的运动方程, 并阐述简化为二体相对运动的合理性。 (1)解:牛顿万有引力定律:??r Fg??GMm

航天器控制工具箱

航天器控制工具箱 Spacecraft Control Toolbox 基于Matlab软件的航天器控制工具箱Spacecraft Control Toolbox 是Princeton Satellite System公司(简称PSS)最早和应用最广的产品之一,有20多年的历史,被广泛用来设计控制系统、进行姿态估计、分析位置保持精度、制定燃料预算以及分析航天器动力学特性等工作。Spacecraft Control Toolbox 工具箱经过多次飞行验证,证明是行之有效的。这个工具箱涵盖了航天器控制设计的各个方面。用户可以在很短的时间内完成各种类型航天器控制系统的设计和仿真试验。软件的模型和数据易于修改,具有良好的可视化功能。大部分算法都可以看到源代码。 Spacecraft Control Toolbox(简称SCT)由不同的模块组成。 组成结构图如下 各个模块的主要功能和特点

SCT Core Toolbox -- 基本工具箱 SCT基本工具箱针对需要迅速解决实际工程问题的工程师而设计,包含了航天器控制系统设计的基本内容,也是其他SCT模块运行的基础。它建立在PSS公司大量工程经验的基础上,其中包括GPS IIR、Inmarsat 3和GGS Polar Platform卫星的控制系统设计。迄今这些系统仍然在太空正常运行。PSS公司使用这个工具箱完成的Cakrawarta-1卫星姿态控制系统设计,所花费用仅仅是通常的十分之一。这颗卫星从1997年11月升空一直运行至今。另外的例子还包括一颗NASA卫星的姿态控制系统设计。 主要功能和特点 ?航天器控制系统设计和分析 ?柔性多体航天器姿态动力学建模 ?包含柔性体展开模型和多体的逻辑树描述 ?轨道动力学分析和仿真 ?姿态估计 ?星历表计算 ?包括大气、重力场和磁场的环境模型 ?指向保持的燃料预算 ?各种有用参数的数据库; ?可视化

飞行器姿态控制法综述

飞行器姿态控制方法综述 一.引言 经过一个世纪的发展,各种飞行器如雨后春笋般出现,从飞机、导弹到火箭、卫星,从宇宙飞船、航天飞机、空间站到月球探测器、火星探测器。这些飞行器能在空中按预定的轨迹运动总离不开它的姿态控制系统,飞行器在空间的运动是十分复杂的。为使问题简单化,总是将一飞行器的空间运动分解为铅锤平面的纵向运动和水平面内的侧向运动,将飞行器在空间的角运动分解成俯仰、偏航和滚动三个角运动。由于角运.动使飞行器的姿态发生变化,所以对角运动的控制就是对飞行器姿态的控制。对于飞行器姿态的控制,不同的飞行器需要不同的策略,本文主要就飞行器姿态控制方法的应用与发展作一一论述。 二.姿态控制的数学模型 要控制飞行器的姿态,就是要控制使飞行器三个姿态角发生变化的力矩大小。飞行器的姿态模型可以认为是一类不确定MIMO 仿射非线性系统,如式(1)所示: ()//()//()//(cos sin )/cos cos sin sin tan cos tan x y z y x x x x x z x x x y y y x x y x y z z z x x x z x y z I I I M I I I I M I I I I M I ωωωωωωωωωψ ωθωθ??ωθωθ θωθ?ωωθ?=-+??=-+??=-+??=-??=+?=+-?? (1) 式中,x 、y 、z 下标表示空间飞行器的三个主轴方向;I 表示相对于飞行器质心的惯量矩,设飞行器是主轴对称的,则惯量积可以忽略;ω表示飞行器相对于惯性空间的角速度;M 表示控制力矩;,,ψ?θ分别是飞行器的欧拉角。控制了M 的大小,就可以控制飞行器按我们期望的轨迹运动。M 由飞行器上的执行机构产生,常见的有空气舵、推力矢量发动机、反作用飞轮、喷气执行机构或由其它环境力执行机构。 三.飞行器姿态控制方法 3.1空气动力控制 根据运动的相对性原理和气体流动时的基本定律,当飞行器在大气中以一定

航天器的姿态与轨道最优控制

航天器的姿态与轨道最优控制 董丽娜唐晓华吴朝俊司渭滨(第八小组) (西安交通大学电气工程学院,陕西省,西安市 710049) 【摘要】从航天器的轨道运动学方程出发, 运用线性离散系统最优控制理论, 提出了一种用于航天器轨道维持与轨道机动的最优控制方法, 建立了相关的最优控制模型并给出了求解该模型的算法。仿真计算结果表明, 本文提出的最优控制方法是正确和可行的。 【关键词】航天器轨道保持轨道机动最佳控制 Optimal Control of Spacecraft State and Orbit Dong LiNa,Tang XiaoHua,Wu ChaoJun,Si WeiBin (EE School of Xi’an Jiaotong university,Xi’an, Shannxi province, 710049)【Abstract】This paper provides a new optimal control method for orbital maintenance and maneuver ,which begins with the kinetics equation of spacecraft and is based on the linear discrete optimal control theory , establishes the relative optimal control model and gives its solution. The simulation results show that the given optimal control method in this paper is correct and feasible. 【Key word】Spacecraft ,Orbital keeping ,Orbital maneuver ,Optimal control 1 引言 一般地,常见的航天器有:运载火箭、人造卫星、载人飞船、宇宙飞船、空间站等。宇宙飞船也称太空飞船,它和航天飞机都是往返于地球和在轨道上运行的航天器(如空间站) 。

四轴飞行器姿态控制算法

姿态解算 姿态解算(attitude algorithm),是指把陀螺仪,加速度计, 罗盘等的数据融合在一起,得出飞行器的空中姿态,飞行器从陀螺仪器的三轴角速度通过四元数法得到俯仰,航偏,滚转角,这是快速解算,结合三轴地磁和三周加速度得到漂移补偿和深度解算。 姿态的数学模型坐标系 姿态解算需要解决的是四轴飞行器和地球的相对姿态问题。地理坐标系是固定不变的,正北,正东,正上构成了坐标系的X,Y,Z轴用坐标系R表示,飞行器上固定一个坐标系用r表示,那么我们就可以适用欧拉角,四元数等来描述r和R的角位置关系。 姿态的数学表示 姿态有多种数学表示方式,常见的是四元数,欧拉角,矩阵和轴角。在四轴飞行器中使用到了四元数和欧拉角,姿态解算的核心在于旋转。姿态解算中使用四元数来保存飞行器的姿态,包括旋转和方位。在获得四元数之后,会将其转化为欧拉角,然后输入到姿态控制算法中。姿态控制

算法的输入参数必须要是欧拉角。AD值是指MPU6050的陀螺仪和加速度值,3个维度的陀螺仪值和3个维度的加速度值,每个值为16位精度。AD值必须先转化为四元数,然后通过四元数转化为欧拉角。在四轴上控制流程如下图: 下面是用四元数表示飞行姿态的数学公式,从MPU6050中采集的数据经过下面的公式计算就可以转换成欧拉角,传给姿态PID控制器中进行姿态控制.

PID控制算法 先简单说明下四轴飞行器是如何飞行的,四轴飞行器的螺旋桨与空气发生相对运动,产生了向上的升力,当升力大于四轴的重力时四轴就可以起飞了。四轴飞行器飞行过程中如何保持水平:我们先假设一种理想状况:四个电机的转速是完全相同的是不是我们控制四轴飞行器的四个电机保持同样的转速,当转速超过一个临界点时(升力刚好抵消重力)四轴就可以平稳的飞起来了呢?答案是否定的,由于四个电机转向相同,四轴会发生旋转。我们控制四轴电机1和电机3同向,电机2电机4反向,刚好抵消反扭矩,巧妙的实现了平衡, 但是实际上由于电机和螺旋

航天器控制原理

航天器控制原理自测试题一 一、名词解释(15%) 1、姿态运动学 2、惯性轮 3、姿态机动控制 4、空间导航 5、空间站的姿态控制 二、简答题(60%) 1、航天器按载人与否是如何分类的?各类航天器的作用和特点是什么?请举出你所知的各类航天器的国内外的例子。 2、开普勒三大定律是什么?牛顿三大定律是什么? 3、分析描述航天器姿态运动常用的参考坐标系之间的相对关系。 4、画出航天器控制系统结构图并叙述其原理。 5、液体环阻尼器有什么特点,适用于什么场合? 6、写出卫星姿态自由转动的欧拉动力学方程。 7、主动姿态稳定系统包括哪几种方式? 8、推力器的工作时间为什么不能过小? 9、简述导航与制导系统的功能,及其为实现此功能而必须完成的工作。 10、载人飞船在结构上较一般卫星有什么特点? 三、推导题(15%) 1、利用牛顿万有引力定律推导、分析航天器受N体引力时的运动方程,并阐述简化为二体相对运动的合理性。8% 2、推导Oxyz和OXYZ两坐标系之间按“1-2-3”顺序旋转的变换矩阵和逆变换矩阵,并在小角度假设下予以线性化。7%

四、计算题(10%) 1. 已知一自旋卫星动量矩H=2500Kg·m2/s,自旋角速度为ω=60r/min,喷气力矩 Mc=20N·m,喷气角为γ=45。,要求自旋进动θc=90。。问喷气一次自旋进动多少?总共需 要多少次和多长时间才能完成进动? 航天器控制原理自测试题一答案 一、名词解释(15%) 1、姿态运动学 答:航天器的姿态运动学是从几何学的观点来研究航天器的运动,它只讨论航天器运动的几何性质,不涉及产生运动和改变运动的原因 2、惯性轮 答:当飞轮的支承与航天器固连时,飞轮动量矩方向相对于航天器本体坐标系Oxyz不变,但飞轮的转速可以变化,这种工作方式的飞轮通常称为惯性轮。 3、姿态机动控制 答:姿态机动控制是研究航天器从一个初始姿态转变到另一个姿态的再定向过程。如果初始姿态未知,例如当航天器与运载工具分离时,航天器还处在未控状态;或者由于受到干扰影响,航天器姿态不能预先完全确定,那么特地把这种从一个未知姿态或者未控姿态机动到预定姿态的过程称为姿态捕获或对准。 4、空间导航 答:航天器轨道的变化也称为空间导航,包括轨道确定和轨道控制两个方面,由导航与制导系统完成。 5、空间站的姿态控制 答:空间站姿态控制分为姿态稳定和姿态机动两部分。姿态稳定又分为两种情况:第一种情况为对地球指向稳定,主要为与地面通信联系和有关的数据传递提供稳定姿态。第二种情况,姿态控制精度由有效载荷或者在空间站进行的有关实验提出,此种精度要求视有效载荷和实验研究的不同而不同。 二、简答题(60%) 1、航天器按载人与否是如何分类的?各类航天器的作用和特点是什么?请举出你所知的各类航天器的国内外的例子。

航天器控制大作业

航天器控制课程大作业 1.基本内容 ?建立带有反作用飞轮的三轴稳定对地定向航天器的姿态动力学和姿态运动学模型; ?基于欧拉角或四元数姿态描述方法,设计PD型或PID型姿态控制律(任选一种); ?利用MATLAB/Simulink软件建立航天器闭环姿态控制系统,设计姿态控制器进行闭合回路数学仿真,实现给定控制指标和 性能指标。 ?调研基于星敏感器+陀螺的姿态确定算法并撰写报告,要求不少于1500字。内容包括: ?星敏感器、陀螺数学模型 ?Landsat-D卫星姿态确定调研 包括:姿态敏感器组成、姿态敏感器性能、姿态确定算法及其精度 ?单星敏感器+陀螺的kalman滤波器姿态估计 ?双星敏感器姿态确定算法(双矢量定姿) ?列出主要参考文献 2.具体要求和相关参数 1)建立航天器姿态动力学方程以及基于欧拉角描述(3-1-2转序)的姿态运动学方程。基于如下假设,对航天器姿态动力学和姿态运动学模型进行简化: ?航天器的轨道为近圆轨道,对应轨道角速度为常数; ?航天器的本体坐标系与其主惯量坐标系重合,惯量积为零;

? 航天器姿态稳定控制时,姿态角和姿态角速度均为小量。 进一步建立适用于航天器姿态稳定或小姿态角度工况下的线性化航天器姿态动力学和运动学模型。 2) 航天器转动惯量矩阵 2200024142460018kg m 14182500????=??????? I 轨道角速度00.0012rad/s ω=。设航天器本体系三轴方向所受干扰力矩如下: 040003cos 1() 1.510 1.5sin 3cos N m 3sin 1d t t t t t ωωωω-+????=?+?????+??T 仿真中,假设初始三轴姿态角为002~5和初始三轴姿态角速度000.01/s ~0.05/s 。 3) 采用三正装反作用飞轮作为执行机构,飞轮最大控制力矩为0.4Nm ,最大角动量20Nms 。飞轮采用力矩模式,模型采用一阶惯性环节(时间常数为0.005s ),考虑库仑摩擦力矩4410Nm -?,要求飞轮的数学模型带有饱和特性。 4) 控制指标和性能指标: ? 稳定度(姿态角速度):优于0.005deg/s ; ? 指向精度(姿态角):优于0.1deg ; ? 姿态稳定收敛时间小于100s 。

航天器姿态动力学与控制总结2014

《航天器姿态动力学与控制》课程内容总结 (一) 绪论部分 1.名词解释:姿态运动学;姿态动力学;姿态控制;姿态稳定控制、姿态机动控制、姿态捕获、再定向等概念 (二) 姿态动力学部分 1.指出描述航天器的姿态参数有哪几种,各自的优缺点是什么? 2.掌握对地定向卫星惯性坐标系、轨道坐标系、本体坐标系之间的关系和各坐标系间坐标变换矩阵的求取; 3.给出在无穷小角位移的情况下,以不同姿态参数表示的方向余弦矩阵表达式; ω绕地球飞行,给出在无穷小角位移(星体坐标4.设对地定向卫星以轨道角速度 系相对轨道坐标系)情况下,星体其相对惯性空间的姿态角速度矢量(在体系下的分量列阵)的表达式,用zxy或zyx顺序的姿态角及其速率表示。 5.解释什么是视角动量?视角动量与关于参考点的角动量之间有何区别?6.什么是主转动惯量?惯性主轴坐标系的定义? 7.推导刚体的姿态动力学方程(即欧拉方程),给出刚体姿态动力学方程的矩阵分量式(设体坐标系与惯性主轴坐标系重合)。 8.解释什么是轴对称自旋航天器的本体章动和空间章动?章动角的含义是什么?什么是本体极迹和空间极迹? 9.单自旋刚体运动稳定性的条件。 10.什么是准刚体模型?什么是最大轴原理? 11.给出细长体双自旋航天器的稳定性条件(按准刚体模型) 12.重力梯度稳定卫星的稳定准则及天平动。 13.重力梯度稳定及其原理,这种姿态稳定方式的特点。 14.写出带有多个惯性轮的刚体航天器的姿态动力学方程(矢量式和矩阵式),并解释其中各变量的含义; (三)姿态控制部分 1.指出姿态确定有哪几种方法?什么是参考矢量?姿态参考矢量有哪些?分别是怎样得到的?红外地平仪测量结果有何特点?

飞行器姿态控制法综述

飞行器姿态控制方法综述 一.引言 经过一个世纪的发展,各种飞行器如雨后春笋般出现,从飞机、导弹到火箭、卫星,从宇宙飞船、航天飞机、空间站到月球探测器、火星探测器。这些飞行器能在空中按预定的轨迹运动总离不开它的姿态控制系统,飞行器在空间的运动是十分复杂的。为使问题简单化,总是将一飞行器的空间运动分解为铅锤平面的纵向运动和水平面内的侧向运动,将飞行器在空间的角运动分解成俯仰、偏航和滚动三个角运动。由于角运.动使飞行器的姿态发生变化,所以对角运动的控制就是对飞行器姿态的控制。对于飞行器姿态的控制,不同的飞行器需要不同的策略,本文主要就飞行器姿态控制方法的应用与发展作一一论述。 二.姿态控制的数学模型 要控制飞行器的姿态,就是要控制使飞行器三个姿态角发生变化的力矩大小。飞行器的姿态模型可以认为是一类不确定MIMO 仿射非线性系统,如式(1)所示: ()//()//()//(cos sin )/cos cos sin sin tan cos tan x y z y x x x x x z x x x y y y x x y x y z z z x x x z x y z I I I M I I I I M I I I I M I ωωωωωωωωωψωθωθ??ωθωθθωθ?ωωθ? =-+??=-+??=-+??=-??=+?=+-??&&&&&& (1) 式中,x 、y 、z 下标表示空间飞行器的三个主轴方向;I 表示相对于飞行器质心的惯量矩,设飞行器是主轴对称的,则惯量积可以忽略;ω表示飞行器相对于惯性空间的角速度;M 表示控制力矩;,,ψ?θ分别是飞行器的欧拉角。控制了M 的大小,就可以控制飞行器按我们期望的轨迹运动。M 由飞行器上的执行机构产生,常见的有空气舵、推力矢量发动机、反作用飞轮、喷气执行机构或由其它环境力执行机构。 三.飞行器姿态控制方法 3.1空气动力控制 根据运动的相对性原理和气体流动时的基本定律,当飞行器在大气中以一定

四轴飞行器姿态控制算法注释

从开始做四轴到现在,已经累计使用了三个月的时间,从开始的尝试用四元数法进行姿态检测,到接着使用的卡尔曼滤波算法,我们走过了很多弯路,我在从上周开始了对德国人四轴代码的研究和移植,发现德国人的代码的确有他的独到之处,改变了很多我对模型的想法,因为本人是第一次尝试着制作模型,因此感觉很多想法还是比较简单。经过了一周的时间,我将德国人的代码翻译并移植到了我目前的四轴上,并进行了调试,今天,专门请到了一个飞直升机的教练,对我们的四轴进行试飞,并与一个华科尔的四轴进行了现场比较,现在我们四轴的稳定性已经达到了商品四轴的程度。下面是我这一周时间内对德国人代码的一些理解: 德国人代码中的姿态检测算法: 首先,将陀螺仪和加速度及的测量值减常值误差,得到角速度和加速度,并对角速度进行积分,然后对陀螺仪积分和加速度计的数值进行融合。融合分为两部分,实时融合和长期融合,实时融合每一次算法周期都要执行,而长期融合没256个检测周期执行一次,(注意检测周期小于控制周期的2ms) 实时融合: 1.将陀螺仪积分和加表滤波后的值做差; 2.按照情况对差值进行衰减,并作限幅处理; 3.将衰减值加入到角度中。 长期融合: 长期融合主要包括两个部分,一是对角速度的漂移进行估计(估计值是要在每一个控制周期都耦合到角度中的),二是对陀螺仪的常值误差(也就是陀螺仪中立点)进行实时的修正。 1.将陀螺仪积分的积分和加速度积分做差(PS:为什么这里要使用加表积分和陀螺仪积分的积分,因为在256个检测周期内,有一些加速度计的值含有有害的加速度分量,如果只使用一个时刻的加表值对陀螺仪漂移进行估计,显然估计值不会准确,使用多个周期的值进行叠加后做座平均处理,可以减小随机的有害加速度对估计陀螺仪漂移过程中所锁产生的影响) 2.将上面两个值进行衰减,得到估计的陀螺仪漂移 3.对使考虑了陀螺仪漂移和不考虑陀螺仪漂移得到的角度做差,如果这两个值较大,说明陀螺仪在前段时间内测到的角速率不够准确,需要对差值误差(也就是陀螺仪中立点)进行修正,修正幅度和差值有关 长期融合十分关键,如果不能对陀螺仪漂移做修正,则系统运行一段时间后,速率环的稳定性会降低。 下面比较一下德国四轴中姿态检测部分和卡尔曼滤波之间的关系: 卡尔曼滤波是一种线性系统的最优估计滤波方法。对于本系统而言,使用卡尔曼滤波的作用是通过对系统状态量的估计,和通过加速度计测量值对系统状态进行验证,从而得到该系统的最优状态量,并实时更新系统的各参数(矩阵),而最重要的一点,改滤波器能够对陀螺仪的常值漂移进行估计,从而保证速率环的正常运行,并在加速度计敏感到各种有害加速度的时候,使姿态检测更加准确。但是卡尔曼滤波器能否工作在最优状态很大程度上取决于系统模型的准确性,模型参数的标定和系统参数的选取。然而,仅仅通过上位机观测而得到最优工作参数是不显示的,因为参数的修改会导致整个系统中很多地方发生改变,很难保证几个值都恰好为最优解,这需要扎实的理论知识,大量的测量数据和系统的仿真,通过我对卡尔曼滤波器的使用,发现要想兼顾锁有的问题,还是有一定难度的。

航天器姿态确定和姿态控制课件

point the telescope Desired Attitude Actual Attitude determines the desired torques, and send electrical commands applies the desired torques take the measurements Estimated Attitude Estimates the current attitude ACS: Single Spin The entire spacecraft spins, which provides inertial

3ωC 3 ωPlatform Rotor A A C ′ A ′ A ′ ACS: Momentum Bias : The momentum bias satellite is a variation of the dual spin co ncept that overcomes momentum usually spun by electric controlled momentum wheel come therefore how much angular momentum of changes

it about Two magnetic torquers interact ACS methods: Active Propellant Reaction wheels with Sensors The types of sensors used for attitude determination are: 1.horizon sensors (or conical Earth scanners), 2.sun sensors, 3.star sensors, 4.magnetometers, 5.inertial reference units (IMU or attitude reference units ARU), and 6.GPS receivers. Horizon sensors measure pitch and roll to an accuracy of about 0.1-0.5 deg. An accuracy less than 0.05 deg can be achieved by extensive calibration and accounting for the equatorial bulge. Sun and star sensors provide directions. An horizon sensor does not provide yaw information (for momentum bias systems it is not necessary to measure yaw). One wide-FOV or two narrow-FOV star sensors are needed to provide attitude. Since the star sensors cannot provide continuous attitude measurements an IMU/ARU is needed to provide the attitude between measurements. IMUs suffer from drift and biases and need frequent updates which are provided by the star sensors. Magnetometers measure Earth's magnetic. Accuracies no better than 1 deg can be obtained. The GPS receivers are used in an interferometer mode to determine attitude. Accuracies as good a s 0.01 deg are expected using GPS.

姿态控制系统

第一章航天器控制的基本概念1.轨道控制 a.轨道确定(导航) 研究如何确定航天器的位置和速度b. 轨道控制(制导) 根据位置、速度、飞行最终目标,对质心施以控制力,以改变运动轨迹的技术轨道机动、轨道保持轨道交会、再入返回控制2.姿态控制a.姿态确定研究航天器相对于某个基准的确定姿态方法;可以是惯性基准或其他基准,如地球;采用姿态敏感器和相应的数据处理方法;确定精度取决于数据处理方法和敏感器精度。b. 姿态控制在规定或预定方向(参考方向)上定向的过程;姿态稳定是指使姿态保持在指定方向;姿态机动是指航天器从一个姿态过渡到另一个姿态的再定向过程。3.姿态稳定 a.特点长期而持续的所需控制力矩较小b.种类定向粗对准精对准4. 姿态机动a.特点短暂过程所需控制力矩较大b.种类再定向捕获跟踪和搜索4. 姿态控制与轨道控制的关系为实现轨道控制,航天器姿态必须符合要求;在某些具体情况或某些飞行过程中,可把姿态控制和轨道控制分开考虑;某些应用任务对航天器轨道没有严格要求,而对航天器姿态确有要求;例如:空间环境探测卫星绕地球的运行往往不需要轨道控制,卫星在开普勒轨道上运行就能满足对环境探测的要求。5.姿态控制系统分类 a.根据姿态稳定方式三轴稳定.保持航天器本体三条正交轴线在某一参考空间的方向自旋稳定.绕自旋轴旋转,依靠旋转动量矩在惯性空间的指向b.根据力来源被动控制.不需消耗星上能源,如重力梯度力矩、磁力矩等主动控制.星上自主控制、星-地大回路控制,消耗电能和工质6.姿态控制系统的设计要求可靠性控制性能a.动量、稳定性b.稳态精度c.动态响应控制系统质量和能源需求附带要求a.经济性b.坚固性c.生产可能性7.姿态控制系统设计任务a.了解任务参数任务类型、质量、结构、轨道几何参数、任务寿命、精度、机动要求b.推导出控制系统质量和能源需求可靠性及寿命动量要求力矩要求:大小、频率、杠臂限制动态响应精度 能源要求c.具体设计 第二章姿态运动学与动力学1.方向余弦阵的性质及特点方向余弦阵只有三个独立参数方向余弦阵是正交矩阵AA T=E方向余弦阵的行列式为1|A|=1方向余弦阵可作为坐标变换矩阵V a=A Vb相继姿态运动的方向余弦阵具有中间脚标的吸收性质。缺点:不直观,缺乏明显的几何图象概念,使用不方便2.用EulerEuler轴/角描述姿态的理论依据Euler定理:刚体绕固定点的任一位移,可由绕通过此点的某一轴转过一个角度得到。姿态描述可用转轴e和绕此轴的转角φ来描述两个坐标系间的相对姿态。Euler轴/角的形式及特点形式转轴e在参考坐标系中的三个方向余弦(ex, ey, ez)转角φ优点具有明确的几何意义,直观,易于理解;是四元素、Rodrigues参数等其它姿态描述方法的基础。缺点仍具有一个约束条件,不是姿态描述的最小实现;与姿态之间不是一一对应的。常用Euler角3-1-3 ψ, θ, ?自旋卫星绕oZ轴旋转, Rz(ψ)绕oX'轴旋转, Rx(θ)绕oZ"轴旋转Rz(?)3-1-2 ψ, ?, θ三轴稳定卫星绕oZ轴旋转, Rz(ψ)绕oX'轴旋转, Rx(?)绕oY"轴旋转,Ry(θ) 在轨道坐标系内ψ为偏航角?为滚动角θ为俯仰角。3. Euler角的特点优点几何意义直观、明显小角度线性化方便在某些情况下,可直接测量缺点包含三角函数,计算效率低运动学方程有奇点4. 四元数特点与方向余弦阵相比,四元素只包含4个变量和1个约束与Euler轴/角相比,四元素姿态矩阵不含三角函数四元素可看作姿态机动参数。缺点:四元数仍存在一个约束条件,不是姿态描述的最小实现。5.Rodrigues参数的优缺点优点姿态描述的最小实现;简单、直观,计算效率高;由其描述的运动学方程结构简洁,无多余约束。缺点当φ→±180°时,x→±∞,不能有效描述姿态;当φ远小于180°时,才能有效描述姿态。6.重力梯度力矩的性质重力梯度力矩与主惯量差成正比重力梯度力矩与轨道角速度的平方成反比重力梯度力矩与姿态偏差角(小角度假设下)成正比当Izz<1000Km),占优势的是太阳辐射力矩;当轨道降至700Km时,太阳辐射力矩与气动力矩是同数量级的;在中高轨道(1000Km左右),重力梯度力矩、磁力矩较大。第三章自旋航天器姿态确定与控制1.如何测量自旋姿态测量工具:姿态敏感器。姿态信息测量: 不能直接测出自旋姿态只能观测到空间中某些参考体相对卫星的方向测量自旋轴与参考体方向之夹角夹角也不是直接得到的,只能测得与夹角相关的信息。姿态确定参考天体在赤道惯性系中的方向可以精确确定根据夹角和参考天体的方向,确定姿态。2.自旋航天器的原理。利用绕自旋轴旋转的陀螺定轴性,实现自旋轴在惯性空间固定自旋轴一般与轨道平面垂直。自旋航天器的特点:简单、抗干扰能力强当受到恒定干扰力矩时,自旋轴以等速漂移,而不是加速漂移可减小推力偏心的影响,静止轨道卫星在远地点点火时通常用自旋稳定。控制系统不需频繁工作,可以采用星-地大回路的工作方式。3.自旋运动稳定条件。a.如果令ωy、ωz是Lyapunov稳定的,必须令Ω2>0;b.Ix>Iy,且Ix>Iz,即星体绕最大惯量轴旋转;c.Ix

航天器的控制系统

航天器的控制系统 航天学院 151220205 李欢 一、关于控制的基础知识 系统是能够在一起协同工作并产生输出的所有部分的集合。系统具有输入(进入系统的东西)、输出(从系统中发出的东西)和把输入变成输出的处理过程。对于航天器的任务而言,任务的成败取决于各种子系统的输出,因而我们最关心控制系统。最简单的控制系统是一种开环式的,输入生成输出,但不能动态调整输入来控制输出。而闭环控制系统,也叫反馈控制系统,能很好地保证得到想要的输出。因为它能感知输出(得到的),将它与想要的输出(想得到的)进行比较,并根据需要调整输入。 所有控制系统必须实现的四个基本任务: 1.理解系统的行为——装置是如何对包括环境输入在内的输入产生反应来生成输出的,这也被称为装置模型; 2、观察系统的当前状态——利用传感器; 3、决定做什么——控制器的作用; 4、执行——利用执行器。 姿态确定就是根据姿态测量元件提供的测量信息(含有噪声)求出姿态角和角速度,其精度与测量元件的精度、安装方式和信息处理的方法有关。姿态确定航天器在空间的指向方位,同时,发射航天器需要控制它们的姿态以进入正确的轨道。通常用角度来定义航天器的姿态,用以飞行器为中心的本体坐标系的旋转角度来描述姿态,常以滚动角、俯仰角和偏航角给出。 为了观察系统姿态,并将这些观察结果转换成控制器能处理的信号,航天器都有一个内置姿态传感器系统。它利用两个参照点来确定航天器在三维空间里的姿态。 执行特定飞行使命的航天器需按特定的轨迹运动,为满足这个要求常需对轨道进行控制。这种控制包括利用航天器的推进系统产生的反作用推力的主动控制及利用客观存在的外力(如地球引力、气动力、太阳辐射压力及其他行星的引力等)的被动控制。对航天器的质心施加外力,以改变其运动轨迹的技术,实现航天器轨道控制的装置的组合称为航天器轨道控制系统。 航天器的轨道一般由主动飞行段和自由飞行段组成。主动飞行段是航天器变轨发动机的点火段,变轨发动机熄火后是自由飞行段。航天器在脱离运载火箭后便进入自由飞行段。如果要改变它的轨道,就要插入主动飞行段。

相关主题
相关文档 最新文档