当前位置:文档之家› 基于Matlab直流调速系统

基于Matlab直流调速系统

基于Matlab直流调速系统
基于Matlab直流调速系统

1绪论

1.1单闭环直流调速系统概述

从生产机械要求控制的物理量来看,电力拖动自动控制系统有调速系统、位置随动系统、张力控制系统等多种类型,而各种系统往往都是通过控制转速来实现的,因此调速系统是最基本的拖动控制系统。相比于交流调速系统,直流调速系统在理论上和实践上都比较成熟。

直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代发展起来的电力电子技术,使电能可以变换和控制,产生了现代各种高效、节能的新型电源和交直流调速装置,为工业生产,交通运输,楼宇、办公、家庭自动化提供了现代化的高新技术,提高了生产效率和人们的生活质量,使人类社会生产、生活发生了巨大的变化。随着新型电力电子器件的研究和开发以及先进控制技术的发展,电力电子和电力拖动控制装置的性能也不断优化和提高,这种变化的影响将越来越大。

1.2 MATLAB简介

在1980年前后,美国的Cleve博士在New Mexico大学讲授线性代数课程时,发现应用其它高级语言编程极为不便,便构思并开发了Matlab

MATLABSGI由美国MathWorks公司开发的大型软件。在MATLAB软件中,包括了两大部分:数学计算和项目仿真。其数学计算部分提供了强大的矩阵处理和绘图功能。在项目仿真方面,MATLAB提供的软件支持几乎遍布各个项目领域。通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较开环系统和闭环系统的差别,得出直流电机调速系统的最优模型。然后用此理论去设计一个实际的调速系统,并用MATLAB仿真进行正确性的验证。

2控制直流调速系统简介

2.1 V—M系统简介

晶闸管—电动机调速系统<简称V—M系统),其简单原理图如图2.1。图中VT是晶闸管的可控整流器,它可以是单相、三相或更多相数,半波、全波、半控、全控等类型。

优点:通过调节触发装置GT的控制电压来移动触发脉冲的相位,即可改变整流电压从而实现平滑调速。

缺点:

1.因为晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。

2.元件对过电压、过电流以及过高的du/dt和di/dt都十分敏感,其中任一指标超过允许值都可能在很短时间内损坏元件。

因此必须有可靠的保护装置和符合要求的散热条件,而且在选择元件时还应有足够的余量。

图2.1 V—M系统

2.2转速控制闭环调速系统的调速指标

1、调速范围生产机械要求电动机提供的最高转速和最低转速之比叫

做调速范围,用字母D表示,即

其中和一般都指电机额定负载时的转速。

2、静差率当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落,与理想空载转速之比,称作静差率s,静差

率用来衡量调速系统在负载变化下转速的稳定度。它和机械特性的硬度有关,特性越硬,静差率越小,转速的稳定度越高。

调速范围和静差率两项指标并不是彼此孤立的必须同时提才有意义。脱离了对静差率的要求,任何调速系统都可以得到极高的调速范围;反过来,脱离了调速范围,要满足给定的静差率也就容易得多了。

3、调速范围、静差率和额定速降的关系

以电动机的额定转速为最高转速,若带额定负载时的转速降落为

,则该系统的静差率应该是最低速时的静差,即

于是,而调速范围为

上式即为调速范围、静差和额定速降之间所应满足的关系。对于一个调速

系统,它的特性硬度或值

是一定的,如果对静差率的要求越严,也就是s越小,系统能够允许的调速范围也越小。

2.3闭环调速系统的组成及静特性

转速反馈控制的闭环调速系统,其原理如图2.2所示。

图2.2采用转速负反馈的闭环调速系统

1、忽略各种非线性因素,假定各环节输入输出都是线性的;

2、假定只工作在V——M系统开环机械特性的连续段;

3、忽略直流电源和电位器的内阻。

电压比较环节:

放大器:

晶闸管整流与触发装置:

V—M系统开环机械特性:

测速发电机:

——放大器的电压放大系数;

——晶闸管整流器与触发装置的电压放大系数;

α——测速反馈系数,单位为Vmin/r。

因此转速负反馈闭环调速

系统的静特性方程式式中为闭环系统的开环放大系数。

静特性:闭环调速系统的电动机转速与负载电流<或转矩)的稳态关系。

根据各环节的稳态关系画出闭环系统的稳态结构图,如图2.3所示:

图2.3转速负反馈闭环调速系统稳态结构图

2.4反馈控制规律

从上面分析可以看出,闭环系统的开环放大系数K值对系统的稳定性影响很大,K越大,静特性就越硬,稳态速降越小,在一定静差率要求下的调速范围越广。总之K越大,稳态性能就越好。然而,只要所设置的放大器仅仅是一个

比例

放大器,稳态速差只能减小,但不能消除,因为闭环系统的稳态速降为

只有K=∞才能使,而这是不可能的。

2.5主要部件

1、比例放大器

运算放大器用作比例放大器<也称比例调节器、P 调节器),如图 2.4,

为放大器的输入和输出电压,

为同相输入端的平衡电阻,用以降

低放大器失调电流的影响放大系数为

图 2.4 P 调节器原理图图

2.5 P 调节器输出特性

2、比例积分放大器

在定性分析控制系统的性能时,通常将伯德图分成高、中、低三个频段,频段的界限是大致的。图2.6为一种典型伯德图的对数幅频特性。一般的调速系统要求以稳和准为主,对快速性要求不高,所以常用PI 调节器。采用运算放大器的PI 调节器如图2.7。

图2.6典型控制系统的伯德图 图2.7 比例积分

PI 调节器比例放大部分的放大系统;

——PI 调节器的积分时间常数。此传递函数也可以写成如下的形式

式中—PI调节器的超前时间常数。

反映系统性能的伯德图特征有以下四个方面:1.中频段以-20dB/dec的斜率穿越零分贝线,而且这一斜率占有足够的频带宽度,则系统的稳定性好;2.截止频率越高,则系统的快速性越好;3.频段的斜率陡、增益高,表示系统的稳态精度好<即静差率小,调速范围宽);4.频段衰减得越快,即高频特性负分贝值越低,说明系统抗高频噪声的能力越强。

用来衡量最小相位系统稳定程度的指标是相角裕度γ和以分贝表示的幅值裕度Lg。稳定裕度能间接的反映系统动态过程的

平稳性,稳定裕度大意味着振荡弱、超调小。

在零初始状态和阶跃输入下,PI调节器输出电压的时间特性如图2.8:

图2.8阶跃输入时PI调节器的输出特性图2.9 PI校正装置在原始系统上

添加部分的对数幅频特性

将P调节器换成PI调节器,在原始系统上新添加部分的传递函数为

其对数幅频特性如图2.9所示。

由图 2.8可以看出比例积分的物理意义。在突加输入电压时,输出电压突跳到,以保证一定的快速控制作用。但是小于稳态性能指标所要求的比例放大系数的,因为快速性被压低了,换来稳定性的保证。

作为控制器,比例积分调节器兼顾了快速响应和消除静差两方面的要求;

作为校正装置,它又能提高系统的稳定性。

2、额定励磁下直流电动机

<主电路,假定电流连续)

<额定励磁下的感应电动势)

<额定励磁下的电磁转矩)

定义下列时间常数:

得电压与电流间的传递函数为

电流与电动势间的传递函数为

2.6稳态抗扰误差分析

1、比例控制时的稳态抗扰误差采用比例调节器的闭环控制有静差调速系统的动态结构图如图2.11。当时,只扰动输入量,这时的输出量即为负载扰动引起的转速偏差Δn,可将动态结构图改画的形式如图2.12。

图2.10采用比例调节器的闭环有静差图2.11给定为0时采用比例调节器的

调速系统结构图的一般情况闭环有静差调速系统结构图

负载扰动引起的稳态速差:

这和静特性分析的结果是完全一致的。

2、积分控制时的稳态抗扰误差

将图2.11比例调节器换成积分调节器如图2.12

突加负载时,于是

负载扰动引起的稳态速差为

可见,积分控制的调速系统是无静差的。

3、比例积分控制时的稳态抗扰误差

用比例积分调节器控制的闭环调速系统的动态结构如图2.13。

图2.12给定为0时采用积分调节器图图2.13给定为0时采用比例积分调节器

的闭环调速系统结构图的闭环调速系统项目结构图

则稳态速差为

因此,比例积分控制的系统也是无静差调速系统。

4、稳态抗扰误差与系统结构的关系

上述分析表明,就稳态抗扰性能来说,比例控制系统有静差,而积分控制和比例积分控制系统都没有静差。显然,只要调节器中有积分成份,系统就是无静差的。只要在控制系统的前向通道上在扰动作用点以前含有积分环节,则外扰动便不会引起稳态误差。

3调速系统的设计及仿真

3.1参数设计及计算

1、参数给出

<1).电动机:额定数据为10kW,220V,52A,1460r/min,电枢电阻=0.5Ω,飞轮力矩GD2=10Nm2。

<2).晶闸管装置:三相桥式可控整流电路,整流变压器Y/Y联结,二次电压=230V,触发整流环节的放大系数=40。

<3).V—M系统主电路总电阻R=1.0Ω

<4).测速发电机:永磁式,ZYS231/110型;

额定数据为23.1W,110V,0.18A,1800r/min。

<5).生产机械要求调速范围D=10,静差率s≤5%.

2、参数计算

根据以上数据和稳态要求计算参数如下:

<1).为了满足D=10,s≤5%,额定负载时调速系统的稳态速降为

<2).根据,求出系统的开环放大系数

式中

<3).计算测速反馈环节的放大系数和参数

对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式

为最好,测速反馈系数α包含测速发电机的电动势转速比和电位器的分压系数,即

α=

根据测速发电机数据,

试取,如测速发电机与主电动机直接联接,则在电动机最高转速成1460r/min下,反馈电压为

相应的最大给定电压约需用18V。若直流稳压电源为±20V,可以满足需要,因此所取的值是合适的。于是,测速反馈系数为

电位器的选择方法如下:考虑测速发电机输出最高电压时,其电流约为额定值的确20%,这样,测速机电枢压降对检测信号的线性度影响较小,于是

此时所消耗的功率为

为了使电位器温度不是很高,实选瓦数应为消耗功率的一倍以上,故选为10W,3kΩ的可调电位器。

4.计算运算放大器的放大系数和参数

实取

按运算放大器参数,取

5.反馈电压

3.2有静差调速系统

1、有静差调速系统的仿真模型

根据系统稳态结构图(如图2.3>,选择仿真模块:使用constant模块作为转速给定电压,ramp模块作为负载扰动,并用staturation模块限幅,选择Gain模块作为传递函数模块,sum模块作为信号综合点,最后加上示波器。由此建立有静差调速系统的数学模型,并用MATLAB软件对系统进行仿真

图3.1有静差调速系统

2、主要元件的参数设置

<1).转速给定电压

因为触发装置GT的控制电压是由给定电压和反馈电压的差经过放大器后

产生的,所以二者的差不会很大,于是取,即常量值

在电路图的Simulink 菜单选项中,选择Simulintion Parameter 中。

对仿真参数进行如下设置:Start time:0.1。 stop time:2.0

3、仿真结果及分析

1.Kp的值不同时其输出特性如图3.2所示,a>为,b)为。

图3.2有静差调速系统的稳态特性

左——转速右——负载电流

图中转速为1449.75r/min,随着负载电流的增加,转速有所下降,在0.63s时,电流达到额定值52A,这时的转速降为1442.5r/min,系统的转速降为Δn=1449.75r/min-1442.5r/min=7.25r/min。

图中为时系统的特性,从转速曲线可以看到,随着放大倍数的增加,系统的转速降减小,静特性的硬度增加,抗负载能力提高。

(2>.不同给定值下系统的输出稳态特性,如图3.3。

为,转速降为n=1449.75r/min-1442.5r/min=7.25r/min。

为,转速降为n=1433.75-1426.25r/min=7.6r/min。

通过对比可以得出,单闭环调速系统具有很好的跟随特性。

图3.3有静差调速系统不同给定作用时的稳态输出特性

4、动态稳定的判断

按保证最小电流时电流连续的条件计算电枢回路电感量,因为取L=18mH=0.018H

计算系统时间常

数:

电力拖动机电时间常数

失控时间常数

为保证系统稳定,开环放大系数应有

代入具体数值并计算后得K<124.5,满足K>60.1,稳态精度和动态稳定性在这里不矛盾。

4.总结

电流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,并且直流调速系统在理论和实践上都比较成熟,是研究其它调速系统的基础。而且MATLAB 软件对直流调速系统进行虚拟环境下的仿真研究,不仅使用方便,也大大降低了研究成本。在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。

通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始

系统和校正后系统的差别,得出直流电机调速系统的最优模型。

参考文献

[1] 陈伯时. 电力拖动自动控制. 北京:机械工业出版社,2008

[2] 冯信康,杨兴瑶. 电力传动控制系统原理与应用. 北京:水利水电出版社,1985

[3] 周德泽. 电气传动控制系统的设计. 北京:机械工业出版社,1989

[4] 林瑞光. 电机与拖动基础. 杭州:浙江大学出版社,2007

[5] 阎治安,崔新艺,苏少平. 电机学. 西安:西安交通大学出版社,2006

[6] 孙亮,杨鹏. 自动控制原理. 北京:北京工业大学出版社,2006

[7] 王兆安,黄俊. 电力电子技术. 北京:机械工业出版社,2004

[8] 李维波. MATLAB在电气项目中的应用. 北京:中国电力出版社,2006

[9] 潘晓晟,郝世勇. MATLAB电机仿真精华50例. 北京:电子工业出版社 2007

[10] 洪乃刚. 电力电子和电力拖动控制系统的MATLAB仿真. 北京:机械工业出版社,

2006

[11] 周渊深. 电力电子技术与MATLAB仿真. 北京:中国电力出版社,2005

基于MATLAB的直流调速器电流截止负反馈单闭环调速系统

设计

学院:电子与控制项目学院

专业:控制项目

姓名:徐艳艳

学号:2018232009

指导教师: 王飚

完成时间:2018年06月

二〇一三年六月

直流调速系统的MATLAB仿真(参考程序)汇总.

直流调速系统的MATLAB 仿真 一、开环直流速系统的仿真 开环直流调速系统的电气原理如图1所示。直流电动机的电枢由三相晶闸管整流电路经平波电抗器L 供电,通过改变触发器移相控制信号c U 调节晶闸管的控制角α,从而改变整流器的输出电压,实现直流电动机的调速。该系统的仿真模型如图2所示。 图1 开环直流调速系统电气原理图 图2 直流开环调速系统的仿真模型 为了减小整流器谐波对同步信号的影响,宜设三相交流电源电感s 0L =,直流电动机励磁由直流电源直接供电。触发器(6-Pulse )的控制角(alpha_deg )由移相控制信号c U 决定,移相特性的数学表达式为 min c cmax 9090U U αα?-=?-

在本模型中取min 30α=?,cmax 10V U =,所以c 906U α=-。在直流电动机的负载转矩输入端L T 用Step 模块设定加载时刻和加载转矩。 仿真算例1 已知一台四极直流电动机额定参数为N 220V U =,N 136A I =, N 1460r /min n =,a 0.2R =Ω,2222.5N m GD =?。励磁电压f 220V U =,励磁电流f 1.5A I =。采用三相桥式整流电路,设整流器内阻rec 0.3R =Ω。平波电抗器 d 20mH L =。仿真该晶闸管-直流电动机开环调速系统,观察电动机在全压起动和起动后加额定负载时的电机转速n 、电磁转矩 e T 、电枢电流d i 及电枢电压d u 的变化情况。N 220V U = 仿真步骤: 1)绘制系统的仿真模型(图2)。 2)设置模块参数(表1) ① 供电电源电压 N rec N 2min 2200.3136 130(V)2.34cos 2.34cos30U R I U α++?= =≈?? ② 电动机参数 励磁电阻: f f f 220146.7()1.5 U R I = ==Ω 励磁电感在恒定磁场控制时可取“0”。 电枢电阻: a 0.2R =Ω 电枢电感由下式估算: N a N N 0.422019.1 19.10.0021(H)2221460136 CU L pn I ?==?≈??? 电枢绕组和励磁绕组间的互感af L : N a N e N 2200.2136 0.132(V min/r)1460 U R I K n --?= =≈?

信号与系统的MATLAB仿真

信号与系统的MATLAB 仿真 一、信号生成与运算的实现 1.1 实现)3(sin )()(π±== =t t t t S t f a )(sin )sin()sin(sin )()(t c t t t t t t t S t f a '=' '== ==πππ π ππ m11.m t=-3*pi:0.01*pi:3*pi; % 定义时间范围向量t f=sinc(t/pi); % 计算Sa(t)函数 plot(t,f); % 绘制Sa(t)的波形 运行结果: 1.2 实现)10() sin()(sin )(±== =t t t t c t f ππ m12.m t=-10:0.01:10; % 定义时间范围向量t f=sinc(t); % 计算sinc(t)函数 plot(t,f); % 绘制sinc(t)的波形 运行结果: 1.3 信号相加:t t t f ππ20cos 18cos )(+= m13.m syms t; % 定义符号变量t f=cos(18*pi*t)+cos(20*pi*t); % 计算符号函数f(t)=cos(18*pi*t)+cos(20*pi*t) ezplot(f,[0 pi]); % 绘制f(t)的波形 运行结果:

1.4 信号的调制:t t t f ππ50cos )4sin 22()(+= m14.m syms t; % 定义符号变量t f=(2+2*sin(4*pi*t))*cos(50*pi*t) % 计算符号函数f(t)=(2+2*sin(4*pi*t))*cos(50*pi*t) ezplot(f,[0 pi]); % 绘制f(t)的波形 运行结果: 1.5 信号相乘:)20cos()(sin )(t t c t f π?= m15.m t=-5:0.01:5; % 定义时间范围向量 f=sinc(t).*cos(20*pi*t); % 计算函数f(t)=sinc(t)*cos(20*pi*t) plot(t,f); % 绘制f(t)的波形 title('sinc(t)*cos(20*pi*t)'); % 加注波形标题 运行结果:

matlab控制系统仿真.

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称龙蟠学院 专业自动化 班级M10自动化 学生姓名 学号 课程设计地点 C208 课程设计学时一周 指导教师应明峰 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。

(d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统PID控制器取参数分别为:50 2 5 有积分作用单回路控制系统PID控制器取参数分别为:50 0 5

大比例作用单回路控制系统PID控制器取参数分别为:50 0 0 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响应,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏;

直流调速系统的MATLAB仿真参考程序汇总

直流调速系统的MA TLAB仿真 一、开环直流速系统的仿真 开环直流调速系统的电气原理如图1所示。直流电动机的电枢由三相晶闸管整流电路经平波电抗器供电,通过改变触发器移相控制信号调节晶闸管的U L c ,从 而改变整流器的输出电压,实现直流电动机的调速。该系统的仿真控制角模型如图2所示。 L + + GT UCR E d- - 开环直流调速系统电气原理图图1 图2 直流开环调速系统的仿真模型

L?0,直为了减小整流器谐波对同步信号的影响,宜设三相交流电源电感s流电动机励磁由直流电源直接供电。触发器(6-Pulse)的控制角(alpha_deg)由U 决定,移相特性的数学表达式为移相控制信号c???90?min U?90??c U cmax 1 ??。在直流电动机的负载,所以,在本模型中取U?10V6??30?90U?ccmaxmin转矩输 入端用Step模块设定加载时刻和加载转矩。T L仿真算例1已知一台四极直流电动机额定参数为,,136AIU?220V?NN22。励磁电压,励磁电,, 220VminUR?0.2??1460rn?/m?22.5NGD?fNa流。采用三相桥式整流电路,设整流器内阻。平波电抗器??1.5A0.3RI?recf。仿真该晶闸管-直流电动机开环调速系统,观察电动机在全压起动20mHL?d n、电磁转矩、电枢电流和起动后加额定负载时的电机转速及电枢电压的uTi ded变化情况。220V?U N仿真步骤: 1)绘制系统的仿真模型(图2)。 2)设置模块参数(表1) ①供电电源电压 U?RI220?0.3?136NNrec130(V)U??? 2?2.34?cos302.34cos?min②电动机参数 励磁电阻: U220f)146.7(?R???f I1.5f励磁电感在恒定磁场控制时可取“0”。 电枢电阻: ?0.2R?a电枢电感由下式估算: CU0.4?220N?19.1?L?19.1?0.0021(H) a2pnI2?2?1460?136NN L:电枢绕组和励磁绕组间的互感 af U?RI220?0.2?136NNa?K?0.132(V?min/r)?e n1460N 2 6060K??0.132?K?1.26eTπ2π2K1.26T0.84(H)??L?af1.5I f电机转动惯量 222.5GD2 )??0.57(kg?mJ?9.814?4g 额定负载转矩③ 模块参数名参数

单闭环直流调速系统的MATLAB计算与仿真

1 绪论 直流电动机具有良好的起、制动性能,宜于在广泛范围内平滑调速,在轧钢机、矿井卷扬机、挖掘机、海洋钻机、金属切割机床、造纸机、高层电梯等需要高性能可控电力拖动的领域中得到了广泛的应用。近年来直流调速系统发展很快,然而直流拖动控制系统毕竟在理论上和实践上都比较成熟,而且从反馈闭环控制的角度来看,它又是交流拖动控制系统的基础,所以首先应该很好的掌握直流系统。我们可以首先从单闭环转速负反馈直流调速系统来研究。由于系统需要观察较多的性能,计算参数较多,而MATLAB中的Simulink实用工具可直接构建其动态模型,省去大量的计算,通过修改动态模型可完善系统性能。 直流调速系统概述 从生产机械要求控制的物理量来看,电力传动自动控制系统有调速系统、位置伺服系统、张力控制系统等其他多种类型,各种系统往往是通过控制转速来实现的,因此调速系统是最基本的驱动控制系统。调速系统目前分为交流和直流调速控制系统,由于直流调速系统的调速范围广,静差率小、稳定性好并且具有良好的动态性能。因此在相当长的时期内,高性能的调速系统几乎都采用了直流调速系统。相比于交流调速系统,直流调速系统在理论上和实践上更加成熟。 直流调速是现代电力拖动自动控制系统中发展较早的自动控制系统。在20世纪60年代发展起来的电力电子技术,使电能可以转换和控制,产生了现代各种高效、节能的新型电源和交直流调速装置,为工业生产,交通运输,建筑、办公、家庭自动化控制设备提供了现代化的高新技术,提高了生产效率和人们的生活质量,因此,人类社会的生产、生活发生了巨大变化。随着新型电力电子器件的研究和开发,先进控制技术的发展,电力电子和电力传动控制装置的性能也不断优化和提高,这一变化的影响将越来越大。 单闭环直流电机调速系统在现代日常生活中的应用越来越广泛,其良好的调速性能、低廉的价格越来越被大众接受。 单闭环直流调速系统由整流变压器、平波电抗器、晶闸管整流调速装置、电动机-发电机、闭环控制系统组成。我们可以通过调节晶闸管的控制角来调节转速,非常方便,高效。

09级系统仿真与MATLAB语言实验

系统仿真与MATLAB语言 实验指导书

对参加实验学生的总要求 1、认真复习有关理论知识,明确每次实验目的,了解实验相关软件操作,熟悉实验内容和方法。 2、实验过程中注意仔细观察,认真记录有关数据和图像,并经由指导教师查验后方可结束实验。 3、应严格遵守实验室规章制度,服从实验室教师的安排和管理。 4、对实验仪器的操作使用严格按照实验室要求进行。

实验总要求 1、封面:注明实验名称、实验人员班级、学号(全号)和姓名等。 2、内容方面:注明实验所用设备、仪器及实验步骤方法;记录清楚实验所得的原始数据和图像,并按实验要求绘制相关图表、曲线或计算相关数据;认真分析所得实验结果,得出明确实验结论。并注明该结论所依据的原理和理论;对实验进行反馈回顾,总结出实验方法要领和注意事项,对实验失败的原因进行分析剖解,总结出实验的经验和教训。 3、文字方面,撰写规范,杜绝错别字。 4、杜绝抄袭,杜绝提供不真实的实验内容。

实验一 MATLAB 语言工作环境和基本操作 1 实验目的 1).熟悉MATLAB 的开发环境; 2).掌握MATLAB 的一些常用命令; 3).掌握矩阵、变量、表达式的输入方法及各种基本运算。 2 实验器材 计算机WinXP 、Matlab7.0软件 3 实验内容 (1). 输入 A=[7 1 5;2 5 6;3 1 5],B=[1 1 1; 2 2 2;3 3 3], 在命令窗口中执行下列表达式,掌握其含义: A(2, 3) A(:,2) A(3,:) A(:,1:2:3) A(:,3).*B(:,2) A(:,3)*B(2,:) A*B A.*B A^2 A.^2 B/A B./A (2).输入 C=1:2:20,则 C (i )表示什么?其中 i=1,2,3,…,10; (3)掌握MA TLAB 常用命令 >> who %列出工作空间中变量 >> whos %列出工作空间中变量,同时包括变量详细信息 >>save test %将工作空间中变量存储到test.mat 文件中 >>load test %从test.mat 文件中读取变量到工作空间中 >>clear %清除工作空间中变量 >>help 函数名 %对所选函数的功能、调用格式及相关函数给出说明 >>lookfor %查找具有某种功能的函数但却不知道该函数的准确名称 如: lookfor Lyapunov 可列出与Lyapunov 有关的所有函数。 (4) 在MATLAB 的命令窗口计算: 1) )2sin(π 2) 5.4)4.05589(÷?+ (5). 试用 help 命令理解下面程序各指令的含义: clear t =0:0.001:2*pi; subplot(2,2,1); polar(t, 1+cos(t)) subplot(2,2,2); plot(cos(t).^3,sin(t).^3) subplot(2,2,3); polar(t,abs(sin(t).*cos(t))) subplot(2,2,4); polar(t,(cos(2*t)).^0.5) (6)(选做)设计M 文件计算: x=0:0.1:10 当sum>1000时停止运算,并显示求和结果及计算次数。 i i i x x sum 2100 2 -= ∑ =

自控-二阶系统Matlab仿真

自动控制原理 二阶系统性能分析Matlab 仿真大作业附题目+ 完整报告内容

设二阶控制系统如图 1所示,其中开环传递函数 ) 1(10 )2()(2+=+=s s s s s G n n ξωω 图1 图2 图3 要求: 1、分别用如图2和图3所示的测速反馈控制和比例微分控制两种方式改善系统的性能,如果要求改善后系统的阻尼比ξ =0.707,则t K 和 d T 分别取多少? 解: 由)1(10 )2()(2 += +=s s s s s G n n ξωω得10 21,10,102===ξωωn 22n n () s s ωξω+R (s )C (s ) -

对于测速反馈控制,其开环传递函数为:) 2()s (2 2n t n n K s s G ωξωω++=; 闭环传递函数为:2 2 2)2 1(2)(n n n t n s K s s ωωωξωφ+++= ; 所以当n t K ωξ2 1+=0.707时,347.02)707.0(t =÷?-=n K ωξ; 对于比例微分控制,其开环传递函数为:)2()1()(2 n n d s s s T s G ξωω++=; 闭环传递函数为:) )2 1(2)1()(2 22 n n n d n d s T s s T s ωωωξωφ++++=; 所以当n d T ωξ2 1 +=0.707时,347.02)707.0(=÷?-=n d T ωξ; 2、请用MATLAB 分别画出第1小题中的3个系统对单位阶跃输入的响应图; 解: ①图一的闭环传递函数为: 2 22 2)(n n n s s s ωξωωφ++=,10 21 ,10n ==ξω Matlab 代码如下: clc clear wn=sqrt(10); zeta=1/(2*sqrt(10)); t=0:0.1:12; Gs=tf(wn^2,[1,2*zeta*wn,wn^2]); step(Gs,t)

双闭环直流调速系统的课程设计(MATLAB仿真)

任务书 1.设计题目 转速、电流双闭环直流调速系统的设计 2.设计任务 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:U n =440V,I n =365A,n N =950r/min,R a =, 电枢电路总电阻R=, 电枢电路总电感L=, 电流允许过载倍数=, 折算到电动机飞轮惯量GD2=20Nm2。 晶闸管整流装置放大倍数K s =40,滞后时间常数T s = 电流反馈系数=A (10V/ 转速反馈系数= min/r (10V/nN) 滤波时间常数取T oi =,T on = ===15V;调节器输入电阻R a =40k 3.设计要求 (1)稳态指标:无静差

(2)动态指标:电流超调量5%;采用转速微分负反馈使转速超调量等于0。 目录 任务书.......................................................... I 目录........................................................... II 前言 (1) 第一章双闭环直流调速系统的工作原理 (2) 双闭环直流调速系统的介绍 (2) 双闭环直流调速系统的组成 (3) 双闭环直流调速系统的稳态结构图和静特性 (4) 双闭环直流调速系统的数学模型 (5) 双闭环直流调速系统的动态数学模型 (5) 起动过程分析 (6) 第二章调节器的工程设计 (9) 调节器的设计原则 (9) Ⅰ型系统与Ⅱ型系统的性能比较 (10) 电流调节器的设计 (11) 结构框图的化简和结构的选择 (11) 时间常数的计算 (12) 选择电流调节器的结构 (13) 计算电流调节器的参数 (13) 校验近似条件 (14) 计算调节器的电阻和电容 (15) 转速调节器的设计 (15) 转速环结构框图的化简 (15)

基于MATLAB的直流电机调速系统

绪论 直流调速是指人为地或自动地改变直流电动机的转速,以满足工作机械的要求。从机械特性上看,就是通过改变电动机的参数或外加工电压等方法来改变电动机的机械特性,从而改变电动机机械特性和工作特性机械特性的交点,使电动机的稳定运转速度发生变化。 直流调速系统,特别是双闭环直流调速系统是工业生产过程中应用最广的电气传动装置之一。广泛地应用于轧钢机、冶金、印刷、金属切削机床等许多领域的自动控制系统中。它通常采用三相全控桥式整流电路对电动机进行供电,从而控制电动机的转速,传统的控制系统采用模拟元件,如晶体管、各种线性运算电路等,虽在一定程度上满足了生产要求,但是因为元件容易老化和在使用中易受外界干扰影响,并且线路复杂、通用性差,控制效果受到器件性能、温度等因素的影响,从而致使系统的运行特性也随之变化,故系统运行的可靠性及准确性得不到保证,甚至出现事故。 双闭环直流调速系统是一个复杂的自动控制系统,在设计和调试的过程中有大量的参数需要计算和调整,运用传统的设计方法工作量大,系统调试困难,将SIMULINK 用于电机系统的仿真研究近几年逐渐成为人们研究的热点。同时,MATLAB软件中还提供了新的控制系统模型输入与仿真工具SIMULINK,它具有构造模型简单、动态修改参数实现系统控制容易、界面友好、功能强大等优点,成为动态建模与仿真方面应用最广泛的软件包之一。它可以利用鼠标器在模型窗口上“画”出所需的控制系统模型,然后利用SIMULINK提供的功能来对系统进行仿真或分析,从而使得一个复杂系统的输入变得相当容易且直观。 本文采用工程设计方法对转速、电流双闭环直流调速系统进行辅助设计,选择适当的调节器结构,进行参数计算和近似校验,并建立起制动、抗电网电压扰动和抗负载扰动的MATLAB/SIMULINK仿真模型,分析转速和仿真波形,并进行调试,使双闭环直流调速系统趋于完善、合理。 2MATLAB简介 MATLAB是一门计算机编程语言,取名来源于Matrix Laboratory,本意是专门以矩阵的方式来处理计算机数据,它把数值计算和可视化环境集成到一起,非常直观,而且提供了大量的函数,使其越来越受到人们的喜爱,工具箱越来越多,应用范围也越来越广泛。 MATLAB最突出的特点就是简洁。MATLAB用更直观的,符合人们思维习惯的代码,代替了C和FORTRAN语言的冗长代码。MATLAB给用户带来的是最直观,最简洁的程序

基于Matlab的归一化二阶系统课程设计

Matlab 实训设计(一) 二阶系统变阻尼比的动态仿真系统的设计 一.设计一个二阶系统的变阻尼比的动态仿真系统 二.步骤 (1)程序功能描述 1. 典型二阶系统的传递函数为 ω ωωξ22 2 2)(n n n S s ++= Φ 2. 归一化二阶系统的单位阶跃响应 1、ζ=0(无阻尼)时,系统处于等幅振荡,超调量最大,为100%,并且系统发生不衰减的振荡,永远达不到稳态。 2、0<ζ<1(欠阻尼)时,系统为衰减振荡。为了获得满意的二阶系统的瞬态响应特性,通常阻尼比在0.4~0.8的范围内选择。这时系统在响应的快速性、稳定性等方面都较好。 3、在ζ=1(临界阻尼)及ζ>1(过阻尼)时,二阶系统的瞬态过程具有单调上升的特性,以ζ=1时瞬态过程最短。 (2)程序界面设计 图形界面中的grid on 、grid off 分别是网格和绘图框的打开和关闭按钮

(3)程序测试运行 在编辑框中+还可以输入如0:0.1:0.8的阻尼系数数组,这表示把0到0.8之间的长度以0.1为跨距等份,再以每点的数据得到响应曲线,上式就包含了 ze-ta=0、0.1、0.2···、0.8总共8个阻尼比下的响应曲线

三.控件属性设置 (1)String %显示在控件上的字符串 (2)Callback 回调函数 (3)enable 表示控件是否有效 (4)Tag 控件标记,用于标识控件 四.设计:实现如下功能的系统界面 (1)在编辑框中,可以输入表示阻尼比的标量成行数组、数值,并在按了Enter 键后,在轴上画出图形,坐标范围x[1,15],y[0,2]。 (2)在点击grid on或者grid off键时,在轴上显示或删除“网格线”。(3)在菜单[options]下,有两个下拉菜单[Box on]和[Box off],缺省值为off。(4)所设计界面和其上图形,都按比例缩放。 五.各个控件属性设置 (1)在图形窗中设置 Name 我的设计 Rize on %图窗可以缩放 Tag figure1 %生成handles. figure1 (2)在轴框中 Units normalizen Box off坐标轴不封闭 Tag axes1 XLim[0,15]%x范围 YLim[1,2]%y范围 (3)静态文件框1 fontsize 0.696 fritunits normalizen String“归一化二阶阶跃响应” Tag text1 Horizontalignment Center

单闭环直流调速系统的MATLAB计算与仿真

目录 目录.................................................................. 错误!未定义书签。 1 绪论............................................................... 错误!未定义书签。 直流调速系统概述.............................................. 错误!未定义书签。 MATLAB简介 ................................................... 错误!未定义书签。 2 直流电动机的降压调速............................................... 错误!未定义书签。 直流电动机构成................................................. 错误!未定义书签。 直流电机励磁方式.............................................. 错误!未定义书签。 直流电动机工作原理............................................ 错误!未定义书签。 直流电动机的降压调速.......................................... 错误!未定义书签。 3 单闭环直流调速系统................................................. 错误!未定义书签。 V-M系统简介 .................................................. 错误!未定义书签。 三相桥式全控整流电路.......................................... 错误!未定义书签。 闭环调速系统的组成............................................ 错误!未定义书签。 4 电路设计和仿真..................................................... 错误!未定义书签。 电路原理...................................................... 错误!未定义书签。 系统的建模和参数设置.......................................... 错误!未定义书签。 仿真结果...................................................... 错误!未定义书签。结论................................................................ 错误!未定义书签。小组分工.............................................................. 错误!未定义书签。附录.................................................................. 错误!未定义书签。

二阶系统matlab仿真

simulink仿真 -1<ξ<0 >> step(tf(4^2,[1,2*(-0.5)*4,4^2])) ξ<-1 >> step(tf(4^2,[1,2*(-1.5)*4,4^2])) ξ=0 >> step(tf(4^2,[1,2*0*4,4^2])) 0<ξ<1 >> figure >> step(tf(4^2,[1,2*0.1*4,4^2])) >> step(tf(4^2,[1,2*0.2*4,4^2])) >> step(tf(4^2,[1,2*0.3*4,4^2])) >> step(tf(4^2,[1,2*0.4*4,4^2])) >> step(tf(4^2,[1,2*0.5*4,4^2])) >> step(tf(4^2,[1,2*0.6*4,4^2])) >> step(tf(4^2,[1,2*0.7*4,4^2])) >> step(tf(4^2,[1,2*0.8*4,4^2])) >> step(tf(4^2,[1,2*0.9*4,4^2]))

ξ=1 >> figure >> step(tf(4^2,[1,2*1*4,4^2]))

ξ>1 >> hold on >> step(tf(4^2,[1,2*2.0*4,4^2])) >> step(tf(4^2,[1,2*4.0*4,4^2])) >> step(tf(4^2,[1,2*8.0*4,4^2])) ωn不变,ζ减小

ξ=0.5,改变ωn时的情况: >> figure >> step(tf(1^2,[1,2*0.5*1,1^2])) (ωn=1) >> hold on >> step(tf(2^2,[1,2*0.5*2,2^2])) (ωn=2)>> step(tf(4^2,[1,2*0.5*4,4^2])) (ωn=4)>> step(tf(8^2,[1,2*0.5*8,8^2])) (ωn=8)

直流PWM调速系统的MATLAB仿真++

《单片机原理及接口技术》课程设计报告 课题名称直流PWM调速系统的MATLAB仿真 学院自动控制与机械工程学院 专业机械设计制造及自动化 班级 姓名 (学号) 时间2016-1-9

摘要 直流电机具有良好的启动性能和调速特性,它的特点是启动转矩大,能在宽广的范围内平滑、经济地调速,转速控制容易,调速后效率很高。 本文设计的直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED液晶显示器、霍尔测速电路以及独立按键组成的电子产品。电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。 关键词:直流电机调速;H桥驱动电路;LED显示器;51单片机

ABSTRACT DC motor has a good startup performance and speed characteristics, it is characterized by starting torque, maximum torque, in a wide range of smooth, economical speed, speed, easy control, speed control after the high efficiency. This design of DC motor speed control system, mainly by the microcontroller 51, power supply, H-bridge driver circuits, LED liquid crystal display, the Hall velocity and independent key component circuits of electronic products. Power supply with 78 series chip +5 V, +15 V for motor speed control using PWM wave mode, PWM is a pulse width modulation, duty cycle by changing the MCU 51. Achieved through independent buttons start and stop the motor, speed control, turning the manual control, LED realize the measurement data (speed) of the display. Motor speed using Hall sensor output square wave, by 51 seconds to 1 microcontroller square wave pulses are counted to calculate the speed of the motor to achieve a DC motor feedback control. Keywords: DC motor speed control;H bridge driver circuit;LED display

直流调速系统的matlab仿真

一,转速反馈控制直流调速系统的matlab仿真 1,基本原理: 根据自动控制原理,将系统的被调节量作为反馈量引入系统,与给定量进行比较,用比较后的偏差值对系统进行控制,可以有效地抑制甚至消除扰动的影响,而维持被调节量很少变化或不变,这就是反馈控制的基本作用。在负反馈基础上的“检查误差,用以纠正误差”这一原理组成的系统,其输出量反馈的传递途径构成一个闭环回路,因此被称作闭环控制系统。在直流系统中,被调节量是转速,所构成的是转速反馈控制的直流调速系统。 2,下图是转速负反馈闭环调速系统动态结构框图 各个环节的参数如下: 直流电动机:额定电压U N=220V,额定电流I dN=55A,额定转速 n N=1000r/min,电机电动势常数C e=0.192V?min/r。 假定晶闸管整流装置输出电流可逆,装置的放大系数Ks=44,滞后时间常数Ts=0.00167。 电枢回路总电阻R=1Ω,电枢回路电磁时间常数Tl=0.00167s,电力拖动系统机电时间常数Tm=0.075s。

转速反馈系数α=0.01V?min/r。 对应的额定电压U n*=10V。 在matlab的simulink里面的仿真框图如下 其中PI调节器的值暂定为Kp=0.56,1/τ=11.43。 3,仿真模型的建立: 进入matlab,单击命令窗口工具栏的simulink图标,打开simulink模块浏览器窗口,如下图所示:

打开模型编辑器窗口,双击所需子模块库的图标,则可以打开它,用鼠标左键选中所需的子模块,拖入模型编辑窗口。要改变模块的参数双击模块图案即可(各模块的参数图案)。 加法器模块对话框Gain模块对话框

实验三二阶系统matlab仿真(dg)

利用simulink进行仿真的步骤 1.双击桌面图标打开Matlab软件; 2.在Command Window命令行>>后输入simulink并回车或点击窗口上 部图标直接进入simulink界面; 3.在simulink界面点击File-New-Model就可以在Model上建立系统 的仿真模型了; 4.在左面的器件模型库中找到所需模型,用鼠标将器件模型拖到建立 的Model上,然后用鼠标将它们用连线连起来,系统的仿真模型就建立起来了; 5.点击界面上部的图标‘’进行仿真,双击示波器就可以看到仿真结 果。 实验要用到的元件模型的图标及解释如下: 阶跃信号:在simulink-source中可以找到,双击可以设定阶跃时间。 sum:在simulink-math operations中可以找到,双击可以改变器属性以实现信号相加还是相减; 比例环节:在simulink-math operations中可以找到,双击可以改变器属 性以改变比例系数; 积分环节:在simulink-continues中可以找到; 传函的一般数学模型表达形式:在simulink-continues中可以找到,双击可以对传递函数进行更改(通过设定系数)。 示波器:在simulink-sinks中可以找到。

传递函数的Matlab 定义 传递函数以多项式和的形式(一般形式、标准形式)给出 10111011()m m m m n n n n b s b s b s b G s a s a s a s a ----+++=+++ 用如下语句可以定义传递函数G(s) >> num=[b 0,b 1,b 2…b m ] ;只写各项的系数 >> den=[a 0,a 1,a 2,…a n ] ;只写各项的系数 >> g=tf(num,den) 或 >>g=tf([b0,b1,b2…bm],[a0,a1,a2,…an]) 例:用Matlab 定义二阶系统 2 223()(0.6,3)2*0.6*33n G s s s ζω===++ 并用Matlab 语句绘制此二阶系统在单位阶跃信号输入下的输出曲线c(t)(即单位阶跃响应)。 (1)定义函数: >> num=3^2 >> den=[1,2*0.6*3, 3^2] >> g=tf(num,den) (2)求系统的单位阶跃响应c(t): >> step(g) 可得到系统的单位阶跃响应 上述语句实现的功能也可以以一条语句实现: Time (sec)A m p l i t u d e

实验二 用MATLAB实现线性系统的时域分析(已完成)

实验二用MATLAB实现线性系统的时域分析 [实验目的] 1.研究线性系统在典型输入信号作用下的暂态响应; 2.熟悉线性系统的暂态性能指标; 3.研究二阶系统重要参数阻尼比ξ对系统动态性能的影响; 4.熟悉在MATLAB下判断系统稳定性的方法; 5.熟悉在MATLAB下求取稳态误差的方法。 [实验原理] MATLAB中有两类用于求解系统时域响应的方法。 其一是利用MATLAB中的控制系统工具箱(Control System Toolbox)提供的函数(命令); 其二是Simulink仿真,它主要用于对复杂系统进行建模和仿真。 一、用MATLAB函数(命令)进行暂态响应分析 1求取线性连续系统的单位阶跃响应的函数——step 基本格式为: step(sys) step(num,den) step(A,B,C,D) step(sys,t) step(sys1,sys2,…,t) y=step(sys,t) [y,t]=step(sys) [y,t,x]=step(sys) 其中模型对象的类型如下: sys=tf(num,den)多项式模型 sys=zpk(z,p,k)零点极点模型 sys=ss(a,b,c,d)状态空间模型

参数无t,表示时间向量t的范围自动设定。 参数有t,表示给定时间向量t,应该有初值,时间增量,末值,如t=0:0.01:2。 前5种函数可以绘出阶跃响应曲线;后3种函数不绘阶跃响应曲线,而是返回响应变量y,时间向量t,以及状态变量x。 2求取线性连续系统的单位脉冲响应的函数——impulse 基本格式为: impulse(sys) impulse(num,den) impulse(sys,tf) impulse(sys,t) impulse(sys1,sys2,…,t) y=impulse(sys,t) [y,t]=impulse(sys) [y,t,x]=impulse(sys) 3求取线性连续系统的单位斜坡响应 MATLAB没有直接求系统斜坡响应的功能函数。在求取控制系统的斜坡响应时,通常用阶跃响应函数step()求取传递函数为G(s)/s的系统的阶跃响应,则其结果就是原系统G(s)的斜坡响应。原因是,单位阶跃信号的拉氏变换为1/s,而单位斜坡信号的拉氏变换为1/s2。4.求取线性连续系统对任意输入的响应的函数——lsim 其格式为 y=lsim(sys,u,t) 其中,t为仿真时间,u为控制系统的任意输入信号。 5.暂态响应性能指标 在阶跃响应曲线窗口,使用右键弹出浮动菜单,选择其中的Characteristics子菜单,有4个子项: ①Peak Response峰值响应,点击将出现标峰值记点,单击此标记点可获得峰值幅值,超调量和峰值时间。 ②Settling Time调节时间,点击将出现调节时间标记点,单击此标记点即可获得调节时间。 ③Rise Time上升时间,点击将出现上升时间标记点,单击此标记点即可获得上升时间。

单闭环直流调速系统的MATLAB计算与仿真教程文件

单闭环直流调速系统的M A T L A B计算与仿 真

目录 目录............................................................................................................................................................... - 1 -1 绪论........................................................................................................................................................... - 2 - 1.1 直流调速系统概述 .................................................................................................................. - 2 - 1.2 MATLAB简介......................................................................................................................... - 3 - 2 直流电动机的降压调速........................................................................................................................... - 4 - 2.1 直流电动机构成 ....................................................................................................................... - 4 - 2.2 直流电机励磁方式 .................................................................................................................. - 5 - 2.3 直流电动机工作原理 .............................................................................................................. - 5 - 2.4 直流电动机的降压调速 .......................................................................................................... - 6 - 3 单闭环直流调速系统............................................................................................................................... - 7 - 3.1 V-M系统简介 .......................................................................................................................... - 7 - 3.2 三相桥式全控整流电路 .......................................................................................................... - 8 - 3.3 闭环调速系统的组成 .............................................................................................................. - 9 - 4 电路设计和仿真..................................................................................................................................... - 10 - 4.1 电路原理 ................................................................................................................................ - 10 - 4.2 系统的建模和参数设置 ........................................................................................................ - 11 - 4.3 仿真结果 ................................................................................................................................ - 19 -结论........................................................................................................................................................... - 21 -小组分工..................................................................................................................................................... - 21 -附录............................................................................................................................................................. - 23 -

相关主题
文本预览
相关文档 最新文档