当前位置:文档之家› 八年级数学轴对称解答题达标检测(Word版 含解析)

八年级数学轴对称解答题达标检测(Word版 含解析)

八年级数学轴对称解答题达标检测(Word 版 含解析)

一、八年级数学 轴对称解答题压轴题(难)

1.在梯形ABCD 中,//AD BC ,90B ∠=?,45C ∠=?,8AB =,14BC =,点E 、F

分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=?,

PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.

(1)求边AD 的长;

(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积. 【答案】(1)6;(2)y=-3x+10(1≤x <103);(2)1769

或32 【解析】 【分析】

(1)如下图,利用等腰直角三角形DHC 可得到HC 的长度,从而得出HB 的长,进而得出AD 的长;

(2)如下图,利用等腰直角三角形的性质,可得PQ 、PR 的长,然后利用EB=PQ+PR 得去x 、y 的函数关系,最后根据图形特点得出取值范围;

(3)存在2种情况,一种是点P 在梯形内,一种是在梯形外,分别根y 的值求出x 的值,然后根据梯形面积求解即可. 【详解】

(1)如下图,过点D 作BC 的垂线,交BC 于点H

∵∠C=45°,DH ⊥BC ∴△DHC 是等腰直角三角形 ∵四边形ABCD 是梯形,∠B=90° ∴四边形ABHD 是矩形,∴DH=AB=8

∴HC=8 ∴BH=BC -HC=6 ∴AD=6

(2)如下图,过点P 作EF 的垂线,交EF 于点Q ,反向延长交BC 于点R ,DH 与EF 交于点G

∵EF ∥AD,∴EF ∥BC ∴∠EFP=∠C=45° ∵EP ⊥PF

∴△EPF 是等腰直角三角形

同理,还可得△NPM 和△DGF 也是等腰直角三角形 ∵AE=x

∴DG=x=GF,∴EF=AD+GF=6+x ∵PQ ⊥EF,∴PQ=QE=QF ∴PQ=

()1

62

x + 同理,PR=

12

y ∵AB=8,∴EB=8-x ∵EB=QR

∴8-x=()11622

x y ++ 化简得:y=-3x+10

∵y >0,∴x <

103

当点N 与点B 重合时,x 可取得最小值

则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1 ∴1≤x <

103

(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=

83

=AE

∴188176662339

ABCD S ??=

?++?= ???梯形 情况二:点P 在梯形ABCD 外,图形如下:

与(2)相同,可得y=3x -10 则当y=2时,x=4,即AE=4 ∴()1

6644322

ABCD S =?++?=梯形 【点睛】

本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力.

2.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN 是线段AB 的垂直平分线,P 是MN 上任一点,连结PA 、PB ,将线段AB 沿直线MN 对称,我们发现PA 与PB 完全重合,由此即有:线段垂直平分线的性质定理 线段垂直平分线上的点到线段的距离相等.已知:如图,MN ⊥AB ,垂足为点C ,AC =BC ,点P 是直线MN 上的任意一点.求证:PA =PB .分析:图中有两个直角三角形APC 和BPC ,只要证明这两个三角形全等,便可证明PA =PB .

定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证

明过程.

定理应用:

(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.

(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.

【答案】(1)见解析;(2)5

【解析】

【分析】

定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;

(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;

(2)连接BD,BE,证明△BDE是等边三角形即可解答.

【详解】

解:定理证明:

∵MN⊥AB,

∴∠PCA=∠PCB=90°.

又∵AC=BC,PC=PC,

∴△PAC≌△PBC(SAS),

∴PA=PB.

定理应用:(1)如图2,连结OA、OB、OC.

∵直线m是边BC的垂直平分线,

∴OB=OC,

∵直线n是边AC的垂直平分线,

∴OA=OC,

∴OA=OB

∵OH⊥AB,

∴AH=BH;

(2)如图③中,连接BD,BE.

∵BA=BC,∠ABC=120°,

∴∠A=∠C=30°,

∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,

∴DA=DB,EB=EC,

∴∠A=∠DBA=30°,∠C=∠EBC=30°,

∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,

∴△BDE是等边三角形,

∴AD=BD=DE=BE=EC,

∵AC=15=AD+DE+EC=3DE,

∴DE=5,

故答案为:5.

【点睛】

本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.

3.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC边上的中线AD的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.根据SAS可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.

(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.

(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.

【解析】

【分析】

(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;

(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到

∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明

△BAE≌△ACH,故BE=AH,故可证明BE=2AF.

(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.

【详解】

(1)∵△ADC≌△EDB,

∴BE=AC=8,

∵AB=12,

∴12-8<AE<12+8,

即4<AE<20,

∵D为AE中点

∴2<AD<10;

(2)延长AF到H,使AF=HF,

由题意得△ADF≌△HCF,故AH=2AF,

∵AB⊥AC,AD⊥AE,

∴∠BAE+∠CAD=180°,

又∠ACH+∠CAH+∠AHC=180°,

∵∠D=∠FCH,∠DAF=∠CHF,

∴∠ACH+∠CAD=180°,

故∠BAE= ACH,

又AB=AC,AD=AE

∴△BAE≌△ACH(SAS),

故BE=AH,又AH=2AF

∴BE= 2AF.

(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:

延长FD到点G,使DG=FD,连结GA,GE,

由题意得△DBF≌△ADG,

∴FD=GD,BF=AG,

∵DE⊥DF,

∴DE垂直平分GF,

∴EF=EG,

∵∠C=90°,

∴∠B+∠CAB=90°,

又∠B=∠DAG,

∴∠DAG +∠CAB=90°

∴∠EAG=90°,

故EG2=AE2+AG2,

∵EF=EG, BF=AG

∴EF2=AE2+BF2,

则以线段AE、BF、EF为边的三角形为直角三角形.

【点睛】

此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.

4.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:

(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;

(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.

(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.

【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°

【解析】

【分析】

(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;

(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;

(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.

【详解】

解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,

∴∠ABD=∠BAD,

∴△ABD为等腰三角形,

∴∠BDC=72°=∠C,

∴△BCD为等腰三角形;

(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:

(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:

①当分割的直线过顶点B时,

【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点

此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;

【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点

此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;

【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,

∴∠ABD=72°,最大角的值为72°;

△BCD以C为顶点:∠A=36°,∠D=54°,

∴∠ABD=90°,最大角的值为90°;

△BCD以D为顶点:∠A=36°,∠D=36°

∴∠ABD=108°,最大角的值为108°;

②当分割三角形的直线过点D时情况和过点B一样的;

③当分割三角形的直线过点A时,

此时∠A=36°,∠D=12°,∠B=132°, 最大角的值为132°;

综上所述:最大角的可能值为72°,90°,108°,126°,132°. 【点睛】

本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.

5.如图,在等边ABC ?中,点D ,E 分别是AC ,AB 上的动点,且AE CD =,BD 交CE 于点P .

(1)如图1,求证120BPC ?∠=;

(2)点M 是边BC 的中点,连接PA ,PM .

①如图2,若点A ,P ,M 三点共线,则AP 与PM 的数量关系是 ; ②若点A ,P ,M 三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.

【答案】(1)证明过程见详解;(2)①2AP PM =;②结论成立,证明见详解 【解析】 【分析】

(1)先证明()AEC CDB SAS ≌,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论;

(2)①2AP PM =;由等边三角形的性质和已知条件得出AM ⊥BC ,∠CAP =30°,可得PB =PC ,由∠BPC =120°和等腰三角形的性质可得∠PCB =30°,进而可得AP =PC ,由30°角的直角三角形的性质可得PC =2PM ,于是可得结论;

②延长BP 至D ,使PD =PC ,连接AD 、CD ,根据SAS 可证△ACD ≌△BCP ,得出AD =BP ,∠ADC =∠BPC =120°,然后延长PM 至N ,使MN =MP ,连接CN ,易证△CMN ≌△BMP (SAS ),可得CN =BP =AD ,∠NCM =∠PBM ,最后再根据SAS 证明△ADP ≌△NCP ,即可证得结论. 【详解】

(1)证明:因为△ABC 为等边三角形,所以60A ACB ∠=∠=?

AC BC

A ACB

AE CD

=

?

?

∠=∠

?

?=

?

,∴()

AEC CDB SAS

≌,∴AEC CDB

∠=∠,

在四边形AEPD中,∵360

AEC EPD PDA A

∠+∠+∠+∠=?,

∴18060360

AEC EPD CDB

∠+∠+?-∠+?=?,

∴120

EPD

∠=?,∴120

BPC

∠=?;

(2)①如图2,∵△ABC是等边三角形,点M是边BC的中点,

∴∠BAC=∠ABC=∠ACB=60°,AM⊥BC,∠CAP=

1

2

∠BAC=30°,∴PB=PC,

∵∠BPC=120°,∴∠PBC=∠PCB=30°,

∴PC=2PM,∠ACP=60°﹣30°=30°=∠CAP,

∴AP=PC,∴AP=2PM;

故答案为:2

AP PM

=;

②AP=2PM成立,理由如下:

延长BP至D,使PD=PC,连接AD、CD,如图4所示:则∠CPD=180°﹣∠BPC=60°,∴△PCD是等边三角形,

∴CD=PD=PC,∠PDC=∠PCD=60°,

∵△ABC是等边三角形,∴BC=AC,∠ACB=60°=∠PCD,

∴∠BCP=∠ACD,

∴△ACD≌△BCP(SAS),

∴AD=BP,∠ADC=∠BPC=120°,

∴∠ADP=120°﹣60°=60°,

延长PM至N,使MN=MP,连接CN,

∵点M是边BC的中点,∴CM=BM,

∴△CMN≌△BMP(SAS),

∴CN=BP=AD,∠NCM=∠PBM,

∴CN∥BP,∴∠NCP+∠BPC=180°,

∴∠NCP=60°=∠ADP,

在△ADP和△NCP中,∵AD=NC,∠ADP=∠NCP,PD=PC,

∴△ADP≌△NCP(SAS),

∴AP=PN=2CM;

【点睛】

本题是三角形的综合题,主要考查了等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.

6.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.

(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;

(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.

【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为20°或40°的角.

【解析】

【分析】

(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.

(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;

(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固

定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;

【详解】

(1)∵AB=AC,

∴∠ABC=∠C,

∵BD=BC=AD,

∴∠A=∠ABD,∠C=∠BDC,

设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x

2

可得2x=180?-x

2

解得:x=36°,

则∠A=36°;

(2)根据(1)的解题过程作出△ABC的三等分线,如图1;

由45°自然想到等腰直角三角形,有两种情况,

①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;

②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;

(3)如图4所示:

①当AD=AE时,

∵2x+x=30°+30°,

∴x=20°;

②当AD=DE时,

∵30°+30°+2x+x=180°,

∴x=40°;

综上所述,∠C为20°或40°的角.

【点睛】

本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.

7.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.

(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.

(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并

延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=2

3

DC?请求出点C的坐标;

(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.

【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .

【解析】

【分析】

(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;

(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得到答案;

(3)以OA 为对称轴作等边△ADE,连接EP,并延长EP 交x 轴于点F.证明点P 在直线EF 上运动,根据垂线段最短解答.

【详解】

解:(1)作∠DCH=10°,CH 交 BD 的延长线于 H,

∵∠BAO=60°,

∴∠ABO=30°,

∴AB=2OA=6,

∵∠BAO =60°,∠BCO =40°, ∴∠ABC =180°﹣60°﹣40°=80°, ∵BD 是△ABC 的角平分线, ∴∠ABD =∠CBD =40°,

∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°, ∴DB =DC , 在△OBD 和△HCD 中,

==OBD HCD DB DC ODC HDC ∠∠??

=??∠∠?

∴△OBD ≌△HCD (ASA ), ∴OB =HC , 在△AOB 和△FHC 中,

==ABO FCH OB HC AOB FHC ∠∠??

=??∠∠?

∴△AOB ≌△FHC (ASA ), ∴CF=AB=6, 故答案为6;

(2)∵△ABD 和△BCQ 是等边三角形, ∴∠ABD =∠CBQ =60°, ∴∠ABC =∠DBQ , 在△CBA 和△QBD 中,

BA BD ABC DBQ BC BQ =??

∠=∠??=?

∴△CBA ≌△QBD (SAS ), ∴∠BDQ =∠BAC =60°, ∴∠PDO =60°, ∴PD =2DO =6,

∵PD=2

3 DC,

∴DC=9,即 OC=OD+CD=12,

∴点 C的坐标为(12,0);

(3)如图3,以 OA为对称轴作等边△ADE,连接 EP,并延长 EP交 x 轴于点F.

由(2)得,△AEP≌△ADB,

∴∠AEP=∠ADB=120°,

∴∠OEF=60°,

∴OF=OA=3,

∴点P在直线 EF上运动,当 OP⊥EF时,OP最小,

∴OP=1

2

OF=

3

2

则OP的最小值为3

2.

【点睛】

本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.

8.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A.点B同时出发,沿三角形的边运动,已知点M的速度为2cm/s,点N的速度为3cm/s.当点N第一次到达B点时,M、N同时停止运动.

(1)点M、N运动秒后,△AMN是等边三角形?

(2)点M、N在BC边上运动时,运动秒后得到以MN为底边的等腰三角形

△AMN?

(3)M、N同时运动几秒后,△AMN是直角三角形?请说明理由.

【答案】(1)12

5

;(2)

48

5

;(3)点M、N运动3秒或

12

7

秒或10秒或9秒后,

△AMN为直角三角形.

【解析】

【分析】

(1)当AM=AN时,△MNA是等边三角形.设运动时间为t秒,构建方程即可解决问题;

(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN.构建方程即可解决问题;

(3)据题意设点M、N运动t秒后,可得到直角三角形△AMN,分四种情况讨论即可.【详解】

(1)当AM=AN时,△MNA是等边三角形,设运动时间为t秒

则有:2t=12﹣3t

解得t=12 5

故点M、N运动12

5

秒后,△AMN是等边三角形;

(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN

则有:2t﹣12=36﹣3t

解得t=48 5

故运动48

5

秒后得到以MN为底边的等腰三角形△AMN;

(3)设点M、N运动t秒后,可得到直角三角形△AMN ①当M在AC上,N在AB上,∠ANM=90°时,如图

∵∠A=60°

∴∠AMN=30°

∴AM=2AN

则有2t=2(12﹣3t)

∴t=3;

②当M在AC上,N在AB上,∠AMN=90°时,如图

∵∠A=60°

∴∠ANM=30°

∴2AM=AN

∴4t=12﹣3t

∴t=12

7

③当M、N都在BC上,∠ANM=90°时,如图

CN=3t﹣24=6

解得t=10;

④当M、N都在BC上,∠AMN=90°时,则N与B重合,M正好处于BC的中点,如图

此时2t=12+6

解得t=9;

综上所述,点M、N运动3秒或12

7

秒或10秒或9秒后,△AMN为直角三角形.

【点睛】

本题主要考查了等边三角形的性质、等腰三角形的判定、全等三角形的判定与性质,熟练掌握相关知识点是解决本题的关键.

9.如图,在等边三角形ABC右侧作射线CP,∠ACP=α(0°<α<60°),点A关于射线CP 的对称点为点D,BD交CP于点E,连接AD,AE.

(1)求∠DBC的大小(用含α的代数式表示);

(2)在α(0°<α<60°)的变化过程中,∠AEB的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB的大小;

(3)用等式表示线段AE,BD,CE之间的数量关系,并证明.

【答案】(1)∠DBC60α

=?-;(2)∠AEB的大小不会发生变化,且∠AEB=60°;(3)BD=2AE+CE,证明见解析.

【解析】

【分析】

(1)如图1,连接CD,由轴对称的性质可得AC=DC,∠DCP=∠ACP=α,由△ABC是等边三角形可得AC=BC,∠ACB=60°,进一步即得∠BCD=602α

?+,BC=DC,然后利用三角形的内角和定理即可求出结果;

(2)设AC、BD相交于点H,如图2,由轴对称的性质可证明△ACE≌△DCE,可得

∠CAE=∠CDE,进而得∠DBC=∠CAE,然后根据三角形的内角和可得∠AEB=∠BCA,即可作出判断;

(3)如图3,在BD上取一点M,使得CM=CE,先利用三角形的外角性质得出

∠BEC60

=?,进而得△CME是等边三角形,可得∠MCE=60°,ME=CE,然后利用角的和差关系可得∠BCM=∠DCE,再根据SAS证明△BCM≌△DCE,于是BM=DE,进一步即可得出线段AE,BD,CE之间的数量关系.

【详解】

解:(1)如图1,连接CD,∵点A关于射线CP的对称点为点D,∴AC=DC,

∠DCP=∠ACP=α,

∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,

∴∠BCD=602α

?+,BC=DC,

∴∠DBC=∠BDC

()

180602

180

60

22

BCDα

α

?-?+

?-∠

===?-;

相关主题
文本预览
相关文档 最新文档