当前位置:文档之家› 软起动器常见故障

软起动器常见故障

软起动器常见故障
软起动器常见故障

软起动器常见故障

1、在调试过程中出现起动报缺相故障,软起动器故障灯亮,电机没反应。出现故障的原因可能是:

a-起动方式采用带电方式时,操作顺序有误(正确操作顺序应为先送主电源,后送控制电源)。

b-电源缺相,软起动器保护动作(检查电源)

c-软起动器的输出端未接负载(输出端接上负载后软起动器才能正常工作)

2、用户在使用过程中出现起动完毕,旁路接触器不吸合现象。故障原因可能是:

a-在起动过程中,保护装置因整定偏小出现误动作。(将保护装置重新整定即可)

b-在调试时,软起动器的参数设置不合理。(主要针对的是55KW以下的软起动器,对软起动器的参数重新设置)

c-控制线路接触不良(检查控制线路)

3、用户在起动过程中,偶尔有出现跳空气开关的现象。故障原因有:

a-空气开关长延时的整定值过小或者是空气开关选型和电机不配。(空气开关的参数适量放大或者空气开关重新选型)

b-软起动器的起始电压参数设置过高或者起动时间过长。(根据负载情况将起始电压适当调小或者起动时间适当缩短。)

c-在起动过程中因电网电压波动比较大,易引起软起动器发出错误指令。出现提前旁路现象。(建议用户不要同时起动大功率的电机,)

d-起动时满负载起动(起动时尽量减轻负载)

4、用户在使用软起动器时出现显示屏无显示或者是出现乱码,软起动器不工作。故障原因可能是:

a-软起动器在使用过程中因外部元件所产生的震动使软起动器内部连线震松(打开软起动器的面盖将显示屏连线重新插紧即可)

b-软起动器控制板故障(和厂家联系更换控制板)

5、软起动器在起动时报故障,软起动器不工作,电机没有反应。故障原因可能为:

a-电机缺相(检查电机和外围电路)

b-软起动器内主元件可控硅短路(检查电机以及电网电压是否有异常。和厂家联系更换可控硅)

c-滤波板击穿短路(更换滤波板即可)

6、软起动器在起动负载时,出现起动超时现象。软起动器停止工作,电机自由停车。故障原因有:

a-参数设置不合理(重新整定参数,起始电压适当升高,时间适当加长)

b-起动时满负载起动,(起动时应尽量减轻负载)

7、在起动过程中,出现电流不稳定,电流过大。原因可能有:

a-电流表指示不准确或者与互感器不相匹配(更换新的电流表)

b-电网电压不稳定,波动比较大,引起软起动器误动作(和厂家联系更换控制板)

c-软起动器参数设置不合理。(重新整定参数)

8、软起动器出现重复起动。故障原因有:

a-在起动过程中外围保护元件动作,接触器不能吸合,导致软起动器出现重复起动(检查外围元件和线路)

9、在起动时出现过热故障灯亮,软起动器停止工作:

a-起动频繁,导致温度过高,引起软起动器过热保护动作。(软起动器的起动次数要控制在每小时不超过6次,特别是重负载一定要注意)

b-在起动过程中,保护元件动作,使接触器不能旁路,软起动器长时间工作,引起保护动作。(检查外围电路)

c-负载过重起动时间过长引起过热保护。(起动时,尽可能的减轻负载)

d-软起动器的参数整定不合理。时间过长,起始电压过低。(将起始电压升高)

e-软起动器的散热风扇损坏,不能正常工作。(更换风扇)

10、可控硅损坏:

a-电机在起动时,过电流将软起动器击穿(检查软起动器功率是否与电机的功率相匹配,电机是否是带载起动)

b-软起动器的散热风扇损坏(更换风扇)

c-起动频繁,高温将可控硅损坏(控制起动次数)

d-滤波板损坏(更换损坏元件)

输入缺相:引起此故障的因素有很多,

1.检查进线电源与电机进线是否有松脱;

2.输出是否接有负载,负载与电机是否匹配:

3.用万用表检测软启动器的模块或可控硅是否击穿,及他们的触发门极电阻是否符合正常情

况下的要求(一般在20-30欧左右)

4.内部的接线插座是否松脱。

金属氧化物避雷器常见故障及处理

金属氧化物避雷器常见故障及处理避雷器是电力系统所有电力设备绝缘配合的基础设备。合理的绝缘配合是电力系统安全、可靠运行的基本保证,是高电压技术的核心内容。而所有电力设备的绝缘水平,是由雷电过电压下避雷器的保护特性确定的(在某些环境中,由操作过电压下避雷器的保护特性确定)。金属氧化物避雷器,简称氧化锌避雷器,以其良好的非线性,快速的陡波响应和大通流能力,成为新一代避雷器的首选产品。由于避雷器是全密封元件,一般不可以拆卸。同时使用中一旦出现损坏,基本上没有修复的可能。所以其常见故障和处理与普通的电力设备不同,主要是预防为主。选则原则。避雷器是过电压保护产品,其额定电压选择比较严格,且与普通电力设备完全不同,容易出现因选型失误造成的事故。对于这类事故,只要明确了正确的选择方法,就可以有效避免。正确的金属氧化物避雷器额定电压的选择,应遵循以下原则。 1、对于有间隙避雷器,额定电压依据系统最高电压来选择。10kV 及以下的避雷器,额定电压按系统最高电压的1.1 倍选取。35kV 至66kV 避雷器,额定电压按系统最高电压选取。110kV 及以上避雷器,额定电压按系统最高电压的0.8 倍选取。例如:35kV 有间隙避雷器,额定电压应选择42kV 。 2、对于无间隙避雷器,额定电压同样依据系统最高电压来选择。10kV 及以下的避雷器,额定电压按系统最高电压的1.38倍选取。35kV至66kV避雷器,额定电压按系统最高电压的1.25 倍选取。110kV 及以上避雷器,额定电压按系统最高电压的0.8倍选取。例如:10kV无间隙避雷器,额定电压应选择17kV。但对于电机保护用的无间隙避雷器,不按额定电压选择,而按持续运行电压选择。一般应选择持续运行电压与电机额定电压一致的避雷器。例如:13.8kV 电机,应选用13.8kV 持续运行电压的避雷器,即:选用17.5/40 的避雷器。具体的型号选择,可参考GB11032-2000 标准,或我公司的避雷器产品选型手册。另外,由于传统碳化物阀式避雷器以及按1989老国家标准制作的早期金属氧化物避雷器在很多系统中还在使用。为确保新生产的产品在这类老系统中可以安全的配合,遇到老系统产品的更换替代时,建议用户直接咨询我公司,以确保选型正确。二、正确的预防及维护性试验方法。预防及维护性试验,是及时发现事故 隐患,防止隐患演变为事故的重要手段。金属氧化物避雷器的预防及维护性试验,一般每两年到四年进行一次。有条件的用户,最好每年雷雨季节前测试一次。以最大可能的提早发现事故隐患。测试的目的是提前发现产品的劣化倾向, 及早作出更换。测试主要考察两个性能指标:a、转变电压值(稳压电源下), 用以考察避雷器的工作特性有无明显变化。b、泄漏电流值(转变点以下),用以考察避雷器的安全特性有无明显变化。 1、有间隙金属氧化物避雷器的测试方法。a、测试工频放电电压值,考 察避雷器的工作特性。具体的试验方法和合格范围可参考JB/T9672-2005 ,或者我公司的产品使用说明书。一般以偏差不大于出厂参数的10%为正常。b、测试系统最高电压下的电导电流值,考察避雷器的安全特性。具体的试验方法和合格范围可参考 JB/T9672-2005 ,或者我公司的产品使用说明书。一般以不大于20 ^A为正常。 2、无间隙金属氧化物避雷器的测试方法。a、测试直流1mA 参考电压值,考察避雷器的工作特性。具体的试验方法和合格范围可参考GB11032-2000 ,或者我公司的产品使用说明书。一般以偏差不大于出厂参数的5%为正常。b、测试0.75 倍直流1mA 参考电压下的泄漏电流值,考察避雷器的安全特性。具体的试验方法和合格范围可参考GB11032-2000 ,或者我公司的产品使用说明书。一般以不大于50 yA为正常。 3、其它的替代办法。在没有合适的测试设备,不能进行上述的测试时,可以采用一些替代的办法,但同时也存在一些测试盲点。a、用摇表测试绝缘电

软启动器的作用

软启动器的作用

电机直接启动的时候,电流可能会达到额定电流的6-7倍,会给工厂的其他用电设备带来问题。采用软启动时启动电流大概是额定电流的2-3倍。对于水泵来说,还有软停止,让水慢慢回落,消除水锤效果。简单的说就是缓缓启动,缓缓停止。这个缓缓的时间可以调节,大概是1-60秒。 软启动器以体积小,转矩可以调节、启动平稳冲击小并具有软停机功能等优点得到了越来越多的应用,大有取代传统的自耦减压、星-角等启动器的趋势。由于软启动器是近年来新发展起来的启动设备,在设计、安装、调试和使用方面还缺少指导性的规范与规程。我们在软启动器的安装、调试工作中也遇到了一些实际技术问题。例如:不同启动负载软启动器的选型、软启动冲击电流与过流保护定值的配合、软启动设备容量与变压器容量的关系等问题。 1、软启动器简介 目前,市场上常见的软启动器主要有电子式、磁控式和自动液体电阻式等类型。电子式以晶闸管调压式为多数。变频器在某种意义上也是一种软启动器,而且是能够真正地实现软启动的启动器,只是造价要高些。 晶闸管式软启动器是串接在电源与电动机之间的三组正反向并联的晶闸管,通过微电脑控制触发导通角实现交流调压。晶闸管式软启动器的启动方式有斜坡电压型、突跳加斜坡电压型和限流型等可供选择。

磁控式软启动器是利用磁放大器原理制造的串联在电源和电动机之间的三相饱和电抗器构成的软启动装置。启动时通过数字控制板调节磁放大器控制绕组的激磁电流,改变饱和电抗器的电抗值调节启动电压降,实现电动机软启动。不论晶闸管式软启动器还是磁控式软启动器在启动时只能调节输出电压,达到控制启动时的电压降、限制启动电流的目的。一般的软启动器不能调节电源频率,也就不能象变频器那样从零频零压开始启动电动机,实现无冲击启动。实际上软启动器在启动设备时还是要产生一定的冲击电流的;斜坡电压型控制软启动器的启动时的电压、电流变化曲线见图1所示。晶闸管式软启动器采用斜坡电压启动时,开始时要使软启动器输出一个初始电压(初始电压在80~280V之间可以调节),使电 动机产生足以克服机械设备的静摩擦的初始转矩,拖动设备开始转动,启动电流为Is。在微电脑的控制下,继续增加输出电压使电动机加速。当软启动器的输出电压接近额定电压时,电动机就已达到额定转速,Is降为负荷电流In。启动时间t1结束时,软启动器输出额定电压并发出旁路信号,使旁路接触器闭合,软启动器停止输出电压,电动机转入正常运行。软启动的初始转矩可以通过给定初始电压和启动时间进行调节,控制启动电流在2--4.5倍电动机额定电流以内。 低压软启动器的停车方式主要有自由停车,软停车,制动停车三种。传统的电动机停车方式常用自由停车,但有许多应用场合,自由停车会产生很大问题,如高层建筑的水泵系统,如果采用自由

QJR 软启动说明书

QJR系列 矿用隔爆兼本质安全型软起动器 使 用 说 明 书 上海佳洲防爆电器有限公司

使用前请认真阅读本说明书 本说明书根据GB9969.1《工业产品使用说明书总则》;GB9969.2《机电产品使用说明书编写规定》的有关规定要求和内容进行编制。 产品执行Q/JZ001-2011、MT/T943-2005和GB3836-2000等标准。 一、概述 1、产品特点 矿用隔爆兼本质安全型软起动器(以下简称软起动器)是机电一体化的新技术产品,该产品适用于交流380V、660V、1140V的电压异步电动机重负荷软起动,在正常运转状态下对电机进行各种保护。它具有起动电流小,起动速度平稳可靠,保护功能齐全,是我公司自行设计、开发的高技术产品。在矿用隔爆兼本质安全型真空电磁起动器的基础上,改直接起动或停止为软起动或软停止,降低了起动电流(由4Ie-7Ie改善为0.5Ie-4Ie可调),减少了起动时冲击电流对电网及负载的冲击。它用软件控制方式来平滑起动电机,一方面以软件控强电,另一方面使电动机转速由慢到快逐渐上升到额定转速,有效解决了直接起动或自耦降压起动、Y/Δ转换、降压起动造成的起动时瞬时电流尖峰冲击,起动二次冲击电流对负载产生冲击转距,当电网电压下降可能造成电机堵转等诸多问题,是传统的矿用隔爆本质安全型真空电磁起器的理想替代产品。 该产品采用全中文宽屏显示、并具有漏电闭锁、断相、过压、欠压、、过载、三相不平衡、短路等保护功能,并能储存相应的故障信息,以及运行电流,电压故障等工作状态信息。 2、主要用途及适用范围 本起动器主要用于有甲烷和煤尘爆炸环境的煤矿井下、露天煤矿、冶金矿山、港口码头、选煤厂、发电厂等对重负荷的运输设备实行软起动。 起动器可以就地、远距离起动、停止控制,及联机控制等多种方式;额定电压为1140V、660V、380V,频率是50Hz,额定电流在400A范围内的三相异步电机,起动方式可以是软起动,也可以像普通的磁力起动器一样直接带负荷起动。机壳外有隔离换向开关手柄,可以对电机的转向进行选择,必要时按下急停按钮,转动隔离换向手柄至分位置,直接分断电动机。 3、规格 电压等级:1140V、660V、380V。 电流等级:400A以下。 4、型号的组成及代表意义 Q J R-□/□ 额定电压:V 额定电流:A 软起动 隔爆兼本质安全型 起动器 5、软起动器的防爆型式与标志为:矿用隔爆兼本质安全型

软启动工作原理

软启动工作原理 软启动器电动机的应用 1、软启动器工作原理与主电路图 软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。这种电路如三相全控桥式整流电路,主电路图见图1。使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。软启动与软停车的电压曲线见图2,3。 2 软启动器的选用 (1)选型:目前市场上常见的软启动器有旁路型、无旁路型、节能型等。根据负载性质选择不同型号的软启动器。 旁路型:在电动机达到额定转数时,用旁路接触器取代已完成任务的软启动器,降低晶闸管的热损耗,提高其工作效率。也可以用一台软启动器去启动多台电动机。 无旁路型:晶闸管处于全导通状态,电动机工作于全压方式,忽略电压谐波分量,经常用于短时重复工作的电动机。 节能型:当电动机负荷较轻时,软启动器自动降低施加于电动机定子上的电压,减少电动机电流励磁分量,提高电动机功率因数。 (2)选规格:根据电动机的标称功率,电流负载性质选择启动器,一般软启动器容量稍大于电动机工作电流,还应考虑保护功能是否完备,例如:缺相保护、短路保护、过载保护、逆序保护、过压保护、欠压保护等。 3、Alt48软启动器的特点 Alt48软启动器启动时采用专利技术的转矩控制。转矩斜坡上升更快速,损耗更低。具有电动机和软启动器综合保护功能,能全时连续检测电机电流,提供电机可靠和完整保护,这种保护功能在启动结束后旁路仍能起作用,这是其它软启动器都不具备的。 Alt48在保持加速力矩的同时,实时计算定子和转子的功率。在整个加速周期连续计算电机功率因数和定子损耗,通过检测电压和电流来计算功率因数,并扣除定子损耗,得到实际的转子功率和电机力矩。 4 Alt48软启动器的应用 设计采用一拖二方案,见图4,即一台软启动器带两台水泵,可以依次启动,停止两台水泵。一拖二方案主要特点是节约一台软启动器,减少了投资,充分体现了方案的经济性,实用性。

避雷器在线检测技术及常见故障分析

江苏中能硅业科技发展有限公司 专业论文 论文题目避雷器在线检测技术及常见故障分析 作者吴静 人员编码 105956 部门/分厂电气分厂 江苏中能硅业科技发展有限公司人力资源部 二零一四年六月

避雷器在线检测技术及常见故障分析 电气分厂:吴静 【摘要】介绍了常用避雷器的种类、故障类型和红外热成像检侧技术,分析了各种常见避雷器的结构、在运行过程中受潮和发热原因、发热特点以及红外热像特征、避雷器的红外热像检测的方法。 【关键词】避雷器、在线检测、故障诊断、红外热像 引言 由于近几年来的环境条件不断劣化,雷击引起的输电线路跳闸故障也日益增多,不仅影响了设备的正常运行,而且在很大程度上影响了日常的生产、生活。纵观全国,几乎每年都会发生雷击线路跳闸事故,雷击已成为影响输电线路安全可靠运行的最主要因素。 避雷器是用来防止雷电侵入波、线路过电压或内部过电压对电气设备造成危害,并把过电压限制在电气设备绝缘的耐受冲击电压水平以下的一种电气设备。避雷器并联接在被保护设备上,使设备免遭由过电压引起的绝缘击穿损坏事故。如果避雷器存在缺陷或者故障,不仅起不到保护作用,还会影响其它设备的正常运行,甚至酿成事故。有统计表明,受潮缺陷是造成避雷器异常和事故的主要原因,不同型式的避雷器由于结构不同,其在正常状况和受潮缺陷下的发热特征也不同。 一、避雷器的分类 目前使用的避雷器有以下四种类型: 1.保护间隙避雷器; 2.管式避雷器; 3.阀式避雷器,包括普通阀式避雷器(FS型和FZ型)与磁吹式避雷器(FCZ型和FCD型); 4.金属氧化物避雷器,也称无间隙避雷器。

二、常用避雷器的故障分析 2.1避雷器故障情况 目前,电力系统所使用的避雷器主要为金属氧化物避雷器(以下简称MOA ),由于避雷器在应对线路过电压起着重要的作用,故其在输配电线路上得到广泛应用。避雷器故障损坏大部分是因为遭受雷击、外部污闪或自身质量问题。 避雷器遭受雷击后,可能会由于本次雷击产生的过电压直接导致内部氧化锌电阻片炸裂,或者由于多次雷击产生的累积效应,使避雷器绝缘受到损坏,进而造成绝缘筒爆裂;若避雷器安装运行在污秽物较多的地区,当其表面伞裙积聚的污秽足够多时,在雨雾天气容易形成沿面放电,导致污闪;避雷器自身质量问题,如密封缺陷导致内部受潮,容易发生热击穿。 2.2避雷器污闪分析 污秽对避雷器外绝缘的影响是显著的,而且污秽愈严重,对其外绝缘的影响也就愈大。复合外套避雷器在污秽情况下产生的闪络放电和老化过程,可以描述成积污、受潮、局部放电及局部电弧发展引起污闪等4个过程。这些过程重复、交替出现,使避雷器复合外套产生起痕、电蚀,长期持续下去,老化就会快速发生。 2.3基于复合外套MOA质量的故障分析 目前,在大多数情况下,线路避雷器多采用复合外套MOA,下面将从避雷器的电阻片特性和密封性能两方而来展开对避雷器的故障分析。 2.3.1基于复合外套氧化锌电阻片特性的故障分析 从理论上说,氧化锌电阻片老化是影响避雷器寿命的重要因素。非线性氧化锌电阻片的泄流能力强,通流容量大,容易吸收能量,电阻片的升温快,加速了避雷器的老化。不难看出,虽然氧化锌的非线性特性对线路防雷起到了很好的保护作用,但在某种程度上来说,是以牺牲自身寿命为代价的。在MOA运行到其产品寿命的后期,电阻片劣化造成泄漏电流上升,甚至会造成复合外套内部放电,严重时避雷器内部气体压力和温度急剧增高,引起本体爆炸。

软起动器常见的故障及解决办法

软起动器常见的故障 1、上电后不显示 a-检查控制电源是否接入。 b-检查显示屏连接线是否插紧。 c-检查控制板有没有问题。 d-显示屏本问题。 2、起动报缺相故障,软起动器故障灯亮,电机没反应。出现故障的原因可能是: a-起动方式采用带电方式时,操作顺序有误(正确操作顺序应为先送主电源,后送控制电源)。 b-电源缺相或者三相电末上,软起动器保护动作(检查电源) c-软起动器的输出端未接负载(输出端接上负载后软起动器才能正常工作) d-控制板有问题更换控制板 3、起动完毕,旁路接触器不吸合现象。故障原因可能是: a-在起动过程中,保护装置因整定偏小出现误动作。(将保护装置重新整定即可) b-在调试时,软起动器的参数设置不合理。(主要针对的是55KW以下的软起动器,对软起动器的参数重新设置) c-控制线路接触不良(检查控制线路) d-接触器有问题不能正常吸合 e-控制板问题. 4、在起动过程中,偶尔有出现跳空气开关的现象。故障原因有: a-空气开关长延时的整定值过小或者是空气开关选型和电机不配。(空气开关的参数适量放大或者空气开关重新选型) b-软起动器的起始电压参数设置过高或者起动时间过长。(根据负载情况将起始电压适当调小或者起动时间适当缩短。) c-在起动过程中因电网电压波动比较大,易引起软起动器发出错误指令。出现提前旁路现象。(建议用户不要同时起动大功率的电机,) d-起动时满负载起动(起动时尽量减轻负载) e-软起动额定电流设置有问题. 5、软起动器出现显示屏无显示或者是出现乱码,软起动器不工作。故障原因可能是: a-软起动器在使用过程中因外部元件所产生的震动使软起动器内部连线震松(打开软起动器的面盖将显示屏连线重新插紧即可) b-软起动器控制板故障更换控制板 c-显示屏故障更换显示屏 d-显示屏连接线损坏,更换连接线 6、软起动器在起动时报故障,软起动器不工作,电机没有反应。故障原因可能为: a-电机缺相(检查电机和外围电路) b-软起动器内主元件可控硅短路(检查电机以及电网电压是否有异常。和厂家联系更换可控硅) c-滤波板击穿短路(更换滤波板即可) d-控制板问题更换控制板 7、软起动器在起动负载时,出现起动超时现象。软起动器停止工作,电机自由停车。故障原因有: a-参数设置不合理(重新整定参数,起始电压适当升高,时间适当加长) b-起动时满负载起动,(起动时应尽量减轻负载) c-机械故障

软起动器3RW30 40常见问题集锦(2010.4更新版)

软起动器3RW30/40常见问题集锦FAQ collection for 3RW30/40 soft starter

摘要软起动器3RW30/40常见问题集锦 关键词3RW30/40,软起动器 Key Words 3RW30/40,soft starter IA&DT Service & Support Page 2-16

目录 第一章 总则 (4) Q1: 如何根据负载特性以及用户要求正确的选用西门子软起动器 (4) Q2: 3RW系列软起动器旁路运行是怎么回事?旁路接触器应如何选择? (5) 第二章3RW30软起动器 (5) Q1: 如何选择3RW30/40系列软起动器的散热风扇? (5) 第三章3RW40软起动器 (6) Q1: 3RW40软起动器是否需要设计外置旁路接触器?如加外置旁路接触器会有何影响? (6) Q2: 3RW40软起动器起动小容量电机时为何起动失败并报警? (6) Q3: 3RW402/3/4系列与3RW405/7系列起动命令输入设计的区别? (6) Q4: 3RW40(5,7)如何设置参数? (7) Q5:3RW40(5,7)额定电流与CLASS等级设置 (8) Q6: 3RW40(5,7)测试表的含义 (9) Q7: 接点13,14 ON/RUN 状态切换 (10) Q8:3RW40如何更改复位模式 (11) Q9: 3RW40如何复位? (12) Q10:SIRIUS 3RW40软起动器对应不同的版本,故障输出触点95/96/98的状态是什么样的?13 Q11: 3RW40(2,3,4) PTC热敏电阻保护阀值 (13) Q12: 3RW40如何选择熔断器 (14) IA&DT Service & Support Page 3-16

避雷器致线路故障原因分析

摘要:本文从避雷器、断路器、漏电断路器在供电线路中的工作原理出发,结合笔者在工作中遇到的跳闸情况,分析安装了避雷器的线路中各种保护设备跳闸的原因,从而更好地指导防雷实践工作。 关键词:工作原理;故障原因;解决方法 1 引言 雷雨天气时,安装了电源避雷器的供电线路中,线路保护设备时常出现跳闸现象,特别是地处空旷地带的供配电系统,更是频繁地跳闸,严重的设备被雷电击穿损坏,给日常工作带来诸多不便。由于各种原因,避雷器前端串联的断路器也经常发生动作,使避雷器失去保护作用。本文将从解释避雷器的在供电线路中的作用和断路器、漏电断路器的工作性质,结合实际笔者在工作中遇到的跳闸情况,分析安装了避雷器的线路中各种保护设备跳闸的原因。 2 避雷器在线路中的工作原理 电涌保护器(spd),俗称避雷器。低压配电线路中的避雷器主要由半导体元件和空气间隙组成,它们在实质上是一个限位开关,没有雷电波来的时候它两端处于开路状态,对电源和信号没有影响,当雷电波侵入并且超过某一定值时,它迅速成为通路状态,把电压箝制在一个安全范围内,把雷电流大部分泄放入地。当雷电流过后,避雷器又恢复高阻状态,保证后端设备安全正常地工作。 3 安装有避雷器的线路中保护设备故障的原因 通过对线路、避雷器工作原理的分析,我们可以总结出雷雨天气时,装有电源避雷器的线路中各种保护设备(含避雷器前端的保护设备)出现故障的三种原因。 3.1 当电源避雷器前端串联断路器时 为了防止电源避雷器失效时,接地短路故障电流损坏设备,保障人身安全,防雷工程应用中一般在电源spd 前端串联小型断路器作为spd 的前端保护装置。 电源避雷器的失效模式可以分为两类:开路失效模式和短路失效模式。 a)开路失效模式:由于spd 本身的非线性元件形成或由与spd 串联的内部或外部保护设备与供电电源断路所形成,此时,供电电源的连续性在spd 失效的情况下被保证(图1)。 b)短路失效模式:由于spd 本身引起或由某一附加设备引起,那么电源供电将由于系统的后被保护而中断。此时,供电系统受到保护,但是系统不再供电(图2)。 pd—电涌保护器的过流保护装置; spd—电涌保护器; e/i—被电涌保护器保护的电气装置或设备; 因此,优先保证供电的连续性还是优先保证过电压保护的连续性,这取决与电源避雷器失效时,断开电源避雷器的前端保护装置所安装的位置[2]。 开路失效模式下,当通过避雷器的过电流持续时间过长,即在微秒级时间内电源避雷器还无法将雷电流全部泄放入地时,串联在电源避雷器前端的保护设备会判断为过流或短路故障,从而发生动作。此时,虽然保证了供电的连续性,但再发生过电压时,无论是电气装置或是设备均得不到保护,而再次出现持续的过电流会使供电线路中的断路器,特别是安装在总配电处的断路器会在过压的状态下发生动作,导致系统供电中断。 短路失效模式下:这种失效模式中,串联在电源避雷器前端的保护设备会在判断为过流或短路故障时使供电线路中的断路器直接动作。 在上述两种失效模式中,如果电源避雷器前端的保护设备选择的参数与避雷器的相关参数不一致时也会发生供电线路断路器的动作,特别是避雷器前端的保护设备更容易发生动作,从而降低避雷器的保护效能和供电的连续性。因此,在防雷工程中一般采用开路失效模式的接线法(现大多数spd产品都直接把pd整合在一起)。

软启动器有哪些常见故障及如何处理

软启动器有哪些常见故障及如何处理 当电机起动过程中,软起动器按照预先设定的起动曲线增加电机的端电压使电机平滑加速,从而减少了电机起动时对电网、电机本身、相连设备的电气及机械冲击。当电机达到正常转速后,旁路接触器接通。电机起动完毕后,软起动器继续监控电机并提供各种故障保护。 1、在调试过程中出现起动报缺相故障,软起动器故障灯亮,电机没反应。出现故障的原因可能是: ①起动方式采用带电方式时,操作顺序有误。(正确操作顺序应为先送主电源,后送控制电源) ②电源缺相,软起动器保护动作。(检查电源) ③软起动器的输出端未接负载。(输出端接上负载后软起动器才能正常工作) 2、用户在使用过程中出现起动完毕,旁路接触器不吸合现象。故障原因可能是: ①在起动过程中,保护装置因整定偏小出现误动作。(将保护装置重新整定即可) ②在调试时,软起动器的参数设置不合理。(主要针对的是55KW 以下的软起动器,对软起动器的参数重新设置) ③控制线路接触不良。(检查控制线路) 3、用户在起动过程中,偶尔有出现跳空气开关的现象。故障原因有: ①空气开关长延时的整定值过小或者是空气开关选型和电机不

配。(空气开关的参数适量放大或者空气开关重新选型) ②软起动器的起始电压参数设置过高或者起动时间过长。(根据负载情况将起始电压适当调小或者起动时间适当缩短) ③在起动过程中因电网电压波动比较大,易引起软起动器发出错误指令,出现提前旁路现象。(建议用户不要同时起动大功率的电机) ④起动时满负载起动。(起动时尽量减轻负载) 4、用户在使用软起动器时出现显示屏无显示或者是出现乱码,软起动器不工作。故障原因可能是: ①软起动器在使用过程中因外部元件所产生的震动使软起动器内部连线震松。(打开软起动器的面盖将显示屏连线重新插紧即可) ②软起动器控制板故障。(和厂家联系更换控制板) 5、软起动器在起动时报故障,软起动器不工作,电机没有反应。故障原因可能为: ①电机缺相。(检查电机和外围电路) ②软起动器内主元件可控硅短路。(检查电机以及电网电压是否有异常。和厂家联系更换可控硅) ③滤波板击穿短路。(更换滤波板即可) 6、软起动器在起动负载时,出现起动超时现象。软起动器停止工作,电机自由停车。故障原因有: ①参数设置不合理。(重新整定参数,起始电压适当升高,时间适当加长) ②起动时满负载起动。(起动时应尽量减轻负载)

雷诺尔JJR软起说明书

JJR系列软起动器用户手册

目录 安全注意事项………………………………………………………………………………………安装准备……………………………………………………………………………………………使用及环境条件……………………………………………………………………………………1.概述……………………………………………………………………………………………… 典型应用简介…………………………………………………………………………………… JJR系列软起动功能……………………………………………………………………………2.购入检查…………………………………………………………………………………………3.安装………………………………………………………………………………………………4.电路连接………………………………………………………………………………………… 4.1主回路……………………………………………………………………………………… 4.2控制端子…………………………………………………………………………………… 4.3控制电路端子连接………………………………………………………………………… 4.4主回路连接………………………………………………………………………………… 4.5基本电路框图和端子………………………………………………………………………5.键盘及显示说明…………………………………………………………………………………6.数据的设定………………………………………………………………………………………7.通电运行…………………………………………………………………………………………8.保护显示说明……………………………………………………………………………………9.软起动控制模式………………………………………………………………………………… 9.1限流型……………………………………………………………………………………… 9.2电压控制型………………………………………………………………………………… 9.3软停车曲线………………………………………………………………………………… 9.4不同起动方式的电流波形比较……………………………………………………………10.结构特点………………………………………………………………………………………附表一应用场合……………………………………………………………………………………JJR1000系列二次接线图……………………………………………………………………………JJR2000系列二次接线图……………………………………………………………………………

氧化锌避雷器运行时异常现象及其维护 图文 民熔

氧化锌避雷器 氧化锌产品介绍 民熔氧化锌避雷器 HY5WS-17/50氧化锌避雷器 10KV高压配电型 A级复合避雷器 产品型号: HY5WS- 17/50 额定电压: 17KV 产品名称:氧化锌避雷器直流参考电压: 25KV 持续运行电压: 13.6KV 方波通流容量: 100A 防波冲击电流: 57.5KV(下残压) 大电流冲击耐受: 65KA 操作冲击电流: 38.5KV(下残压) 注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。 使用环境: a.海拔高度不超过2000米; b.环境温度:最高不高于+40C- -40C; C.周围环境相对湿度:平均值不大于85%; d.地震强度不超过8级; e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。

体积小、重量轻, 耐碰撞运输无碰损失, 安装灵活特别适合在开关柜内使用 民熔 HY5WZ-17/45高压氧化锌避雷器10KV电站型金属氧化锌避雷器

民熔 35KV高压避雷器 HY5WZ-51/134 户外电站型 氧化锌避雷器复合型 氧化锌避雷器在运行时会出现一些异常现象,工作人员需要对出现的故障进行及时处理与维护,保护系统的正常运行,提高避雷器的使用寿命和年限。以下为氧化锌避雷器常见的异常现象及其维护方法:

1、氧化锌避雷器在运行中突然爆炸,但尚未造成系统永久性接地,还可以对其进行修复,可在雷雨过后,拉开故障相的隔离开关,将氧化锌避雷器停用并及时更换合格的避雷器。若爆炸后已引起系统永久性接地,则禁止使用隔离开关来操作停用故障的避雷器。在出现这种异常情况时,需要按照这种方式和方法使用和维护,保证避雷器在使用中的作用。 2、天气正常,发现避雷器外壳有裂纹,应立即停止运行,将故障避雷器退出运行,更换合格的避雷器。雷雨中发现瓷套有裂纹,应维持其运行,待雷雨过后再行处理,一般瓷套的避雷器常发生这类问题,现在大部分厂家都选用硅橡胶氧化锌避雷器。 3、避雷器内部出现异常或套管炸裂,需要对其进行仔细的检查和检验。这种现象可能会引起系统接地故障,处理时,人员不得靠近避雷器,可用断路器或人工接地转移的方法,断开故障避雷器。在维护和修理这种故障时,按照相应的方式和方法是维护,保证人的生命安全。 4、避雷器动作指示器内部烧黑或烧毁,接地引下线连接点烧断,避雷器阀片电阻失效,火花间隙来弧特性变坏,工频续流增大,以上这些异常现象应及时对避雷器做电气试验式解体检查。氧化锌避雷器在系统中起到重要的作用,在运行时需要根据不同情况不同处理,避免事故发生,保障系统正常运行。

软起动器常见的故障及解决办法

软起动器常见的故障及解决 办法 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

软起动器常见的故障 1、上电后不显示 a-检查控制电源是否接入。 b-检查显示屏连接线是否插紧。 c-检查控制板有没有问题。 d-显示屏本问题。 2、起动报缺相故障,软起动器故障灯亮,电机没反应。出现故障的原因可能是: a-起动方式采用带电方式时,操作顺序有误(正确操作顺序应为先送主电源,后送控制电源)。 b-电源缺相或者三相电末上,软起动器保护动作(检查电源) c-软起动器的输出端未接负载(输出端接上负载后软起动器才能正常工作) d-控制板有问题更换控制板 3、起动完毕,旁路接触器不吸合现象。故障原因可能是: a-在起动过程中,保护装置因整定偏小出现误动作。(将保护装置重新整定即可) b-在调试时,软起动器的参数设置不合理。(主要针对的是55KW以下的软起动器,对软起动器的参数重新设置) c-控制线路接触不良(检查控制线路) d-接触器有问题不能正常吸合 e-控制板问题. 4、在起动过程中,偶尔有出现跳空气开关的现象。故障原因有: a-空气开关长延时的整定值过小或者是空气开关选型和电机不配。(空气开关的参数适量放大或者空气开关重新选型) b-软起动器的起始电压参数设置过高或者起动时间过长。(根据负载情况将起始电压适当调小或者起动时间适当缩短。) c-在起动过程中因电网电压波动比较大,易引起软起动器发出错误指令。出现提前旁路现象。(建议用户不要同时起动大功率的电机,) d-起动时满负载起动(起动时尽量减轻负载) e-软起动额定电流设置有问题. 5、软起动器出现显示屏无显示或者是出现乱码,软起动器不工作。故障原因可能是: a-软起动器在使用过程中因外部元件所产生的震动使软起动器内部连线震松(打开软起动器的面盖将显示屏连线重新插紧即可) b-软起动器控制板故障更换控制板 c-显示屏故障更换显示屏 d-显示屏连接线损坏,更换连接线 6、软起动器在起动时报故障,软起动器不工作,电机没有反应。故障原因可能为: a-电机缺相(检查电机和外围电路) b-软起动器内主元件可控硅短路(检查电机以及电网电压是否有异常。和厂家联系更换可控硅) c-滤波板击穿短路(更换滤波板即可) d-控制板问题更换控制板 7、软起动器在起动负载时,出现起动超时现象。软起动器停止工作,电机自由停车。故障原因有: a-参数设置不合理(重新整定参数,起始电压适当升高,时间适当加长) b-起动时满负载起动,(起动时应尽量减轻负载) c-机械故障 d-控制板问题更换控制板.

避雷器故障排除案例课件资料

避雷器故障排除案例 (一)避雷器质量不良引起的事故 雷雨中某生产厂及生活区高、低压全部停电。经检查,35kV高压输电线中的B相导线断落,雷击时变电所内高压跌落式熔断器有严重的电弧产生。低压配电室内也有电弧现象并伴有爆炸声,有一台低压配电柜内的二次线路被全部击坏。 35kV变电所,输电线路呈三角形排列,全线架设了避雷线;35kV变电所的入口处,装设了避雷器和保护间隙。保护间隙被雷击坏后,一直没有修复;在变电所的周围还装设了两根24m高的避雷针,防雷措施比较全面,但还是遭受到雷害。 雷击发生后,进行了认真检查,防雷系统接地电阻均小于4Ω,符合规程要求。检查有关预防性试验的记录,发现35kV变电所内的B相避雷器,其试验数据当时由于生产紧张等原因,一直未予以处理。雷击以后分析认为,造成这起雷击损坏的主要原因有: (1)雷电是落在高压线路上,线路上没有保护间隙,当雷击出现过电压时,没有能够通过保护间隙使大量的雷电流泄入大地,而击断了高压输电线路。 (2)当雷电波随着线路入侵到变电所时,由于B相避雷器质量不良,冲击雷电流不能够很好地流入大地,产生较高的残压,当超过高压跌落式熔断器的耐压值时,使跌落式熔断器被击坏。(3)当避雷器上有较高的残压时,由于避雷器的接地系统和变压器低压侧的中性点接地是相通的,造成变压器低压侧出现较高的电压。低压配电柜的绝缘水平比较低,在低压侧出现过电压时,绝缘比较薄弱的配电柜首先被击坏。 改进措施 (1)恢复线路的保护间隙,使雷击高压线路时,保护间隙首先能够被击穿而把雷电流泄入大地,起到保护线路和设备的作用。 (2)当带电测试发现避雷器质量不良时,要及时拆下进行检测,包括:①测量绝缘电阻;②测量电导电流及检查串联组合元件的非线性系数差值;③测量工频放电电压。只有当这些试验结果都符合有关规程要求时才可继续使用,否则,应立即予以更换。 (3)在电气设备发生故障后,经修复绝缘水平满足要求后才可再投入使用。 (二)避雷器引下线断裂造成的事故 雷击落在10kV配电线路上。当时,离配电变压器仅60m的电管所内,三人围在一张办公桌上随着雷声,一齐倒地。现场察看和分析。检查发现配电变压器的10kV侧避雷器有两相已经粉碎性爆炸;接地引下线在离地15cm处原来焊接处烧断,据反映该处烧断已近一年#铁丝缠绕在接地引下线断口的上下8时间。接地引下线有一个6cm长的断口,而是用一根端,铁丝已严重锈蚀断裂,致使避雷器及变压器低压侧的中性线处于无接地状态。 极高的雷电冲击电但强大的雷电流无法入地,尽管避雷器能可靠动作,当雷击线路时, 压沿低压配电线路传到屋内,击穿空气引起了三个人同时被雷击的事故。在现场发现,照明灯离桌面只有30cm高;灯头内的绝缘胶木已严重碳化成粉末状,确认这是一起因避雷器及低压侧无接地而造成的雷击事故。 改进措施 为了防止类似事故的再次发生,应采取如下防止措施: (1)各供电所每年在雷雨季节前后,集中力量对所辖供电区的变压器及高低压线路进行全面的安全检查,做到所有配变的避雷器和低压侧的中性点都可靠接地,其接地电阻必须满足技术规程的要求,并保证接地引下线具有足够的截面积和机械强度。 (2)进一步加强对农电工的培训和管理工作。定期培训,提高技术水平。

软启动基本知识

软启动基本知识 1.软起动器是一种集软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。它的主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。 运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。 软起动器和变频器是两种完全不同用途的产品。变频器是用于需要调速的地方,其输出不但改变电压而且同时改变频率;软起动器实际上是个调压器,用于电机起动时,输出只改变电压并没有改变频率。变频器具备所有软起动器功能,但它的价格比软起动器贵得多,结构也复杂得多。 2.什么是电动机的软起动?有哪几种起动方式? 运用串接于电源与被控电机之间的软起动器,控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压,即为软起动,在软起动过程中,电机起动转矩逐渐增加,转速也逐渐增加。软起动一般有下面几种起动方式。 (1)斜坡升压软起动。这种起动方式最简单,不

具备电流闭环控制,仅调整晶闸管导通角,使之与时间成一定函数关系增加。其缺点是,由于不限流,在电机起动过程中,有时要产生较大的冲击电流使晶闸管损坏,对电网影响较大,实际很少应用。 (2)斜坡恒流软起动。这种起动方式是在电动机起动的初始阶段起动电流逐渐增加,当电流达到预先所设定的值后保持恒定(t1至t2阶段),直至起动完毕。起动过程中,电流上升变化的速率是可以根据电动机负载调整设定。电流上升速率大,则起动转矩大,起动时间短。 该起动方式是应用最多的起动方式,尤其适用于风机、泵类负载的起动。 (3)阶跃起动。开机,即以最短时间,使起动电流迅速达到设定值,即为阶跃起动。通过调节起动电流设定值,可以达到快速起动效果。 (4)脉冲冲击起动。在起动开始阶段,让晶闸管在级短时间内,以较大电流导通一段时间后回落,再按原设定值线性上升,连入恒流起动。 该起动方法,在一般负载中较少应用,适用于重载并需克服较大静摩擦的起动场合。 3.软起动与传统减压起动方式的不同之处在哪里?

氧化性避雷器故障原因

氧化性避雷器故障原因 1、暂态(瞬态)过电压所致。 2、使用达到一定时间后,因老化导致本体密封不好所致。 3、避雷器绝缘套污染所致。从您所述的情况看,都是B相发生损坏,那么应该是B相存在暂态过电压问题,导致避雷器损坏。下面我详述一下第一种原因: 暂态(瞬态)过电压导致避雷器损坏的原因:避雷器是过电压保护器,但自身仍存在过电压防护问题。对于能量有限的过电压如雷电过电压和操作过电压,避雷器泄流就能起限压保护的作用。对能量很大(有补充能源)的过电压,如暂态过电压,其频率为工频的整数倍或分数倍,与工频电源频率总有合拍的时候,如因某种原因而激发暂态过电压,工频电源能自动补充过电压能量,即使避雷器泄流但过电压幅值也不衰减或衰减很小,暂态过电压如果进入避雷器保护动作区,势必使避雷器长时间反复动作直至崩溃,最终结果就是避雷器损坏爆炸,因此暂态过电压是无间隙氧化锌避雷器的致命危害。无间隙氧化锌避雷器因其拐点电压低,仅2、21~2、56Uxg(最大相电压),而有些暂态过电压最大值达2、5~3、5Uxg,所以无间隙氧化锌避雷器因为其拐点电压较低,有暂态过电压承受能力差、损坏爆炸率搞和寿命短等缺点。

串联间隙氧化锌避雷器的暂态过电压承受能力远远要大于无间隙氧化锌避雷器,因此最好的解决办法是更换避雷器,即换成串联间隙氧化锌避雷器。 2、氧化锌避雷器哦的密封问题所造成的损坏爆炸:氧化锌的密封老化,主要是生产厂家采用的密封技术不完善,或采用的密封材料抗老化性能不稳定,导致避雷器在环境温差变化较大时,造成其密封不良而使潮气侵入,造成内部绝缘损坏,加速了电阻片的劣化而引起爆炸。 3、避雷器绝缘套的污染问题:由于工作在室外的氧化锌避雷器、磁绝缘子或硅橡胶绝缘套受到环境粉尘的污染,特别是厂矿企业周边的变电所,由于粉尘污染较严重,不能及时清扫,长期累积造成严重的污染而引起污闪或因污秽物不均匀的分布在其表面,而使其表面电流不均匀分布,势必导致电阻片中电流的不均匀分布(或沿电阻片的电压不均匀分布),使流过电阻片的电流比正常时大1~2个数量级,造成附加温升,使避雷器吸收过电压能力大为降低,也加速了电阻片的劣化而引起爆炸。 另:避雷器的资料: 氧化锌避雷器(第三代)是世界公认的当代最先进的防雷电器,其结构为将若干片ZnO阀片压紧密封在避雷器绝缘套内。ZnO 阀片具有非常优异的非线性特性,在较高电压下电阻很小,可以泄放大量雷电流,残压很低;在电网电压运行下电阻很大,泄漏电流只有50~150微安,电流较小可视为无工频续流,这就是做

低压软起动器常见故障

低压软起动器常见的故障 1、上电后不显示 a-检查控制电源是否接入。 b-检查显示屏连接线是否插紧。 c-检查控制板有没有问题。 d-显示屏本问题。 2、起动报缺相故障,软起动器故障灯亮,电机没反应。出现故障的原因可能是: a-起动方式采用带电方式时,操作顺序有误(正确操作顺序应为先送主电源,后送控制电源)。b-电源缺相或者三相电末上,软起动器保护动作(检查电源) c-软起动器的输出端未接负载(输出端接上负载后软起动器才能正常工作) d-控制板有问题更换控制板 3、起动完毕,旁路接触器不吸合现象。故障原因可能是: a-在起动过程中,保护装置因整定偏小出现误动作。(将保护装置重新整定即可) b-在调试时,软起动器的参数设置不合理。(主要针对的是55KW以下的软起动器,对软起动器的参数重新设置) c-控制线路接触不良(检查控制线路) d-接触器有问题不能正常吸合 e-控制板问题. 4、在起动过程中,偶尔有出现跳空气开关的现象。故障原因有: a-空气开关长延时的整定值过小或者是空气开关选型和电机不配。(空气开关的参数适量放大或者空气开关重新选型) b-软起动器的起始电压参数设置过高或者起动时间过长。(根据负载情况将起始电压适当调小或者起动时间适当缩短。) c-在起动过程中因电网电压波动比较大,易引起软起动器发出错误指令。出现提前旁路现象。(建议用户不要同时起动大功率的电机,) d-起动时满负载起动(起动时尽量减轻负载) e-软起动额定电流设置有问题. 5、软起动器出现显示屏无显示或者是出现乱码,软起动器不工作。故障原因可能是: a-软起动器在使用过程中因外部元件所产生的震动使软起动器内部连线震松(打开软起动器的面盖将显示屏连线重新插紧即可) b-软起动器控制板故障更换控制板 c-显示屏故障更换显示屏 d-显示屏连接线损坏,更换连接线 6、软起动器在起动时报故障,软起动器不工作,电机没有反应。故障原因可能为:

西安西普软启动说明书2

5.基本接线及外接端子 图5-1给出了STR电动机软起动器的全部外接线接口,具体说明见表5-1外接端子说明。STR软起动器的基本接线图 表5-1

★表示外控有两种接线方式,详见基本接线图5-1。 STR系列A型软起动器(7.5KW-75KW)K22和 K24 厂家已占用,用户不能使用. 上述图5-1及表5-1给出了STR电动机软起动器所有的外接端子及说明,在接线时,注意以 下事项: 主电路接线 — STRA型产品主电路有6个接线端子,即R.S.T(接进线电源) U.V.W(接电动机),详 请参见图6-1。 —STRB型产品主电路有9个接线端子,除上述6个相同外,还有 3个接旁路接触器 专用接线端子 U1.V1.W1,其接线参见图6-2。

控制电路 STR 软起动器共有16位外部控制端子,为用户实现外部信号控制、远程控制及系统控制提供方便,这16位端子安装在软起动器的主控板上。在软起动内部有端子引出,可直接接线。在使用过程中,如用户采用本机键盘操作,而不需远控或外部信号控制,则相应的端子不用接线,其接线排列顺序如下图5-2。 R U N J O G 起动点动 停机公共端复位起动完成输出故障输出旁路控制4-20m A 1234567891011121314 1516 图5-2 —— 其中RUN (起动端子)、STOP (停止端子)、JOG (点动端子)在使用时应进行相应 的参数设置,详见表9-1“参数设置及修改”中第11项。其接线请参见图6-1、图6-2、图6-3。 —— OC (起动完成输出)、I0(4~20mA )输出为有源输出。 —— K14、K11、K12(故障输出)及K24、K21、K22(旁路输出)均为无源输出端子, 其接线请参见图6-2、图6-3。 6.STR 软起动器典型应用接线图 STR 系列A型软起动装置典型应用接线图

相关主题
文本预览
相关文档 最新文档