当前位置:文档之家› 不确定图数据的频繁子图模式挖掘算法的研究与实现

不确定图数据的频繁子图模式挖掘算法的研究与实现

流数据频繁模式挖掘算法汇总

频繁模式挖掘 常用的概念: 事务数据库: 时间ID: 项集(item set): 重要算法: 1、A priori 主要思想就是从大小1开始遍历可能频繁集k,当满足V所有集合子集都在之前计算过的频繁集k中,且出现次数满足频繁要求,则V为k+1频繁集这样做有如下好处:如果一个集合是频繁集,那么它的所有子集都是频繁集; 如果一个集合不是频繁集,那么它的所有超集都不会是频繁集 缺点就是要多次扫描事务数据库 2、F P-growth 可以用来识别包含某个元素的最大频繁集。 FP-growth算法通过构造FP-tree来实现,FP-tree由频繁项集表和前缀树构成。 FP-tree的构建需要扫描两遍数据库, (1)第一遍对所有元素技术并降序排序,然后将数据库中每个事务里的元素按照这个顺序重新排序

(2)按照项头表的顺序逐渐插入元素 ··· (3)FP-tree的挖掘 得到了FP树和项头表以及节点链表,我们首先要从项头表的底部项依次向上挖掘。对于项头表对应于FP树的每一项,我们要找到它的条件模式基。所谓条件模式基是以我们要挖掘的节点作为叶子节点所对应的FP子树。得到这个FP子树,我们将子树中每个节点的的计数设置为叶子节点的计数,并删除计数低于支持度的节点。从这个条件模式基,我们就可以递归挖掘得到频繁项集了。 (1)先从F挖掘 通过它,我们很容易得到F的频繁2项集为{A:2,F:2}, {C:2,F:2}, {E:2,F:2}, {B:2,F:2}。递归合并二项集,得到频繁三项集为{A:2,C:2,F:2},{A:2,E:2,F:2},...还有一些频繁三项集,就不写了。当然一直递归下去,最大的频繁项集为频繁5项集,为{A:2,C:2,E:2,B:2,F:2}

《大数据时代下的数据挖掘》试题和答案与解析

《海量数据挖掘技术及工程实践》题目 一、单选题(共80题) 1)( D )的目的缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到 和原始数据相同的分析结果。 A.数据清洗 B.数据集成 C.数据变换 D.数据归约 2)某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖 掘的哪类问题?(A) A. 关联规则发现 B. 聚类 C. 分类 D. 自然语言处理 3)以下两种描述分别对应哪两种对分类算法的评价标准? (A) (a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。 (b)描述有多少比例的小偷给警察抓了的标准。 A. Precision,Recall B. Recall,Precision A. Precision,ROC D. Recall,ROC 4)将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B. 分类和预测 C. 数据预处理 D. 数据流挖掘 5)当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数 据相分离?(B) A. 分类 B. 聚类 C. 关联分析 D. 隐马尔可夫链 6)建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的 哪一类任务?(C) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则 7)下面哪种不属于数据预处理的方法? (D) A.变量代换 B.离散化

C.聚集 D.估计遗漏值 8)假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内? (B) A.第一个 B.第二个 C.第三个 D.第四个 9)下面哪个不属于数据的属性类型:(D) A.标称 B.序数 C.区间 D.相异 10)只有非零值才重要的二元属性被称作:( C ) A.计数属性 B.离散属性 C.非对称的二元属性 D.对称属性 11)以下哪种方法不属于特征选择的标准方法: (D) A.嵌入 B.过滤 C.包装 D.抽样 12)下面不属于创建新属性的相关方法的是: (B) A.特征提取 B.特征修改 C.映射数据到新的空间 D.特征构造 13)下面哪个属于映射数据到新的空间的方法? (A) A.傅立叶变换 B.特征加权 C.渐进抽样 D.维归约 14)假设属性income的最大最小值分别是12000元和98000元。利用最大最小规范化的方 法将属性的值映射到0至1的范围内。对属性income的73600元将被转化为:(D) A.0.821 B.1.224 C.1.458 D.0.716 15)一所大学内的各年纪人数分别为:一年级200人,二年级160人,三年级130人,四年 级110人。则年级属性的众数是: (A) A.一年级 B.二年级 C.三年级 D.四年级

《数据结构与算法》课后习题答案

2.3 课后习题解答 2.3.2 判断题 1.线性表的逻辑顺序与存储顺序总是一致的。(×) 2.顺序存储的线性表可以按序号随机存取。(√) 3.顺序表的插入和删除操作不需要付出很大的时间代价,因为每次操作平均只有近一半的元素需要移动。(×) 4.线性表中的元素可以是各种各样的,但同一线性表中的数据元素具有相同的特性,因此属于同一数据对象。(√) 5.在线性表的顺序存储结构中,逻辑上相邻的两个元素在物理位置上并不一定相邻。(×) 6.在线性表的链式存储结构中,逻辑上相邻的元素在物理位置上不一定相邻。(√)7.线性表的链式存储结构优于顺序存储结构。(×) 8.在线性表的顺序存储结构中,插入和删除时移动元素的个数与该元素的位置有关。(√) 9.线性表的链式存储结构是用一组任意的存储单元来存储线性表中数据元素的。(√)10.在单链表中,要取得某个元素,只要知道该元素的指针即可,因此,单链表是随机存取的存储结构。(×) 11.静态链表既有顺序存储的优点,又有动态链表的优点。所以它存取表中第i个元素的时间与i无关。(×) 12.线性表的特点是每个元素都有一个前驱和一个后继。(×) 2.3.3 算法设计题 1.设线性表存放在向量A[arrsize]的前elenum个分量中,且递增有序。试写一算法,将x 插入到线性表的适当位置上,以保持线性表的有序性,并且分析算法的时间复杂度。【提示】直接用题目中所给定的数据结构(顺序存储的思想是用物理上的相邻表示逻辑上的相邻,不一定将向量和表示线性表长度的变量封装成一个结构体),因为是顺序存储,分配的存储空间是固定大小的,所以首先确定是否还有存储空间,若有,则根据原线性表中元素的有序性,来确定插入元素的插入位置,后面的元素为它让出位置,(也可以从高下标端开始一边比较,一边移位)然后插入x ,最后修改表示表长的变量。 int insert (datatype A[],int *elenum,datatype x) /*设elenum为表的最大下标*/ {if (*elenum==arrsize-1) return 0; /*表已满,无法插入*/ else {i=*elenum; while (i>=0 && A[i]>x) /*边找位置边移动*/ {A[i+1]=A[i]; i--; } A[i+1]=x; /*找到的位置是插入位的下一位*/ (*elenum)++; return 1; /*插入成功*/ } } 时间复杂度为O(n)。

数据结构与算法复习题及参考答案

复习题集─参考答案 一判断题 (√)1. 在决定选取何种存储结构时,一般不考虑各结点的值如何。 (√)2. 抽象数据类型与计算机部表示和实现无关。 (×)3. 线性表采用链式存储结构时,结点和结点部的存储空间可以是不连续的。 (×)4. 链表的每个结点中都恰好包含一个指针。 (×)5.链表的删除算法很简单,因为当删除链中某个结点后,计算机会自动地将后续的各个单元向前移动。(×)6. 线性表的每个结点只能是一个简单类型,而链表的每个结点可以是一个复杂类型。 (×)7. 顺序表结构适宜于进行顺序存取,而链表适宜于进行随机存取。 (×)8. 线性表在物理存储空间中也一定是连续的。 (×)9. 顺序存储方式只能用于存储线性结构。 (√)10.栈是一种对所有插入、删除操作限于在表的一端进行的线性表,是一种后进先出型结构。 (√)11.对于不同的使用者,一个表结构既可以是栈,也可以是队列,也可以是线性表。 (√)12.栈是一种对所有插入、删除操作限于在表的一端进行的线性表,是一种后进先出型结构。 (√)13.两个栈共享一片连续存空间时,为提高存利用率,减少溢出机会,应把两个栈的栈底分别设在这片存空间的两端。 (×)14.二叉树的度为2。 (√)15.若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。 (×)16.二叉树中每个结点的两棵子树的高度差等于1。 (√)17.用二叉链表法存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。 (√)18.具有12个结点的完全二叉树有5个度为2的结点。 (√)19.二叉树的前序遍历序列中,任意一个结点均处在其孩子结点的前面。 (×)20.在冒泡法排序中,关键值较小的元素总是向前移动,关键值较大的元素总是向后移动。 (×)21.计算机处理的对象可以分为数据和非数据两大类。[计算机处理的对象都是数据] (×)22.数据的逻辑结构与各数据元素在计算机中如何存储有关。 (×)23.算法必须用程序语言来书写。 (×)24.判断某个算法是否容易阅读是算法分析的任务之一。 (×)25.顺序表是一种有序的线性表。[任何数据结构才用顺序存储都叫顺序表] (√)26.分配给顺序表的存单元地址必须是连续的。 (√)27.栈和队列具有相同的逻辑特性。[它们的逻辑结构都是线性表] (√)28.树形结构中每个结点至多有一个前驱。 (×)29.在树形结构中,处于同一层上的各结点之间都存在兄弟关系。 (×)30.如果表示图的邻接矩阵是对称矩阵,则该图一定是无向图。 (×)31.如果表示图的邻接矩阵是对称矩阵,则该图一定是有向图。 (×)32.顺序查找方法只能在顺序存储结构上进行。 (×)33.折半查找可以在有序的双向链表上进行。

一种高效频繁子图挖掘算法.2007,18(10)_2469-2480

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.doczj.com/doc/d92505765.html, Journal of Software , Vol.18, No.10, October 2007, pp.2469?2480 https://www.doczj.com/doc/d92505765.html, DOI: 10.1360/jos182469 Tel/Fax: +86-10-62562563 ? 2007 by Journal of Software . All rights reserved. 一种高效频繁子图挖掘算法 ? 李先通, 李建中+, 高 宏 (哈尔滨工业大学 计算机科学与技术学院,黑龙江 哈尔滨 150001) An Efficient Frequent Subgraph Mining Algorithm LI Xian-Tong, LI Jiang-Zhong +, GAO Hong (School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China) + Corresponding author: Phn: +86-451-86415827, E-mail: lijzh@https://www.doczj.com/doc/d92505765.html,, https://www.doczj.com/doc/d92505765.html, Li XT, Li JZ, Gao H. An efficient frequent subgraph mining algorithm. Journal of Software , 2007,18(10): 2469?2480. https://www.doczj.com/doc/d92505765.html,/1000-9825/18/2469.htm Abstract : With the successful development of frequent item set and frequent sequence mining, the technology of data mining is natural to extend its way to solve the problem of structural pattern mining —Frequent subgraph mining. Frequent patterns are meaningful in many applications such as chemistry, biology, computer networks, and World-Wide Web. In this paper we propose a new algorithm GraphGen for mining frequent subgraphs. GraphGen reduces the mining complexity through the extension of frequent subtree. For the best algorithm before, the complexity is O (n 3·2n ), n is the number of frequent edges in a graph dataset. The complexity of GraphGen is ???? ?????n n O n log 25.2, which is improved )log (n n O ? times than the best one. Experiment results prove this theoretical analysis. Key words : frequent pattern mining; subgraph isomorphism; subtree isomorphism; frequent subgraph; spanning tree 摘 要: 由于在频繁项集和频繁序列上取得的成功,数据挖掘技术正在着手解决结构化模式挖掘问题——频繁子图挖掘.诸如化学、生物学、计算机网络和WWW 等应用技术都需要挖掘此类模式.提出了一种频繁子图挖掘的新算法.该算法通过对频繁子树的扩展,避免了图挖掘过程中高代价的计算过程.目前最好的频繁子图挖掘算法的时间 复杂性是O (n 3·2n ),其中,n 是图集中的频繁边数.提出的算法时间复杂性是???? ?????n n O n log 25.2,性能提高了)log (n n O ?倍. 实验结果也证实了这个理论结果. 关键词: 频繁模式挖掘;子图同构;子树同构;频繁子树;生成树 中图法分类号: TP311 文献标识码: A ? Supported by the National Natural Science Foundation of China under Grant No.60473075 (国家自然科学基金); the Key Program National Natural Science Foundation of China under Grant No.60533110 (国家自然基金重点项目); the National Basic Research Program of China under Grant No.2006CB303000 (国家重点基础研究发展计划(973)); the Program for New Century Excellent Talents in University (NCET) under Grant No.NCET-05-0333 (国家教育部新世纪创新人才计划) Received 2006-09-08; Accepted 2006-11-14

聚类、关联规则挖掘、图数据库

聚类 一、聚类的定义 聚类,属于一种非监督学习方法,它试图在无标签的数据集中发现其分布状况或模式。通常,我们认为同一聚类中的数据点比不同聚类的数据点具有更大的相似性。 二、传统的聚类算法的分类 1、基于划分的聚类算法 主要思想:基于划分的聚类算法通过构造一个迭代过程来优化目标函数,当优化到目标函数的最小值或极小值时,可以得到数据集的一些不相交的子集,通常认为此时得到的每个子集就是一个聚类。 典型方法: k-means算法 FCM算法。 2、层次聚类算法 主要思想:层次聚类方法使用一个距离矩阵作为输入,经过聚类后得到一个反映该数据集分布状况的聚类层次结构图。 层次聚类算法通常分为两种: 凝聚的层次聚类算法:它首先把每个数据点看作是一个聚类,然后以一种自底向上的方式通过不断地选择最近邻居聚类对的合并操作,最终可以构造出一棵代表着该数据集聚类结构的层次树。 分类的层次聚类算法:它首先把所有的数据点看作是一个聚类,然后以一种以自顶向下的方式通过不断地选择最松散簇进行分裂操作,最终可以构造出一棵代表着该数据集聚类结构的层次树。 典型方法: AGNES (AGglomerative NESting) BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) CURE (Clustering Using REpresentative) 3、基于密度的聚类算法 主要思想:基于密度的聚类算法试图通过稀疏区域来划分高密度区域以发现明显的聚类和孤立点,主要用于空间型数据的聚类。 典型方法: DBSCAN (Density-based Spatial Clustering of Application with Noise) OPTICS (Ordering Points to Identify the Clustering Structure) 4、基于网格的聚类算法 主要思想:基于网格的聚类算法是一种基于网格的具有多分辨率的聚类方法。它首先将数据集的分布空间划分为若干个规则网格(如超矩形单元)或灵活的网格(如任意形状的多

数据结构与算法基础知识总结

数据结构与算法基础知识总结 1 算法 算法:是指解题方案的准确而完整的描述。 算法不等于程序,也不等计算机方法,程序的编制不可能优于算法的设计。 算法的基本特征:是一组严谨地定义运算顺序的规则,每一个规则都是有效的,是明确的,此顺序将在有限的次数下终止。特征包括: (1)可行性; (2)确定性,算法中每一步骤都必须有明确定义,不充许有模棱两可的解释,不允许有多义性; (3)有穷性,算法必须能在有限的时间内做完,即能在执行有限个步骤后终止,包括合理的执行时间的含义; (4)拥有足够的情报。 算法的基本要素:一是对数据对象的运算和操作;二是算法的控制结构。 指令系统:一个计算机系统能执行的所有指令的集合。 基本运算和操作包括:算术运算、逻辑运算、关系运算、数据传输。 算法的控制结构:顺序结构、选择结构、循环结构。 算法基本设计方法:列举法、归纳法、递推、递归、减斗递推技术、回溯法。 算法复杂度:算法时间复杂度和算法空间复杂度。 算法时间复杂度是指执行算法所需要的计算工作量。 算法空间复杂度是指执行这个算法所需要的内存空间。 2 数据结构的基本基本概念 数据结构研究的三个方面: (1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构; (2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;(3)对各种数据结构进行的运算。 数据结构是指相互有关联的数据元素的集合。 数据的逻辑结构包含: (1)表示数据元素的信息; (2)表示各数据元素之间的前后件关系。 数据的存储结构有顺序、链接、索引等。 线性结构条件:

(1)有且只有一个根结点; (2)每一个结点最多有一个前件,也最多有一个后件。 非线性结构:不满足线性结构条件的数据结构。 3 线性表及其顺序存储结构 线性表由一组数据元素构成,数据元素的位置只取决于自己的序号,元素之间的相对位置是线性的。 在复杂线性表中,由若干项数据元素组成的数据元素称为记录,而由多个记录构成的线性表又称为文件。 非空线性表的结构特征: (1)且只有一个根结点a1,它无前件; (2)有且只有一个终端结点an,它无后件; (3)除根结点与终端结点外,其他所有结点有且只有一个前件,也有且只有一个后件。结点个数n称为线性表的长度,当n=0时,称为空表。 线性表的顺序存储结构具有以下两个基本特点: (1)线性表中所有元素的所占的存储空间是连续的; (2)线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。 ai的存储地址为:adr(ai)=adr(a1)+(i-1)k,,adr(a1)为第一个元素的地址,k代表每个元素占的字节数。 顺序表的运算:插入、删除。(详见14--16页) 4 栈和队列 栈是限定在一端进行插入与删除的线性表,允许插入与删除的一端称为栈顶,不允许插入与删除的另一端称为栈底。 栈按照“先进后出”(filo)或“后进先出”(lifo)组织数据,栈具有记忆作用。用top表示栈顶位置,用bottom表示栈底。 栈的基本运算:(1)插入元素称为入栈运算;(2)删除元素称为退栈运算;(3)读栈顶元素是将栈顶元素赋给一个指定的变量,此时指针无变化。 队列是指允许在一端(队尾)进入插入,而在另一端(队头)进行删除的线性表。rear指针指向队尾,front指针指向队头。 队列是“先进行出”(fifo)或“后进后出”(lilo)的线性表。 队列运算包括(1)入队运算:从队尾插入一个元素;(2)退队运算:从队头删除一个元素。循环队列:s=0表示队列空,s=1且front=rear表示队列满

数据结构与算法第6章图答案

第 6 章图 课后习题讲解 1. 填空题 ⑴设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。 【解答】0,n(n-1)/2,0,n(n-1) 【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。 ⑵任何连通图的连通分量只有一个,即是()。 【解答】其自身 ⑶图的存储结构主要有两种,分别是()和()。 【解答】邻接矩阵,邻接表 【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。 ⑷已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。 【解答】O(n+e) 【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。 ⑸已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。 【解答】求第j列的所有元素之和 ⑹有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。 【解答】出度 ⑺图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。 【解答】前序,栈,层序,队列 ⑻对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal 算法求最小生成树的时间复杂度为()。 【解答】O(n2),O(elog2e) 【分析】Prim算法采用邻接矩阵做存储结构,适合于求稠密图的最小生成树;Kruskal算法采用边集数组做存储结构,适合于求稀疏图的最小生成树。 ⑼如果一个有向图不存在(),则该图的全部顶点可以排列成一个拓扑序列。 【解答】回路

频繁子图模式挖掘

数据挖掘与商务智能读书报告Using Association Rules for Product Assortment

英文标题:gSpan: Graph-Based Substructure Pattern Mining 中文标题:频繁子图模式挖掘 文献来源:ICDM 2002 一、主要内容(2000~2500字): (1)论文研究的问题概述 数据挖掘技术及其算法是目前国际上数据库和信息决策领域最前沿的研究方向之一,本文就数据挖掘中基于图结构的gSpan挖掘算法及其应用进行了研究。本文研究了频繁字图挖掘在图数据集的新方法,提出了一种新的算法gSpan,它在没有候选集的情况下发现了频繁子结构。gSpan在图中建立了一种新的字典序,和各图形映射到一个唯一的最小DFS代码作为它的规范的标签。基于这种字典顺序,gSpan采用深度优先的搜索策略高效的挖掘频繁连通子图。研究表明,gSpan大大优于以前的算法。 gSpan算法是图挖掘邻域的一个算法,而作为子图挖掘算法,又是其他图挖掘算法的基础,所以gSpan算法在图挖掘算法中还是非常重要的。gSpan算法在挖掘频繁子图的时候,用了和FP-grown中相似的原理,就是模式增长方法,也用到了最小支持度计数作为一个过滤条件。图算法在程序上比其他的算法更加的抽象,在实现时更加需要空间想象能力。 如果整个数据集图中可以容纳主存,gSpan可以直接应用,否则人们要首先执行基于图的数据投影仪,然后应用gSpan。gSpan是第一个在频繁子图挖掘中使用深度优先搜索的算法。本文介绍DFS字典序和最小DFS码这两种技术,它们形成一种新的规范的标识系统来支持DFS搜索。gSpan在一个步骤里结合了频繁子图的增长和检查,从而加速挖掘过程。 (2)论文研究的理论意义及其应用前景 频繁图挖掘是数据挖掘中一个非常广泛的应用。频繁图挖掘可以理解为从大量的图中挖掘出一些满足给定支持度的频繁图,同时算法需要保证这些频繁图不是重复的。gSpan是一个非常高效的算法,它利用dfs-code序列对搜索树进行编码,并且制定一系列比较规则,从而保证最后只得到序列“最小”的频繁图集合。 由于大部分图挖掘算法都需要利用频繁子图,频繁子图挖掘逐渐成为了数据挖掘领域中的热点研究内容。目前,很多高效的频繁子图挖掘算法已经被提出。其中,gSpan算法是目前公认的最好的频繁子图挖掘算法。然而,在化合物数据集上,还可以利用化合物的特殊结构进一步优化gSpan算法的性能。文献利用了化合物分子结构的对称性和原子类型分布的不均衡

数据结构与算法试题

数据结构与算法试题 一、单选题 1、在数据结构的讨论中把数据结构从逻辑上分为 (C ) A 内部结构与外部结构 B 静态结构与动态结构 C 线性结构与非线性结构 D 紧凑结构与非紧凑结构。 2、采用线性链表表示一个向量时,要求占用的存储空间地址(D ) A 必须就是连续的 B 部分地址必须就是连续的 C 一定就是不连续的 D 可连续可不连续 3、采用顺序搜索方法查找长度为n的顺序表时,搜索成功的平均搜索长度为( D )。 A n B n/2 C (n-1)/2 D (n+1)/2 4、在一个单链表中,若q结点就是p结点的前驱结点,若在q与p之间插入结点s,则执行( D )。 A s→link = p→link;p→link = s; B p→link = s; s→link = q; C p→link = s→link;s→link = p; D q→link = s;s→link = p; 5、如果想在4092个数据中只需要选择其中最小的5个,采用( C )方法最好。 A 起泡排序 B 堆排序 C 锦标赛排序 D 快速排序 6、设有两个串t与p,求p在t中首次出现的位置的运算叫做( B )。 A 求子串 B 模式匹配 C 串替换 D 串连接 7、在数组A中,每一个数组元素A[i][j]占用3个存储字,行下标i从1到8,列下标j从1到10。所有数组元素相继存放于一个连续的存储空间中,则存放该数

组至少需要的存储字数就是( C )。 A 80 B 100 C 240 D 270 8、将一个递归算法改为对应的非递归算法时,通常需要使用( A )。 A 栈 B 队列 C 循环队列 D 优先队列 9、一个队列的进队列顺序就是1, 2, 3, 4,则出队列顺序为( C )。 10、在循环队列中用数组A[0、、m-1] 存放队列元素,其队头与队尾指针分别为front与rear,则当前队列中的元素个数就是( D )。 A ( front - rear + 1) % m B ( rear - front + 1) % m C ( front - rear + m) % m D ( rear - front + m) % m 11、一个数组元素a[i]与( A )的表示等价。 A *(a+i) B a+i C *a+i D &a+i 12、若需要利用形参直接访问实参,则应把形参变量说明为( B )参数。 A 指针 B 引用 C 值 D 变量 13、下面程序段的时间复杂度为( C ) for (int i=0;i

数据挖掘实验三应用 Apriori 算法挖掘频繁项集

实验三、应用 Apriori 算法挖掘频繁项集 学院计算机科学与软件学院 ?实验目的: (1)熟悉 VC++编程工具和 Apriori 频繁项集挖掘算法。 (2)根据管理层的需求,确定数据挖掘的任务,明确数据挖掘的功能,也 就是明确要挖掘什么。 (3)由确定的数据挖掘任务,从实验一处理后的结果中,采用切块或切片 等联机分析处理技术,选择出挖掘任务相关数据。 (4)用 VC++编程工具编写 Apriori 算法的程序,对任务相关数据运行 Apriori 算法,挖掘出所有的频繁项集。 1.写出实验报告。 ?实验原理: 1 、Apriori 算法 Apriori 使用一种称作逐层搜索的迭代方法,k 项集用于探索(k+1)项集。 首先,通过扫描数据库,累计每个项的计数,并收集满足最小支持度的项, 找出频繁 1 项集的集合。该集合记作 L 1 。然后,L 1 用于找频繁 2 项集的集合L 2 ,L 2 用于找 L 3 ,如此下去,直到不能再找到频繁 k 项集。找每个 L k 需要一次数据库全扫描。 2、提高频繁项集逐层产生的效率 Apriori 性质:频繁项集的所有非空子集也必须是频繁的。 三、实验内容: 1、实验内容 在给定的数据中提取统一购物篮购买的商品信息,由这些数据构成事务数据库 D,挖掘其中的频繁项集 L。 挖掘频繁项集的算法描述如下: Apriori 算法:使用逐层迭代找出频繁项集 输入:事务数据库 D;最小支持度阈值。 输出:D 中的频繁项集 L。 (1) L 1 = find_frequent_1-itemsets(D); // 挖掘频繁 1-项集,比较容易 (2) for (k=2;L k-1 ≠Φ ;k++) { (3) C k = apriori_gen(L k-1 ,min_sup); // 调用 apriori_gen 方法生成候选频繁 k-项集分为两步:合并、减枝 (4) for each transaction t ∈ D { // 扫描事务数据库 D (5) Ct = subset(C k ,t); (6) for each candidate c ∈ Ct (7) c.count++; // 统计候选频繁 k-项集的计数 (8) } (9) L k ={c ∈ Ck|c.count≥min_sup} // 满足最小支持度的 k-项集即为频 繁 k-项集

数据结构与算法第三版第章参考答案

习题参考答案 一.选择题 1.从逻辑上可以把数据结构分为(C)两大类。 A.动态结构、静态结构 B.顺序结构、链式结构 C.线性结构、非线性结构 D.初等结构、构造型结构 2.在下面的程序段中,对x的斌值语句的频度为(C)。 for( t=1;k<=n;k++) for(j=1;j<=n; j++) x=x十1; A. O(2n) B. O (n) C. O (n2). D. O(1og2n) 3.采用顺序存储结构表示数据时,相邻的数据元素的存储地址(A)。 A.一定连续B.一定不连续 C.不一定连续 D.部分连续,部分不连续 4.下面关于算法说法正确的是(D)。 A.算法的时间复杂度一般与算法的空间复杂度成正比 B.解决某问题的算法可能有多种,但肯定采用相同的数据结构 C.算法的可行性是指算法的指令不能有二义性 D.同一个算法,实现语言的级别越高,执行效率就越低 5.在发生非法操作时,算法能够作出适当处理的特性称为(B)。 A.正确性 B.健壮性 C.可读性 D.可移植性 二、判断题 1.数据的逻辑结构是指数据的各数据项之间的逻辑关系。(√) 2.顺序存储方式的优点是存储密度大,且插人、删除运算效率高。(×) 3.数据的逻辑结构说明数据元素之间的次序关系,它依赖于数据的存储结构。(×) 4.算法的优劣与描述算法的语言无关,但与所用计算机的性能有关。(×) 5.算法必须有输出,但可以没有输人。(√) 三、筒答题 1.常见的逻辑结构有哪几种,各自的特点是什么?常用的存储结构有哪几种,各自的特点是什么? 【答】常见的四种逻辑结构: ①集合结构:数据元素之间是“属于同一个集合” ②线性结构:数据元素之间存在着一对一的关系 ③树结构:数据元素之间存在着一对多的关系 ④结构:数据元素之间存在着多对多的关系。 常见的四种存储结构有: ①顺序存储:把逻辑上相邻的元素存储在物理位置相邻的存储单元中。顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。 ②链接存储:对逻辑上相邻的元素不要求物理位置相邻的存储单元,元素间的逻辑关系通过附设的指针域来表示。 ③索引存储:通过建立索引表存储结点信息的方法,其中索引表一般存储结点关键字和一个地点信息,可通过该地址找到结点的其他信息。 ④散列存储:根据结点的关键字直接计算出该结点的存储地址的方法。 2.简述算法和程序的区别。 【解答】一个算法若用程序设计语言来描述,则它就是一个程序。算法的含义与程序十分相

频繁模式挖掘算法(Apriori)

实验一频繁模式挖掘算法(Apriori) 一、实验目的 1、理解频繁模式和关联规则 2、掌握频繁模式挖掘算法Apriori 3、为改进Apriori打下基础 二、实验内容 1、选定一个数据集(可以参考教学中使用的数据集) 2、选择合适的实现环境和工具实现算法,本次试验采用的是C++ 3、根据设置的最小支持度和置信度,给出数据集的频繁模式集 三、实验原理 该算法的基本思想是:Apriori使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集。首先,通过扫描数据库,累积每个项的计数,并收集满足最小支持度的项,找出频繁1项集的集合。该集合记作L1.然后,L1用于找频繁2项集的集合L2,L2用于找L3,如此迭代,直到不能再找到频繁k项集。找每个Lk需要一次数据库全扫描。 Apriori性质:频繁项集的所有非空子集也必是频繁的。Apriori算法主要包括连接步和剪枝步两步组成。在连接步和剪枝步中采用Apriori性质可以提高算法的效率。 Apriori伪代码 算法:Apriori 输入:D - 事务数据库;min_sup - 最小支持度计数阈值 输出:L - D中的频繁项集 方法: L1=find_frequent_1-itemsets(D); // 找出所有频繁1项集 For(k=2;Lk-1!=null;k++){ Ck=apriori_gen(Lk-1); // 产生候选,并剪枝 For each 事务t in D{ // 扫描D进行候选计数 Ct =subset(Ck,t); // 得到t的子集 For each 候选c 属于Ct c.count++; } Lk={c属于Ck | c.count>=min_sup} } Return L=所有的频繁集; Procedure apriori_gen(Lk-1:frequent(k-1)-itemsets) For each项集l1属于Lk-1 For each项集l2属于Lk-1 If((l1[1]=l2[1])&&( l1[2]=l2[2])&&........ && (l1[k-2]=l2[k-2])&&(l1[k-1]

数据结构与算法

[试题分类]:数据结构与算法 1.数据结构可形式地定义为(D, S),其中S是D上( )的有限集。 A.操作 B.存储映像 C.关系 D.数据元素 答案:C 题型:单选题 知识点:1.2 基本概念和术语 难度:1 2.一般而言,最适合描述算法的语言是( )。 A.自然语言 B.计算机程序语言 C.介于自然语言和程序设计语言之间的伪语言 D.数学公式 答案:C 题型:单选题 知识点:1.4 算法和算法分析 难度:1 3.在下列序列中,不是线性表的是( )。 A. (‘a’,‘b’) B. (a, b) C. (‘AB’,‘CD’) D. (‘a’, b) 答案:D

题型:单选题 知识点:2.1 线性表的类型定义 难度:2 4.对于顺序表的优缺点,以下说法错误的是( )。 A.插入和删除操作较方便 B.可以方便地随机存取表中的任一结点 C.无需为表示结点间的逻辑关系而增加额外的存储空间 D.由于顺序表要求占用连续的空间,存储分配只能预先进行 题型:单选题 知识点:2.2线性表的顺序表示和实现 难度:2 5.在一个单链表中,已知q所指结点是p所指结点的前驱结点,若在q和p之间插入s结点,则执行( )。 A. s->next=p->next;p->next=s; B. p->next=s->next;s->next=p; C. q->next=s;s->next=p; D. p->next=s;s->next=q; 题型:单选题 知识点:2.3线性表的链式表示和实现 难度:2 6.若某链表中最常用的操作是在最后一个结点后插入一个结点和删除最后一个结点,则采用( )存储方式最节省时间。 A.单链表 B.带头结点的单链表 C.单循环链表

数据挖掘一些面试题总结

数据挖掘一些面试题总结(Data Mining) 摘录一段 企业面对海量数据应如何具体实施数据挖掘,使之转换成可行的结果/模型? 首先进行数据的预处理,主要进行数据的清洗,数据清洗,处理空缺值,数据的集成,数据的变换和数据规约。 请列举您使用过的各种数据仓库工具软件(包括建模工具,ETL工具,前端展现工具,OLAP Server、数据库、数据挖掘工具)和熟悉程度。 ETL工具:Ascential DataStage ,IBM warehouse MANAGER、Informatica公司的PowerCenter、Cognos 公司的DecisionStream 市场上的主流数据仓库存储层软件有:SQL SERVER、SYBASE、ORACLE、DB2、TERADATA 请谈一下你对元数据管理在数据仓库中的运用的理解。 元数据能支持系统对数据的管理和维护,如关于数据项存储方法的元数据能支持系统以最有效的方式访问数据。具体来说,在数据仓库系统中,元数据机制主要支持以下五类系统管理功能: (1)描述哪些数据在数据仓库中; (2)定义要进入数据仓库中的数据和从数据仓库中产生的数据; (3)记录根据业务事件发生而随之进行的数据抽取工作时间安排; (4)记录并检测系统数据一致性的要求和执行情况; (5)衡量数据质量。 数据挖掘对聚类的数据要求是什么? (1)可伸缩性 (2)处理不同类型属性的能力 (3)发现任意形状的聚类 (4)使输入参数的领域知识最小化 (5)处理噪声数据的能力 (6)对于输入顺序不敏感 (7)高维性 (8)基于约束的聚类 (9)可解释性和可利用性 简述Apriori算法的思想,谈谈该算法的应用领域并举例。 思想:其发现关联规则分两步,第一是通过迭代,检索出数据源中所有烦琐项集,即支持度不低于用户设定的阀值的项即集,第二是利用第一步中检索出的烦琐项集构造出满足用户最小信任度的规则,其中,第一步即挖掘出所有频繁项集是该算法的核心,也占整个算法工作量的大部分。 在商务、金融、保险等领域皆有应用。在建筑陶瓷行业中的交叉销售应用,主要采用了Apriori 算法 通过阅读该文挡,请同学们分析一下数据挖掘在电子商务领域的应用情况(请深入分析并给出实例,切忌泛泛而谈)? 单选题 1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A) A. 关联规则发现 B. 聚类 C. 分类 D. 自然语言处理

《数据结构与算法》廖明宏课后答案

数据结构与算法》廖明宏课后答案 第一次作业(第 2 章) 4.List Combine(List &L1,List &L2) { LNode *ap1,*ap2,*p; ap1=L1->next; ap2=L2->next; if(ap1->elementelement) while(ap1-next!=NULL) ap1=ap1->next; ap1=L2; return L1; else while(ap2->next!=NULL) ap2=ap2->next; ap2=L1; return L2; 8.XSXXXSSSXXSXXSXXSSSS 15. 节点只有一个链域的环形链表只能是一个单向环形链表,但为了能逆时针方向查找,可

以在链表的每个节点中增加一个代表链表元素总数的整型num该环形链表的每个节点可说 明为: struct celltype{ Elementtype element; celltype *next; int num; }List; 顺时针方向查找就按照普通单向链表的查找; 逆时针方向查找不是直接一步就 达到,逆时针 查找当前节点的下一个节点可以通过顺时针转一圈来达到,代表元素总数的整 型num就决 定了p=p->next(p 为当前节点)所需循环的次数,最终达到逆时针查找的目的。顺时针访问表的每个节点的算法为: void TravelList(List la) List p=la->next; int i=0; while(inum) i++; p=p->next; } }

18.void R(List la,elementtype x) LNode* p=la->next; LNode* q=la->next; int n=1; while(p-next!=NULL && p->data!=x) p=p->next; n++; if(p==NULL) LNode *s; int j=0; while(q && jnext; j++; s->element=x; s->next=q->next; q->next=s; cout<<" 已将x 插在表尾。" }else{

频繁子图挖掘研究综述_鲁慧民

26卷 第3期2009年3月 微电子学与计算机 M IC ROELECTRONICS &COM PUTER Vol .26 No .3M arch 2009 收稿日期:2008-05-30 基金项目:国家“八六三”计划项目(2008AA 01Z 131) 频繁子图挖掘研究综述 鲁慧民,冯博琴,宋擒豹 (西安交通大学电子与信息工程学院,陕西西安710049) 摘 要:归纳了频繁子图挖掘方法的处理流程,分析评价了频繁子图挖掘的典型算法:广度优先搜索和深度优先搜索的频繁子图挖掘算法,概述了频繁子图挖掘研究的平台———图模型及其产生器,并对频繁子图挖掘方法未来研究方向进行了展望. 关键词:子图同构;频繁子图挖掘;图模型;图产生器 中图分类号:T P391 文献标识码:A 文章编号:1000-7180(2009)03-0156-06 Survey of Frequent Subgraph Mining Research LU Hui -min ,FENG Bo -qin ,SONG Qin -bao (School of Electronic and Information Engineering ,Xi ′an Jiaotong U niversity ,Xi ′an 710049,China ) A bstract :T he process of Frequent Subgr aph M ining is summarized in this paper .Broad First Search (BFS ),Depth First Search (DF S ),w hich are the typical mining algo rithms are analyzed and evaluated .T he g raph model and its generator ,w hich is the impo rtant research platform of frequent subg raph mining are introduced .O pen issues and fur ther research di -rections are also discussed . Key words :subg raph isomorphism ;frequent subg raph mining ;graph pa ttern ;g raph g enerator 1 引言 频繁子图挖掘与相对比较成熟的文本型频繁项 挖掘相比,图的数据量大,结构复杂,对原始的图数据进行频繁子图挖掘难度较大.同时通过边或节点添加生成的候选子图集中往往存在大量的冗余,子图同构的NP 问题等都增加了候选子图支持度计算的复杂性,因此一般的文本数据挖掘方法不再适用于频繁子图挖掘,必须结合图数据格式的特点寻求新的挖掘算法. Akihiro 等人在2002年首先将Aprio ri 算法思想应用到频繁子图挖掘中,此后各种基于Aprio ri 思想,采用递归的方法来发现频繁子图的挖掘算法相继出现,主要包括AGM 、AcGM 、FSG 等.后来韩家炜等人将FP -grow th 思想应用到频繁子图挖掘中,使图挖掘得到了迅速的发展,主要包括gSpan 、CloseGraph 和FFSM 等,它们主要通过逐渐扩展频 繁边得到频繁子图,但对边的扩展过程略有不同.此 外还出现了一些其它的频繁子图挖掘算法,例如Wang 等于2005年提出了一种基于索引的频繁子图挖掘算法GraphMiner [1];2007年Zhu 等提出一种基于用户约束条件的频繁子图挖掘算法gPrune [2] ,Karste 等提出了适用于动态图挖掘的 Dynamic G REW 算法[3] 等. 作为图挖掘研究的重点,频繁子图挖掘算法得到了广泛深入的研究,文中总结归纳了频繁子图挖掘的处理流程,对典型的频繁子图挖掘算法进行了分析评价,同时介绍了研究频繁子图挖掘的平台———图模型及其产生器,并展望了频繁子图挖掘的未来研究方向. 2 频繁子图挖掘的处理流程 频繁子图挖掘即从输入数据库中挖掘出所有的频繁子图.

相关主题
相关文档 最新文档