当前位置:文档之家› 铁碳合金显微组织的观察及分析 实验指导书

铁碳合金显微组织的观察及分析 实验指导书

铁碳合金显微组织的观察及分析 实验指导书
铁碳合金显微组织的观察及分析 实验指导书

实验六铁碳合金显微组织的观察及分析

实验项目名称:碳钢非平衡组织观察

实验项目性质:普通实验

所属课程名称:金属材料与热处理

实验计划学时:2

一、实验目的

(1)观察碳钢经不同热处理后的基本组织。

(2)了解热处理工艺对钢组织和性能的影响。

(3)熟悉碳钢几种曲型热处理组织——M、T、S、M

回火、S

回火

等组织的形态

及特征。

二、实验内容和要求

碳钢经退火、正火可得到平衡或接近平衡组织;经淬火得到的是不平衡组织。铁碳合金缓冷后的显微组织基本上与铁碳相图所预料的各种平衡组织相符合,但在快冷条件下的显微组织就不能用铁碳合金相图来加以分析,而应由过冷奥氏体等温转变曲线(C曲线)来确定。图1-1为共析碳钢的C曲线图。

图1-1 共析钢的C曲线

铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C 曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。

按照不同的冷却条件,过冷奥氏体将在不同的温度范围发生不同类型的转变。通过金相显微镜观察,可看出过冷奥氏体各种转变产物的组织形态各不相同。

1.共析钢等温冷却时的显微组织

共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表1-1中。

2.共析钢连续冷却时的显微组织

共析钢奥氏体,在慢冷时(相当于炉冷,见图1-1的v1)应得到100%珠光体;当冷却速度增大到v2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到v3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大到v4、v5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变马马氏体。其中与C曲线鼻尖相切的冷却速度(v4)称为淬火的临界冷却速度。

3.亚共析钢和过共析钢连续冷却时的显微组织

亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,见图1-2所示。

当奥氏体缓冷时(相当于炉冷,如图1-2的v1)转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即v3>v2>v1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。

图1-2 亚共析钢的C曲线

表1-1

4.各组织的显微特征

(1)索氏体(S)是铁素体与渗碳体的机械混合物,其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。

(2)屈氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图1-3)。

(3)贝氏体(B)为奥氏体的中温转变产物,它也是铁素体与渗碳体的两相混合物。在显微形态上,主要有三种形态;

A.上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的非层状组织(见图1-4)。

B.下贝氏体是在片状铁素体内部沉淀有碳化物的两相混合物组织。它比淬火马氏体易受浸蚀,在显微镜下黑色针状(见图1-5)。在电镜下可以见到,在片状铁素体基体中分布有很细的碳化物片,它们大致与铁素体片的长轴成55~60°的角度。

C .粒状贝氏体是最近十几年才被确认的组织。在低、中碳合金钢中,特别是连续冷却时(如正火、热轧空冷或焊接热影响区)往往容易出现,在等温冷却时也可能形成。它的温度范围大致在上贝氏体转变渐度区的上部,由铁素体和它所包围的小岛状组织所组成。

(4)马氏体(M )是碳在αFe 的过饱和固溶体。以马氏体的形态按含碳量主要分两种,即板条状和针状(见图1-6、1-7)。

A .板条状马氏体一般为低碳钢或低碳合金钢的淬火组织。其组织形态是由尺寸大致相联系贩细马氏体条定向平行排列组成马氏体束或马氏体领域。在马氏体束之间位向差较大,一个奥氏体晶粒内可形成几个不同的马氏体领域。板条马氏体具有较低的硬度和较好的韧性。

B .针状马氏体是含碳量较高的钢淬火后得到的组织。在光学显微镜下,它呈竹叶状或针状,针和针之间成一定的角度。最先形成的马氏体较粗大,往往横穿整个奥氏体晶粒,将奥氏体加以分割,使以后形成的马氏体片的大小受到限制。因此,针状马氏体的大小不一。同时有些马氏体有一条中脊线,并在马氏体周围有残留奥氏体。针状马氏体的硬度高而韧性差。

(5)残余奥氏体(A 残)是含碳量大小0.5%的奥氏体淬火时被保留到室温不转变的那部分奥氏体。它不易受硝酸酒精溶液的浸蚀,在显微镜下呈白亮色,分布在马氏体之间,无固定形态。如图1-8表示为含碳1.3%的碳钢加热到1000℃淬火后,约有15%~30%的残余奥氏体。如图1-9表示为含碳1.2%的碳钢正常淬火(780℃加热),组织为马氏体+粒状渗碳体+少量残余奥氏体。

图1-4 上贝氏体+马氏体

图1-3 屈氏体+马氏体

(6)钢的回火组织与性能

A .回火马氏体。是低温回火(150~250℃)组织。它仍保留了原马氏体形态特征。针状马氏体回火析出了极细的碳化物,容易受到浸蚀,在显微镜下呈黑色针状。低温回火后马氏体针变黑,而残余奥氏体不变仍呈白亮色(如图1-10)。低温回火后可以部分消除淬火钢的内应力,增加韧性,同时仍能保持钢的高硬度。

B .回火屈氏体。是中温回火(350~500℃)线织。回火屈氏体是铁素体与粒状渗碳体组成的极细混合物。铁素体基体基本上保持了原马氏体的形态(条状或针状),第二相渗碳体则析出在其中,呈极细颗粒状,用光学显微镜极难分辨

图1-5 下贝氏体

图1-6 回火板条状马氏体

图1-7 针状马氏体 图1-8 粗大的针状马氏体+大量残余奥氏体

图1-9 马氏体+粒状渗碳体+少量

残奥氏体

图1-10 回火马氏体(黑色)+残余

奥氏体(白色)

(如图1-11)。中温回火后有很好的弹性和一定的韧性。

C.回火索氏体:是高温回火(500~650℃)组织。回火索氏体是铁素体与较粗的粒状渗碳体所组成的机械混合物。碳钢回火索氏体中的铁素体已经通过再结晶,呈等轴细晶粒状。经充分回火的索氏体已没有针的形态。在大于500倍的光镜下,可以看到渗碳体微粒(如图1-12)。回火索氏体具有良好的综合机械性能。

应当指出,回火屈氏体、回火索氏体是淬火马氏体回火时的产物,它们的渗碳体是颗粒状的,且均匀地分布在铁素体基体上;而淬火索氏体和淬火屈氏体是奥氏体过冷时直接形成的,其渗碳体是呈片状。回火组织较淬火组织在相同硬度下具有较高的塑性与韧性。

图1-11 回火屈氏体图1-12 回火索氏体

三、实验主要仪器设备和材料

(1)金相显微镜

(2)金相图谱及放大的金相图片

(3)经各种不同热处理的金相试样

四、实验方法、步骤及结果测试

(1)观察表1-2所列试样的显微组织

表1-2 实验要求观察的样品

(2)描绘出所观察样品的显微组织示意图,并注明材料、处理工艺、放大倍数、组织名称及浸蚀剂等。

五、实验报告要求 (1)写出实验目的;

(2)画出所观察样品的显微组织示意图; (3)说明所观察样品的组织; 六、思考题

比较并讨论直接冷却得到的M 、T 、S 和淬火、回火得到的M

回火

、T 回火、S

回火

的组织形态和性能差异。

铁碳合金平衡组织观察与分析

实验四铁碳合金平衡组织观察与分析 一、实验目的 1、熟悉掌握铁碳合金(碳钢及白口铸铁)在平衡状态下的显微组织。 2、分析成分(含碳量)对铁碳合金显微组织的影响,从而加深理解成分、组织与性能之间的相互关系。 二、实验原理 铁碳合金的显微组织是研究和分析钢铁材料性能的基础,所谓平衡状态的显微组织是指合金在极为缓慢的冷却条件下(如退火状态,即接近平衡状态)所得到的组织。可根据以组织组成物标注的Fe-Fe3C合金相图来分析铁碳合金在平衡状态下的显微组织,如图4–1所示。 图4–1以组织组成物标注的Fe-Fe3C合金相图 铁碳合金的平衡组织主要是指碳钢和白口铸铁组织,其中碳钢是工业上应用最广的金属材料,它们的性能与其显微组织密切相关。此外,对碳钢和白口铸铁显微组织的观察和分析,有助于加深

对Fe-Fe3C相图的理解。 从Fe-Fe3C相图上可以看出,所有碳钢和白口铸铁的室温组织均由铁素体(F)和渗碳体(Fe3C)这两个基本相所组成。但是由于含碳量不同,铁素体和渗碳体的相对数量、析出条件以及分布情况均有所不同,因而呈现各种不同的组织形态。 在Fe-Fe3C相图中,ABCD为液相线,AHJECF为固相线。相图中各特征点的温度、成分及其含义见表4–1。 表4–1铁碳相图中各特征点的说明 Fe- Fe3C相图中有二条水平线(此处不介绍包晶线及包晶反应): ECF水平线(1148?C)为共晶线,在该线温度下将发生共晶转变:L4.3→ A2.11 + Fe3C 。转变产物为奥氏体和渗碳体的机械混合物,称高温莱氏体(Ld)。 PSK水平线(727?C)为共析线,在该线温度下将发生共析转变:A0.77→ F0.0218 + Fe3C 。转变产物为铁素体和渗碳体的机械混合物,称珠光体(P)。共析线又称为A1线。 Fe- Fe3C相图中还有固态转变线:GS为A体?F体固溶体转变线,又称为A3线;ES线为碳在A体中的固溶线。称为A cm线;PQ线为碳在F体中的固溶线。

实验一铁碳合金平衡组织的观察与分析

实验一 铁碳合金平衡组织的观察与分析 一、实验目的 1认识和熟悉铁碳合金平衡状态下的显微组织特征; 2?了解含碳量对铁碳合金平衡组织的影响。建立起 3. 了解平衡组织的转变规律并能应用杠杆定律。 平衡状态是指铁碳合金在极为缓慢的冷却条件下完成转变的组织状态。 退火状态下的碳钢组织可以看成是平衡组织。 图1是以组织组成物表示的铁碳合金相图。 在室温下碳钢和白口铸铁的组织都是由铁素 体和渗碳体两种基本相构成。 但是由于含碳量不同、 合金相变规律的差异, 致使铁碳合金在 室温下的显微组织呈现出不同的组织类型。表 1列出各种铁碳合金在室温下的显微组织。 表织 合金分类 含碳量/% 显微组织 工业纯铁 <0.0218 铁素体(F ) 碳钢 亚共析钢 0.0218 ?0.77 F+珠光体(P ) 共析钢 0.77 P 过共析钢 0.77 ?2.11 P+二次渗碳体(C n ) 白口铸铁 亚共晶白口铸铁 2.11 ?4.3 P+ C n +莱氏体(L e ) 共晶白口铸铁 4.3 L e 过共晶白口铸铁 4.3 ?6.69 L e +二次渗碳体(C l ) 铁碳合金显微组织中, 铁素体和渗碳体两种相经硝酸酒精溶液浸蚀后均呈白亮色, 而它 们之间的相界则呈黑色线条。采用煮沸的碱性苦味酸钠溶液浸蚀, 铁素体仍为白色,而渗碳 体则被染成黑色。 图1以组织组成物表示的铁碳合金相图 概述 Fe-Fe 3C 状态图与平衡组织的关系; 在实验条件下, A+Lc*Fe^C A*F C ^C B 9000- “匕 F+ F +FejC ■

铁碳合金的各种基本组织特征如下: 1. 工业纯铁 含碳量小于0.0218 %的铁碳合金称为工业纯铁,其显微组织为单相铁素体或铁素体+极少量三次渗碳体。为单相铁素体时,显微组织由亮白色的呈不规则块状晶粒组成,黑色网状线即为不同位向的铁素体晶界,如图2(a)所示。当显微组织中有三次渗碳体时,则在某 些晶界处看到呈双线的晶界线,表明三次渗碳体以薄片状析出于铁素体晶界处,如图2(b)所示。 (a) 250X (b) 700X 图2工业纯铁的显微组织 2. 碳钢 碳钢按含碳量的不同,将组织类型分为3种:共析钢、亚共析钢和过共析钢。其组织 特征如下: (1) 共析钢 含碳量为0.77 %的铁碳合金称为共析钢,其显微组织是珠光体。珠光体是层片状铁素 体和渗碳体的机械混合物。两相的相界是黑色的线条,在不同放大倍数条件下观察,则具有不同的组织特征,在高倍数(>500倍)电镜下观察时,能清晰地分辨珠光体中平行相间的宽条铁素体和细片状渗碳体,如图3(a)所示。在300?400倍光学显微镜下观察时,由于显 微镜的鉴别能力小于渗碳体片厚度,这时所看到的渗碳体片就是一条黑线?如图3(b)所示。珠光体有类似指纹的特征。 (A) SOTx (b) 300 x 图3共析钢的珠光体组织 (2) 亚共析钢 含碳量为0.0218%?0.77%的铁碳合金称为亚共析钢,室温下的显微组织是铁素体+珠光体。铁素体呈白色不规则块状晶粒,珠光体在放大倍数较低或浸蚀时间长、浸蚀液浓度加大时,则为黑色块状晶粒,如图4所示。

铁碳合金相显微组织观察

实验一、铁碳合金相显微组织观察 一、实验目的 1)观察碳钢和铸铁试样在平衡状态下的显微组织。 2)熟悉工业纯铁、灰口铸铁等材料的组织特征,了解各种工业用铸铁的显微组织特征。 并熟悉随含碳量的增加,组织的变化特征。 二、实验原理 通常将含碳量<2.11%的Fe-C合金称为钢,含碳量>2.11%的合金称为铸铁。根据铁碳二元相图,它们在室温下的组成相都是铁素体和渗碳体,但它们在显微组织上有很大的差异。 三、实验器材 显微镜,供观察样品每组8块 四、实验内容 (1)画出铁碳合金状态图,并写出所观察组织成分构成; (2)画出所观察样品的显微组织示意图(4个图),注明合金成分、放大倍数及各组织组成物的名称,说明其特征; (3)用箭头标明相组成物和组织组成物的名称于组织图外;

(参考资料) 1、铁碳合金在室温下的显微组织特征 工业纯铁:含碳量<0.0218%的铁碳合金通常称为工业纯铁,它为两相组织,即由铁素体和三次渗碳体组成。显微组织中黑色线条是铁素体的晶界、而亮白色基体是铁素体的多边形状等轴晶粒。 碳钢 共析钢:含碳量为0.77%的铁碳合金。其显微组织由单一的共析珠光体组成。亚共析钢:含碳量在0.0218%—0.77%范围内的铁碳合金。其组织由先共析铁素体和珠光体所组成,随着含碳量的增加,铁素体的数量逐渐减少,而珠光体的数量则相应地增多,显微组织中亮白色为铁素体,暗黑色为珠光体。 过共析钢:含碳量在0.77%与2.11%之间的铁碳合金。其组织由珠光体和先共析渗碳体(即二次渗碳体)组成。钢中含碳量越多,二次渗碳体数量越多。显微组织中存在片状珠光体和网络状二次渗碳体,经4%硝酸酒精浸蚀后珠光体呈暗黑色,而二次渗碳体则成白色网状。 白口铸铁:含碳量大于 2.11%的铁碳合金叫白口铸铁。其中的碳以渗碳体的形式存在,断口呈白亮色而得此名。 亚共晶白口铸铁:含碳量<4.3%的白口铸铁称为亚共晶白口铸铁。在室温下亚共晶白口铸铁的组织为珠光体+二次渗碳体+莱氏体。用4%硝酸酒精溶液浸蚀后,在显微镜下呈现黑色枝晶状的珠光体和斑点状莱氏体,其中二次渗碳体与共晶渗碳体混在一起,不易分辨出来。 共晶白口铸铁:共晶白口铸铁的含碳量为4.3%,它在室温下的组织由单一的共晶莱氏体组成。经4%硝酸酒精浸蚀后,在显微镜下,珠光体呈暗黑色细条或斑点状,共晶渗碳体呈亮白色。 过共晶白口铸铁:含碳量>4.3%的白口铸铁称为过共晶白口铸铁,在室温时的组织由一次渗碳体和莱氏体组成。用4%硝酸酒精溶液浸蚀后,在显微镜下可观察到在带黑色斑点的莱氏体基体上分布着亮白色的粗大条片状的一次渗碳体。

铁碳合金相图分析及应用

第五章铁碳合金相图及应用 [重点掌握] 1、铁碳合金的基本组织;铁素体、奥氏体、渗碳体、珠光体、菜氏体的结构和性能特点及显微组织形貌; 2、根据相图,分析各种典型成份的铁碳合金的结晶过程; 3、铁碳合金的成份、组织与性能之间的关系。 铁碳相图是研究钢和铸铁的基础,对于钢铁材料的应用以及热加工和热处理工艺的制订也具有重要的指导意义。 铁和碳可以形成一系列化合物,如Fe3C、Fe2C、FeC等, 有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为 Fe-Fe3C相图,相图中的组元只有Fe和Fe3C。 第一节铁碳合金基本相 一、铁素体 1.δ相高温铁素体:C固溶到δ-Fe中,形成δ相。 2.α相铁素体(用F表示):C固溶到α-Fe中,形成α相。 F强度、硬度低、塑性好(室温:C%=0.0008%,727度:C%=0.0218%)二、奥氏体 γ相奥氏体(用A表示):C固溶到γ-Fe中形成γ相)强度低,易塑性变形 三、渗碳体

Fe3C相(用Cem表示),是Fe与C的一种具有复杂结构的间隙化合物, 渗碳体的熔点高,机械性能特点是硬而脆,塑性、韧性几乎为零。 渗碳体根据生成条件不同有条状、网状、片状、粒状等形态, 对铁碳合金的机械性能有很大影响。 第二节 Fe-Fe3C相图分析 一、相图中的点、线、面 1.三条水平线和三个重要点 (1)包晶转变线HJB,J为包晶点。1495摄氏度,C%=0.09-0.53% L+δ→A (2)共晶转变线ECF, C点为共晶点。冷却到1148℃时, C点成分的L发生共晶反应:L→A(2.11%C)+Fe3C(6.69%C,共晶渗碳体)共晶反应在恒温下进行, 反应过程中L、A、Fe3C三相共存。 共晶反应的产物是奥氏体与渗碳体的共晶混和物, 称莱氏体, 以符号 Le表示。 (3)共析转变线PSK,S点为共析点。合金(在平衡结晶过程中冷)却到727℃时, S点成分的A发生共析反应:

实验一 铁碳合金平衡组织的观察与分析

实验一铁碳合金平衡组织的观察与分析 一、实验目的 1.认识和熟悉铁碳合金平衡状态下的显微组织特征; 2.了解含碳量对铁碳合金平衡组织的影响。建立起Fe-Fe3C状态图与平衡组织的关系;3.了解平衡组织的转变规律并能应用杠杆定律。 二、概述 平衡状态是指铁碳合金在极为缓慢的冷却条件下完成转变的组织状态。在实验条件下,退火状态下的碳钢组织可以看成是平衡组织。 图1是以组织组成物表示的铁碳合金相图。在室温下碳钢和白口铸铁的组织都是由铁素体和渗碳体两种基本相构成。但是由于含碳量不同、合金相变规律的差异,致使铁碳合金在室温下的显微组织呈现出不同的组织类型。表1列出各种铁碳合金在室温下的显微组织。 合金分类含碳量/% 显微组织 工业纯铁<0.0218 铁素体(F) 碳钢 亚共析钢0.0218~0.77 F+珠光体(P) 共析钢0.77 P 过共析钢0.77~2.11 P+二次渗碳体(CΠ) 白口铸铁 亚共晶白口铸铁 2.11~4.3 P+ CΠ+莱氏体(L e) 共晶白口铸铁 4.3 L e 过共晶白口铸铁 4.3~6.69 L e+二次渗碳体(C I) 铁碳合金显微组织中,铁素体和渗碳体两种相经硝酸酒精溶液浸蚀后均呈白亮色,而它们之间的相界则呈黑色线条。采用煮沸的碱性苦味酸钠溶液浸蚀,铁素体仍为白色,而渗碳体则被染成黑色。 图1 以组织组成物表示的铁碳合金相图

铁碳合金的各种基本组织特征如下: 1.工业纯铁 含碳量小于0.0218%的铁碳合金称为工业纯铁,其显微组织为单相铁素体或铁素体+极少量三次渗碳体。为单相铁素体时,显微组织由亮白色的呈不规则块状晶粒组成,黑色网状线即为不同位向的铁素体晶界,如图2(a)所示。当显微组织中有三次渗碳体时,则在某些晶界处看到呈双线的晶界线,表明三次渗碳体以薄片状析出于铁素体晶界处,如图2(b)所示。 (a)250X (b)700X 图2 工业纯铁的显微组织 2.碳钢 碳钢按含碳量的不同,将组织类型分为3种:共析钢、亚共析钢和过共析钢。其组织特征如下: (1)共析钢 含碳量为0.77%的铁碳合金称为共析钢,其显微组织是珠光体。珠光体是层片状铁素体和渗碳体的机械混合物。两相的相界是黑色的线条,在不同放大倍数条件下观察,则具有不同的组织特征,在高倍数(>500倍)电镜下观察时,能清晰地分辨珠光体中平行相间的宽条铁素体和细片状渗碳体,如图3(a)所示。在300~400倍光学显微镜下观察时,由于显微镜的鉴别能力小于渗碳体片厚度,这时所看到的渗碳体片就是一条黑线.如图3(b)所示。珠光体有类似指纹的特征。 图3 共析钢的珠光体组织 (2)亚共析钢 含碳量为0.0218%~0.77%的铁碳合金称为亚共析钢,室温下的显微组织是铁素体+珠光体。铁素体呈白色不规则块状晶粒,珠光体在放大倍数较低或浸蚀时间长、浸蚀液浓度加大时,则为黑色块状晶粒,如图4所示。

铁碳合金平衡组织观察实验报告23

铁碳合金平衡组织观察实验报告 一、实验目的 (1)观察和识别铁碳和金(碳素钢和白口铸铁)在平衡状态下的显微组织特征; (2)了解铁碳合金成分(含碳量)对铁碳合金显微组织的影响,从而加深理解成分、组织、性能之间的关系; (3)熟悉金相显微镜的使用。 二、实验原理 状态图是研究铁碳合金组织与成分关系的重要工具,了解和掌握状态图,对于制定钢铁材料的各种加工工艺有着很重要的指导意义。 所谓平衡状态的显微组织是指合金在极缓慢的条件下冷却到室温所得到的组织。铁碳合金的平衡组织主要是指碳钢和白口铸铁的缓慢冷却到室温得到的组织,它们是(特别是碳钢)工业上应用最广泛的金属材料,它们的性能与其显微组织有密切的关系。 三、使用的仪器设备 金相显微镜 四、实验方法、步骤 (1)实验前,阅读实验指导书,为实验做好理论方面的准备; (2)在老师的指导下调节好金相显微镜; (3)在金相显微镜下分别观察工业纯铁、20钢、45钢、65钢、T8钢、T12钢、亚共晶白口铁、共晶白口铁、过共晶白口铁等9种铁碳合金的平衡组织,识别钢和铁的组织形态的特征;根据相图分析各合金的形成过程;建立成 分,组织之间相互关系的概念; (4)画出所观察金相样品的显微组织示意图。 五、实验结果分析 (1)根据所观察并画出的金相样品的显微组织示意图,在图中标出组织,在图下标出:含碳量、组织、放大倍数、侵蚀剂。 样品名称:1.2%碳钢 状态:退火 显微组织:珠光体和网状渗碳体 放大倍数:500倍 侵蚀剂:3%硝酸酒精溶液 样品名称:共晶白口铁 状态:铸造 含碳量:4.3% 显微组织:莱氏体 放大倍数:400倍;侵蚀剂:3%酒精溶液 样品名称:工业纯铁 含碳量:C%小于0.02%

铁碳合金平衡组织观察与分析实验报告

铁碳合金平衡组织观察与 分析 材料工程1601 实验者:王XX 学号:1703XXXXX

一实验目的 1、区别和研究铁碳合金(碳钢和白口铸铁)在平衡状态下的显微组织; 2、分析含碳量对铁碳合金显微组织的影响,加深理解成分、组织与性能之间的相互关系。 二概述 铁碳合金的显微组织是研究钢铁材料性能的基础。铁碳合金平衡状态的组织是指合金在极为缓慢的冷却条件下(如退火状态)所得到的组织,其相变过程均按Fe—Fe3C相图进行,所以我们可以根据该相图来分析铁碳合金的平衡组织。 图3-1 Fe-Fe3C相图 如图3—1所示,所有碳钢和白口铸铁在室温下的组织均由铁素体(F)和渗碳体(FeC)这两个基本相所组成。只是因含碳量不同,铁素体和渗碳体的相对数量、析出条件以及分布情况各有所不同,因而呈各种不同的组织形态,见表4—1。 碳钢和白口铸铁在金相显微镜下具有下面几种基本组织:

表4—1 各种铁碳合金在室温下的显微组织 及良好的塑性,硬度较低。用3—4%硝酸酒精熔液浸蚀后,在显微镜下呈现明亮色的多边形晶粒:亚共析钢中,铁素体呈块状分析;当含碳量接近于共析成分时,铁素体则呈断续的网状分布于珠光体周围。 (2)渗碳体(FeC)是铁与碳形成的一种化合物,其含碳量为6.67%。当用3~4%硝酸酒精溶液浸蚀后,渗碳体呈亮白色,若用苦味酸钠溶液浸蚀,则渗碳

体呈黑色而铁素体仍为白色。由此可区别铁素体与渗碳体。此外,按铁碳合金成分和形成条件不同,渗碳体呈观不同的形态:一次渗碳体(初生相)直接由液体中析出,在白口铸铁中呈粗大的条片状;二次渗碳体(次生相)从奥氏体巾析出,呈网络状沿奥氏体晶界分布,经球化退火,渗碳体呈颗粒状。 (3)珠光休(P)是铁素体和渗碳体的机械混合物,浸蚀后可观察到两种不同的组织形态: 1)片状珠光体它是由铁素休与渗碳体交替排列形成的层片状组织,经硝酸酒精溶液浸蚀后,在不同放大倍数的显微镜下,可以看到具存不同特征的层片状组织。在高倍放大时(照片4—1),能清楚地看到珠光体中平行相间的宽条铁素休和细条渗碳体。当放大倍数低时(照片4—2),由于显微镜的鉴别能力小于渗碳体片厚度,这时就只能看到一条黑线,它实际上就表示渗碳体。当组织较细而放大倍数更低时,珠光体片层就不能分辨,而呈黑色。 2)球状珠光体球状珠光休组织的特征是在亮白色的铁素体基体上,均匀分布着白色的渗碳体颗粒,其边界呈暗黑色,如照片4—3。 上述各类组织组成物的机械性能见表4—2。 (4)莱氏体(L)室温时是珠光体、二次渗碳体和共晶渗碳体所组成的机械混合物。它是由含碳量为4.3%的液态共晶白口铸铁在1147℃共晶反应所形成的共晶体(奥氏体和共晶渗碳体)其中奥氏体在继续冷却时析出二次渗碳体,在723℃以下分解为珠光体。因此,莱氏体的显微组织特征是在亮白色的渗碳体基底上相间地分布着暗黑色斑点及细条状的珠光体。 表4—2 各类组织组成物的机械性能

铁碳合金平衡组织显微分析

铁碳合金平衡组织显微分析 金相试样的制备 一、实验目的 1.熟悉金相显微试样的制备过程 2.了解掌握金相显微试样的制备方法 二、概述 在利用金相显微镜作金相显微分析时,必须首先制备金相试样,我们在显微镜中所观察到的显微组织,是靠光线从试样观察面上的反射来实现的。若试样观察面上的反射光能进入物镜。我们就可以从目镜中观察到反射的象,否则就观察不到。 图2-1 光线在不同表面上的反射情况 由图2-1所示可见,未经制备的试样的表面相当于无数多个与镜筒不垂直的平滑表面,这是不能成象的。因此,我们要先把试样观察面制备成光滑平面。但是光滑平面在显微镜下只看到光亮一片,而不能看到显微组织结构特征,故还须用一定的浸蚀剂浸蚀试样观察面,使某些耐浸蚀弱的区域不同程度地受到浸蚀而呈现微观察的凸凹不平。这些区域的反射光线被散射而呈暗色。由于明暗相衬,在显微观察中就能表示试试样磨面组织结构的特征了。 金相试样的制备包括试样的切取、镶嵌、磨制抛光、锓蚀等五个步骤。 1. 取样 试样应根据分析目的和要求在有代表的位置上截取。一般地说,取横截面主要观察:1、试样边缘到中心部位显微组织的变化。2、表层缺陷的检验、氧化、

过滤、折叠等。3、表面处理结果的研究,如表面淬火、硬化层、化学热处理层、镀层等。4、晶粒度测定等。通过纵截面可观察:1、非金属夹杂;2、测定晶粒变形程度;3、鉴定带状组织及通过热处理消除带状组织的效果等。试样一般可用手工切割、机床切割、切片机切割等方法截取(试样大小为φ12×12mm圆柱体或12×12×12mm的立方体)。不论采用哪种方法,在切取过程中均不宜使试样的温度过高,以免引起金属组织的变化,影响分析结果。 2. 镶嵌 当试样的尺寸太小(如金属丝、薄片等)时,直接用手来磨制很困难,需要使用试样夹或利用样品镶嵌机,把试样镶嵌在低熔点合金或塑料(如胶木粉、聚乙烯及聚合树脂等)中,如图2-2所示。 图2-2 试样的镶嵌(见实验室挂图) 3. 磨制 试样的磨制一般分粗磨和细磨两道工序。 a. 粗磨:粗磨的目的是为了获得一个平整的表面,钢铁材料试样的粗磨可用锉刀锉平,也可在砂轮机上磨制。但应注意:试样对砂轮压力不宜过大。否则会在试样表面形成很深的磨良,增加精磨和抛光的困难,要随时用水冷却试样,以免受热引起组织交化;试样边缘的棱角若无保存必要,可先行磨圆(倒角),以免在细磨及抛光时撕破砂纸或抛光布,甚至造成试样从抛光机上飞出伤人。 b. 细磨:经粗磨后试样表面虽较平整,但仍还存在有较深的痕(如图2-3)所示。细磨的目的就是为了消除这些磨痕,以得到平整而光滑的磨面,为下一步

铁碳合金非平衡组织观察

实验四铁碳合金非平衡组织观察一、实验目的 识别铁碳合金在不同热处理状态下的显微组织 加深对TTT曲线的理解及非平衡状态下钢的成份热处理工艺、组织之间的关系的认识。二.实验原理碳钢经热处理后的组织,可以是平衡或接近平衡状态(如退火、正火)的组织,也可是不平衡组织(如淬火组织),因此在研究热处理后的组织时,不但要参考铁碳相图,还要利用C曲线。 铁碳相图能说明慢冷时不同碳质量分数的铁碳合金的结晶过程和室温下的组织,计算相的质量分数。C曲线则能说明一定成分的铁碳合金在不同冷却条件下的转变过程,及能得到哪些组织,如图4-1。 1.冷却时所得的各种组织组成物的形态a.珠光体(图4-2) 珠光体是奥氏体高温转变的产物,根据其片层间距的大小可分为: (1)珠光体(P)是铁素体与渗碳体的机械混合物,层片较粗。 (2)索氏体(s)是铁素体与渗碳体的机械混合物。其层片比珠光体更细密,在显微镜的高倍(700倍以上)放大下才能分辨。 (3)屈氏体(T)也是铁素体与渗碳体的机械混合物。片层比索氏体更细密,在一般光学显微镜下无法分辨,只能看到如墨菊状的黑色组织。当其少量析出时,沿晶界分布呈黑色网状包围马氏体。当析出量较多时,呈大块黑色晶团状。只有在电子显微镜下才能分辨其中的片层。b.贝氏体 贝氏体是奥氏体中温转变的产物,也是铁素体与渗碳体的两相混合物,但其金相形态与珠光体类组织不同,并因钢的成分和形成温度不同而有差别。其组织形态主要有二种:(1)上贝氏体(B)上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗

碳体所组成的非层状组织。当转变量不多时,在光学显微镜下为成束的铁素体条向奥氏体晶界内伸展,具有羽毛状特征。在电镜下铁素体以几度到十几度的小位向差相互平列,渗碳体沿条的长轴方向排列成行。 (2)下贝氏体下贝氏体是在片状铁索体内部沉淀有碳化物的混合物组织。由于下贝氏体易受浸蚀,所以在显微镜下呈黑色针状,在电镜下是以片状铁索体为基体,其中分布着很细的碳化物片,大致与铁索体片的长轴呈55。~65。的角度。C.马氏体( 马氏体(M)是奥氏体低温转变的产物,是碳在α—Fe中的过饱和固溶体。马氏体可分为两大类,即板条状马氏体和片状马氏体。 (1)板条状马氏体在光学显微镜下,板条状马氏体的形态呈现为一束束相互平行的细长条状马氏体群,在一个奥氏体晶粒内可有几束不同取向的马氏体群。每束内的条与条之间以小角度晶界分开,束与束之间具有较大的位向差。板条状马氏体的立体形态为细长的板条状,其横截面据推测呈近似椭圆形。由于条状马氏体形成温度较高,在形成过程中常有碳化物析出,即产生自回火现象,故在金相试验时易被腐蚀呈现较深的颜色。在电子显微镜下,马氏体群是由许多平行的板条所组成。经透射电镜观察发现,板条状马氏体的亚结构是高密度的位错。含碳低的奥氏体形成的马氏体呈板条状,故板条状马氏体又称低碳马氏体.因亚结构为位错又称位错马氏体。 (2)片状马氏体在光学显微镜下,片状马氏体呈针状或竹叶状,片间有一定角度,其立体形态为双凸透镜状。因形成温度较低,没有自回火现象,故组织难以浸蚀,所以颜色较浅,在显微镜下呈白亮色。用透射电镜观察,其亚结构为孪晶。 含碳高的奥氏体形成的马氏体呈片状,故称为片状马氏体,又称高碳马氏体;根据亚结构特点.又称孪晶马氏体。 马氏体的粗细取决于淬火加热温度,即取决于奥氏体晶粒的大小。高碳钢在正常淬火温度下加热,淬火后得到细针状马氏体,在光学显微镜下呈布纹状,仅能隐约见到针状,故又称为隐晶马氏体。如淬火温度较高,奥氏体晶粒粗大,则得到粗大针状马氏体。d.残余奥氏体(Ar) 当奥氏体中碳质量分数大于0.5%时,淬火时总有一定量的奥氏体不能转变成为马氏体,而保留到室温,这部分奥氏体即为残余奥氏体。它不易受硝酸酒精溶液的浸蚀,在显微镜下呈白亮色,分布在马氏体之间,无固定形态,淬火后未经回火时,残余奥氏体与马氏体很难区分,都呈白亮色。只有回火后才能分辨出马氏体间的残余奥氏体。淬火钢经不同温度回火后,所得的组织通常分为三种: (1)回火马氏体淬火钢在150℃—250℃之间进行低温回火时,马氏体内析 出碳化物,这种组织称为回火马氏体。与此同时,残余奥氏体也开始转变为回火马氏体。在显微镜下回火马氏体仍保持针(片)状形态。因回火马氏体易受浸蚀。所以为暗色针状组织。回火马氏体具有高的强度和硬度,而韧性和塑性较淬火马氏体有明显改善。 (2回火屈氏体是淬火钢在350℃~500℃进行中温回火所得的组织,是铁素体与粒状渗碳体组成的极细密混合物。组织特征是,铁素体基本上保持原来针(片)状马氏体的形态,而在基体上分布着极细颗粒的渗碳体,在光学显微镜下分辨不清,为黑点。但在电子显微镜下可观察到渗碳体颗粒。回火屈氏体有较好的强度,最佳的弹性,韧性也较好。(3)回火索氏体是淬火钢在500~C~650~C高温回火时所得到的组织。它是由粒状渗碳体和等轴形铁素体组成的混合物。在光学显微镜下可观察到渗碳体小颗粒,它均匀分布

铁碳合金平衡组织观察精讲实验报告

实验四铁碳合金平衡组织观察 一、实验目的: 1.了解铁碳合金在平衡状态下的显微组织。 2.分析成分对铁碳合金显微组织的影响,从而理解成分、组织与性能之间的相互关系。 二、实验原理及内容: 铁碳合金的显微组织是研究和分析钢铁材料性能的基础,平衡组织指合金在极其缓慢的冷却速度下得到的组织。在实验条件下,退火态的铁碳合金组织可以看成平衡组织。铁碳合金平衡组织是指碳钢和白口铸铁组织,其中碳钢是工业上应用最广的金属材料,它们性能与其显微组织密切相关。 1. 铁碳合金平衡状态图 铁碳合金的平衡组织是指铁碳合金在极为缓慢的冷却条件下所得到的组织。可以根据铁碳相图(如图5-1所示),来分析铁碳合金在平衡状态下的显微组织。 图5-1 Fe-Fe C相图 3 从—相图上可以看到所有的碳钢和白口铸铁在室温时的组织均由铁素体(F)和渗碳体()这两个基本相组成,但是由于含碳量的不同,铁素体和渗碳

体的相对数量、析出条件以及分布情况均有所不同。因而呈现各种不同的组织形态,其性能也各不相同。

2.几种基本组织组成物 用侵蚀剂显露的碳钢和白口铸铁,在金相显微镜下具有下面几种基本组织组成物。 表1 各种铁碳合金在室温下的平衡组织 3、各种组成相或组织组成物的特征 a)铁素体(F)是碳溶于α-Fe的固溶体。铁素体为体心立方晶格。 具有磁性及良好的塑性,硬度较低,一般为80HB~120HB,经3%~5% 硝酸酒精溶液浸蚀后,在显微镜下观察呈白色晶粒,见工业纯铁的组织 (如图1所示)。亚共析钢中,随着钢中碳质量分数的增加,珠光体量增 加而铁素体量减少。铁素体量较多时,呈块状分布(如图2所示)。当钢 中碳质量分数接近共析成份时,铁素体往往呈断续的网状,分布于珠光 体的周围(如图3所示)。

3.2 铁碳合金的基本组织与性能

《金属材料与热处理》导学案主备人:栾义审核人:栾义编号:008 §3-2 铁碳合金的基本组织与性能 【使用说明】 1、依据学习目标,全体同学积极主动的根据教材内容认真预习并完 成导学案,小组长做好监督与检查,确保每位同学都能认真及时的预习相关知识。 2、结合导学案中的问题提示,认真研读教材,回答相关问题。 3、要求每位同学认真预习、研读课本,找出不明白的问题,用红笔 做好标记。 【学习目标】 1、知识与技能:掌握铁碳合金的基本组织、性能及符号。 2、学习与方法:积极讨论、踊跃展示、大胆质疑,抓住“成分决定组 织,组织决定性能”这一主线,能分析出这五种基本组织的性能特点。 3、情感态度价值观:激情投入,大胆质疑,快乐学习。 【重点难点】 铁碳合金的基本组织 铁碳合金基本组织的性能特点 【自主学习】

班级:姓名:使用时间:年月日铁素体重要级别:★★★★★ 奥氏体重要级别:★★★★★ 渗碳体重要级别:★★★★★ 珠光体重要级别:★★★★★ 莱氏体重要级别:★★★★★ 【合作探究】 1、解释下列名词,并注明符号。 (1)铁素体 (2)奥氏体 (3)渗碳体 (4)珠光体 (5)莱氏体 2、简述铁碳合金五种基本组织的成分(含碳量)、组织特点(单相组织看晶格特点)、性能特点。

《金属材料与热处理》导学案主备人:栾义审核人:栾义编号:008 3、指出下列显微组织是那种铁碳合金基本组织(如果是多相组织,在图中分别指出各相)。 (a)(b)(c) (d)(e) 【课后作业】(自己默写,组长监督) 1、理解掌握本导学案内容,并完成习题册第三章第二节相关题目。【学后反思】

铁碳合金习题(问题详解)

铁碳合金 一、填空题 1.在铁碳合金基本组织中,奥氏体、铁素体和渗碳体属 于单相组织。 珠光体和莱氏体属于两相组织。 2.根据溶质原子在溶剂晶格中的分布情况,固溶体有二种基本类型, 它们是置换固溶体和间隙固溶体。 3.根据溶质在溶剂中的溶解情况,置换固溶体可分为无限固溶体 和有限固溶体两种。 4.铁素体与渗碳体的机械混合物称为珠光体,渗碳体与铁素体 片状相间的组织又称为片状珠光体,在铁素体基体上分布着颗粒状渗碳体的组织又称为粒状珠光体。

5.不同晶体结构的相,机械地混合在一起的组织,叫做固态机械 混合物,铁碳合金中,这样的组织有珠光体和莱氏体。 6.在铁碳合金基本组织中,铁素体和奥氏体属于固溶体; 渗碳体属于化合物;珠光体和莱氏体属于机械混合物。 7.分别填写下列铁碳合金组织的符号: 奥氏体A;铁素体F;渗碳体C;珠光体P。 C)称为渗碳体、含碳量为8.铁和碳形成的金属化合物(Fe 3 6.69%。 9.铁素体在室温时,对碳的溶解度是0.008 %,在727℃时溶解 度是0.0218 %。 10.奥氏体对碳的溶解度,在727℃时溶解度是0.77 %,在 1148℃时溶解度是 2.11 %。

11.含碳量小于 2.11 %的铁碳合金称为钢,钢根据室温显微组织 不同,可分为以下三类: 亚共析钢钢,显微组织为铁素体+珠光体,含碳量范围 0.0218~0.77 %; 共析钢钢,显微组织为珠光体,含碳量范围0.77 %; 过共析钢钢,显微组织为珠光体+渗碳体,含碳量范围0.77~2.11 %。 12.碳在奥氏体中的溶解度随温度而变化,在1148°时溶碳量可达 2.11 %,在727°时溶碳量可达0.77 %。 13.人们常说的碳钢和铸铁即为铁、碳元素形成的合金。 14.20钢在650℃时的组织为铁素体+珠光体;在1000℃时的 组织为奥氏体。

铁碳合金平衡组织的显微分析实验

“铁碳合金平衡组织的显微分析实验”实验报告 一、实验目的 (1)熟悉室温下碳钢与白口铸铁平衡状态下的显微组织,明确成分-组织之间的关系。 (2)进一步熟悉金相显微镜的操作。 二、实验原理 碳钢与白口铸铁在室温下,其平衡状态下的组织中的基本组成相均为铁素体与渗碳体。但是由于碳含量及处理不同,它们的数量、分布及形态有很大不同,因此在金相显微镜下观察不同铁碳合金,其显微组织也就有很大差异。 碳含量小于0.02%的铁碳合金称为工业纯铁。碳含量小于0.006%的工业纯铁显微组织为单相铁素体;碳含量大于0.006%的工业纯铁的显微组织为铁素体和极少量的三次渗碳体。 根据碳含量的不同,碳钢可分为亚共析钢、共析钢和过共析钢三类。碳含量为0.77%的铁碳合金为共析钢。其显微组织为片状渗碳体分布于铁素体基体上的机械混合物——珠光体;碳含量小于0.77%的铁碳合金称为亚共析钢。其显微组织为铁素体和珠光图。 碳含量大于0.77%的铁碳合金称为过共析钢。其显微组织为珠光体和二次渗碳体。 碳含量大于2.11%的铁碳合金为铸铁,不含石墨只含渗碳体相的铸铁称为白口铸铁。 碳含量为4.3%铁碳合金称为共晶白口铸铁。室温下其组织为珠光体和渗碳体的机械混合物——莱氏体。碳含量小于4.3%铁碳合金称为亚共晶白口铸铁。其显微组织为莱氏体、珠光体和二次渗碳体。碳含量大于4.3%铁碳合金称为过共晶白口铸铁。其显微组织为莱氏体和一次渗碳体。 三、实验装置及试件 金相显微镜、碳钢和白口铸铁平衡组织金相试样一套、金相图谱、材料检索表。 四、实验步骤 (1)领取金相试样一套和金相图谱一本(注意不可用手触摸材料面及显微镜镜头); (2)打开金相显微镜电源(若有变压器须先接变压器后接电源); (3)用金相显微镜调整光圈并调焦后逐个观察金相试样的显微组织(观察T8钢时需用400x目镜,其它用100x目镜),并仔细观察其特征。 (4)选取5个符合要求的适宜的不同材料画出其显微组织(所画的组织要有代表性; 组织中组成物的大小与放大倍数一致,其数量与合金成为相符合;对每个图应 按要求标注,记录其序号、材料、状态、浸蚀剂与金相组织,用指引线指明组 织组成物的名称)。 五、实验结果

铁碳合金相图全面分析

铁碳平衡图 (The Iron-Carbon Diagrams) 连聪贤 本章阐述了铁碳合金的基本组织,铁碳合金状态图,碳钢的分类、编号和用途。要求牢固掌握铁碳合金的基本组织(铁素体、奥氏体、渗碳体、珠光体、莱氏体)的定义、结构、形成条件和性能特点。牢固掌握简化的铁碳合金状态图;熟练分析不同成分的铁碳合金的结晶过程;掌握铁碳合金状态图各相区的组织及性能,以及铁碳合金状态图的实际应用。掌握碳钢中常存元素对碳钢性能的影响;基本掌握碳钢的分类、编号、性能和用途。 铁碳合金基本组织铁素体、奥氏体、渗碳体、珠光体和莱氏体的定义、表示符号、晶体结构、显微组织特征、形成条件及性能特点。铁碳合金状态图的构成、状态图中特性点、线的含义。典型合金的结晶过程分析及其组织,室温下不同区域的组织组成相。碳含量对铁碳合金组织和性能的影响。铁碳合金状态图的实际应用。锰、硅、硫、磷等常存杂质元素对钢性能的影响。碳铁的分类、编号、性能和用途。 铁碳合金状态图是金属热处理的基础。必须配合铁碳合金平衡组织的金相观察实验,结合课堂授课,作重点分析铁碳合金的基本组织及其室温下不同成分铁碳合金的组织特征。练习绘制铁碳合金状态 四、课程纲要 (一)铁碳合金的构成元素及基本相

1. 合金的构成元素与名词解释 (1)金属特性:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特 性的物质。金属内部原子具有规律性排列的固体(即晶 体)。 (2)合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 (3)相:合金中成份、结构、性能相同的组成部分,物理上均质且可区分的部分。 (4)固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态 金属晶体,固溶体分间隙固溶体和置换固溶体两种。(5)固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 (6)化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 (7)机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。

实验-铁碳合金平衡组织观察

实验-铁碳合金平衡组织观察

实验 Fe-Fe3C相图观察 一、实验目的 1.认识铁碳合金的平衡组织。 2.了解含碳量对铁碳合金平衡组织的影响规律。 3.加深对平衡状态下碳钢的成分、组织、性能间关系的认识。 二、实验原理 铁碳合金的显微组织是研究和分析铁碳材料性能的基础,所谓平衡状态的显微组织是指合金在极为缓慢的冷条件下(退火状态,即接近平衡状态)所得到的组织。因此我们可以根据Fe-Fe3C相图来分析铁碳合金在平衡状态下的显微组织(图1-1所示)。 图1-1 Fe-Fe3C相图

铁碳合金的平衡组织主要是指碳钢和白口铸铁组织,其中碳钢是工业上应用最广泛的金属材料,它们的性能与其显微组织密切有关。此外,对碳钢和白口铸铁显微组织的观察和分析,有助于加深对Fe-Fe3C相图的理解。 从Fe-Fe3C相图上可以看出,所有碳钢和白口铸铁的室温组织均由铁素体(F)和渗碳体(Fe3C)这两个基本相组成。但是由于含碳量不同,因而呈现各种不同的组织形态。 用侵蚀剂显露的碳钢和白口铸铁,在金相显微镜下具有下面几种基本组织。 1.铁素体(F)——碳在α-Fe中形成的固溶体。铁素体为体心立方晶体,具有磁性及良好塑性,硬度较低。用3-4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的等轴晶粒,黑色网是晶界,这是因为晶粒晶界耐腐蚀性不同,而且各晶粒的位向不同呈现不同的颜色;亚共析钢中铁素体呈块状分布;当含碳量接近共析成分时,铁素体则呈断续的网状分布于珠光体周围。 2.渗碳体(Fe3C)——是铁与碳形成的一种化合物,其碳含量为6.69%,质硬而脆,耐腐蚀性强,经3-4%硝酸酒精溶液浸蚀后,渗碳体呈亮白色。按照成分和形成条件的不同,渗碳体可呈现不同的形态:一次渗碳体(初生相)是直接由液体中析出的,故在白口铸铁中呈粗大的条片状;二次渗碳体(次生相)是从奥氏体中析出的,往往呈网状沿奥氏体晶界分布;三次渗碳体是由铁素体中析出的,通常是不连续薄片状存在于铁素体晶界处,数量极微,可忽略不计。 3.珠光体(P)一是铁素体和渗碳体的机械混合物。在一般退火处理情况下,是由铁素体与渗碳体相互混合交替形成的层片状组织。经硝酸酒精溶液侵蚀后,在不同放大倍数的显微镜下可以看到具有不同特征的珠光体组织。在高倍放大时能清楚地看到珠光体中平行相间的宽条铁素体和细条渗碳体;当放大倍数较低时,由于显微镜的鉴别能力小于渗碳体厚度,这时珠光体中的渗碳体就只能看到是一条黑线,当组织较细而放大倍数较低时,珠光体的片层就不能分辨,而呈黑色。 4.低温莱氏体(Le)——是在室温时珠光体十二次渗碳体十渗碳体所组成的机械混合物。含碳量为4.3%的共晶白口铸铁在1147℃对形成由奥氏体和渗碳体组成的共晶体机械合物,称为莱氏体,其中奥氏体冷却时析出二次渗碳

实验十铁碳合金显微组织的观察及分析

实验十铁碳合金显微组织的观察及分析 总结报告 班级:冶金E111 姓名:杨泽荣 学号:41102010

摘要:依据铁碳相图分析了不同成分铁碳合金及其形貌特征,解释了如何鉴别细网状铁素体和网状渗碳体,冷却速度对组织形貌和相对量有无影响,各类铸铁的组织对性能有何影响等问题。 关键词:铁碳合金组织形貌铁碳相图 1 实验设备与材料 光学显微镜,标准试验样品若干 2 实验原理 2.1 铁碳相图 2.2铁碳组织组成物 铁素体:碳在体心立方铁中的固溶体δ–Fe(C)和α-Fe(C),通常也成δ铁素体和α铁素体。 奥氏体:碳在面心立方铁的固溶体γ-Fe(C) 珠光体:奥氏体从高温缓慢冷却时发生共析转变所形成的,其立体形态为铁素体薄层和碳化物(包括渗碳体)薄层交替重叠的层状复相物。广义则包括过冷奥氏体发生珠光体转变所形成的层状复相物。在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳体也可呈粒状,这样的珠光体称为粒状珠光体。

莱氏体:莱氏体是液态铁碳合金发生共晶转变形成的奥氏体和渗碳体所组成的共晶体,其含碳量为ωc=4.3%。当温度高于727℃时,莱氏体由奥氏体和渗碳体组成,用 符号Ld表示。在低于727℃时,莱氏体是由珠光体和渗碳体组成,用符号Ld’表 示,称为变态莱氏体。 渗碳体: Fe 和C 形成的化合物 2.3含碳量不同情况下的析出相及其组织形貌。 根据组织特点及含碳量的不同,铁碳合金可分为工业纯铁、钢和铸铁三大类。钢又可根据含碳量分为亚共析钢、共析钢、过共析钢;铸铁根据含碳量也可分为亚共晶白口铁、共晶白口铁、过共晶白口铁。 ⑴工业纯铁 纯铁在室温下具有单相铁素体组织。含碳量<0. 02 %的铁碳合金通常称为工业纯铁,它为两相组织,即由铁素体和极少量的三次渗碳体组成。显微组织中的黑色线条是铁素体的晶界,亮白色的基底是铁素体的不规则等轴晶粒,在某些晶界处可以看到不连续的薄片状三次渗碳体。 ⑵亚共析钢 亚共析钢的含碳量在0.02%~0.77%范围内,其显微组织是由铁素体和珠光体组成。用4%的硝酸酒精浸蚀后,铁素体为亮白色,珠光体为暗黑色。随着含碳量的增加,组织中的铁素体量逐渐减少,而珠光体的量不断增加;当含碳量大于0.60%时,铁素体由块状变成网状分布在珠光体的周围。根据含碳量,可以由杠杆定律求得铁素体和珠光体的相对量。另外,由显微镜中观察铁素体和珠光体各自所占面积的百分数,可近似地计算出钢的含碳量,即,碳含量≈P×0.77%,其中P为珠光体所占面积百分数。 ⑶共析钢 含碳量为0.77%的碳钢称为共析钢,它由单一的珠光体组成。 ⑷过共析钢 过共析钢的含碳量在0.77%~2.11%,它在室温下的组织由珠光体和二次渗碳体组成。钢中含碳量越多,二次渗碳体数量就越多。经硝酸酒精浸蚀后,二次渗碳体呈亮白色网分布在珠光体的周围。 ⑸亚共晶白口铸铁 含碳量是 2.11%~4.3%,在室温下的组织由珠光体、二次渗碳体和变态莱氏体所组

铁碳合金的基本组织

铁碳合金的基本组织 名称晶格、组织符号性能说明铁 素体F或α σb :180~280MPa HBS:50~80 δ:30%~50% A K :128~160J 铁素体是碳溶入α-Fe中的间 隙固溶体,体心立方晶格,碳在 α-Fe中溶解度很小,在727℃ 时溶解度最大,为0.0218%,室 温时为0.0008%,几乎为零。铁 素体的力学性能与工业纯铁接 近,其强度和硬度较低,塑性、 韧性良好。其显微组织呈明亮白 色等轴多边形晶粒。 奥 氏体A或γ σb :400MPa HBS:160~220 δ:40%~50% 奥氏体是碳溶入γ-Fe中的间 隙固溶体,面心立方晶格。碳在 γ-Fe中的溶解度相对较高,在 1148℃时其溶解度最大,达 2.11%,在727℃时为0.77%。 奥氏体的强度和硬度比铁素体 高,具有良好的塑性和低的变形 能力,生产中常将钢材加热到奥 氏体状态进行压力加工。其显微 组织为明亮的多边形晶粒,晶界 较铁素体平直。 滲碳体Fe3C 硬度高(约 800HBW),塑性、 韧性差,δ、A K接 近于零,脆性很大 渗碳体是钢与碳组成的金 属化合物,碳含量w c=6.69%, 熔点为1227℃,具有复杂的晶 体结构,是铁碳合金的重要的强 化相。渗碳体在铁碳合金中的形 态可呈片状、粒状、网状、板条 状。它的数量和形态对铁碳合金 的力学性能有很大影响。渗碳体 越细小,并均匀地分布在固溶体 基体中,合金的力学性能越好; 反之,越粗大或呈网状分布则脆 性越大。 珠 光体P σb :750~900MPa HBS :180~280 δ:20%~25% 珠光体是由铁素体和滲碳 体组成的机械混合物。它是奥氏 体冷却时,在727℃恒温下发生 共析转变的产物,平均碳含量 w c=0.77%,性能介于铁素体和 滲碳体之间,强度较高,硬度适 中,有一定的塑性。显微组织为 铁素体和滲碳体片层状交替排 列。 莱氏体 Ld (Ld′) 硬度高(约 700HBW)、塑性很 差 莱氏体是由奥氏体和滲碳 体组成的机械混合物,是铁碳合 金在1148℃时发生共晶转变的 产物。存于1148~727℃的莱氏 体称高温莱氏体(Ld),存于 727℃以下的莱氏体称低温莱氏 体(Ld′)。其硬度很高,塑性很 差。

实验十铁碳合金显微组织的观察及分析

实验十铁碳合金显微组织的观察及分析 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

实验十铁碳合金显微组织的观察及分析 总结报告 班级:冶金E111 姓名:杨泽荣 学号:

摘要:依据铁碳相图分析了不同成分铁碳合金及其形貌特征,解释了如何鉴别细网状铁素体和网状渗碳体,冷却速度对组织形貌和相对量有无影响,各类铸铁的组织对性能有何影响等问题。 关键词:铁碳合金组织形貌铁碳相图 1 实验设备与材料 光学显微镜,标准试验样品若干 2 实验原理 2.1 铁碳相图 2.2铁碳组织组成物 铁素体:碳在体心立方铁中的固溶体δ–Fe(C)和α-Fe(C),通常也成δ铁素体和α铁素体。 奥氏体:碳在面心立方铁的固溶体γ-Fe(C) 珠光体:奥氏体从高温缓慢冷却时发生共析转变所形成的,其立体形态为铁素体薄层和碳化物(包括渗碳体)薄层交替重叠的层状复相物。广义则包括过冷奥 氏体发生珠光体转变所形成的层状复相物。在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以片要比渗碳体厚得多.在条件下,珠光体中的渗碳体也可呈粒状,这样的珠光体称为。 莱氏体:莱氏体是液态铁碳合金发生共晶转变形成的和渗碳体所组成的共晶体,其含碳量为ωc=4.3%。当温度高于727℃时,莱氏体由奥氏体和渗碳体组 成,用符号Ld表示。在低于727℃时,莱氏体是由和渗碳体组成,用符号Ld’表示,称为变态莱氏体。 渗碳体: Fe 和C 形成的Fe3C化合物

2.3含碳量不同情况下的析出相及其组织形貌。 根据组织特点及含碳量的不同,铁碳合金可分为工业纯铁、钢和铸铁三大类。钢又可根据含碳量分为亚共析钢、共析钢、过共析钢;铸铁根据含碳量也可分为亚共晶白口铁、共晶白口铁、过共晶白口铁。 ⑴工业纯铁 纯铁在室温下具有单相铁素体组织。含碳量<0. 02 %的铁碳合金通常称为工业纯铁,它为两相组织,即由铁素体和极少量的三次渗碳体组成。显微组织中的黑色线条是铁素体的晶界,亮白色的基底是铁素体的不规则等轴晶粒,在某些晶界处可以看到不连续的薄片状三次渗碳体。 ⑵亚共析钢 亚共析钢的含碳量在0.02%~0.77%范围内,其显微组织是由铁素体和珠光体组成。用4%的硝酸酒精浸蚀后,铁素体为亮白色,珠光体为暗黑色。随着含碳量的增加,组织中的铁素体量逐渐减少,而珠光体的量不断增加;当含碳量大于0.60%时,铁素体由块状变成网状分布在珠光体的周围。根据含碳量,可以由杠杆定律求得铁素体和珠光体的相对量。另外,由显微镜中观察铁素体和珠光体各自所占面积的百分数,可近似地计算出钢的含碳量,即,碳含量≈P×0.77%,其中P为珠光体所占面积百分数。 ⑶共析钢 含碳量为0.77%的碳钢称为共析钢,它由单一的珠光体组成。 ⑷过共析钢

相关主题
文本预览
相关文档 最新文档