当前位置:文档之家› 程控滤波器 设计报告

程控滤波器 设计报告

程控滤波器 设计报告
程控滤波器 设计报告

程控滤波器

摘要:本系统以高性能单片机C8051F020最小系统为控制模块,采用低噪声高带宽单片仪表放大器INA103和开关电容滤波器芯片MAX262来完成程控滤波器的设计,并通过电阻网络的切换实现放大器的电压增益的10dB 步进;高通滤波器和低通滤波器可通过模拟开关来切换,单片机对中心频率f 0和品质因数Q 进行独立编程控制,实现对滤波器的截止频率步进调节。本系统原理简单,人机交互界面良好,操作简单,各项指标达到了或超过了设计要求。

关键词:程控,滤波器,开关电容,DDS

一、 方案论证与比较

1. 放大器模块

设计任务要求放大器的电压增益为60dB,增益10dB 步进可调,通频带为100Hz ~40K Hz ,即带宽为60M Hz 。根据设计任务,有以下三种方案可供参考。

方案一:采用可变增益放大器AD603进行设计制作放大器。AD603具有低噪声,高频带宽度,稳定性能好等特点。它由电压增益控制区、无源输入衰减区和固定增益运放区三部分组成。通过调节增益控制输入电压V G 即可实现增益可调,但控制V G 进行精确的10dB 步进比较困难,且AD603的供电电压为±5V ,这限制了它的最大输出电压范围,难以达到设计要求。

方案二:由电阻网络和普通运算放大器组成,如图1-1-1所示。由同相比例运算电路可以得出V out=(Rf/Rd+1)Vs 。取Rf=99K ,Rd=1K ,即V out=100Vs,Vs 通过开关 S0~S4进行切换,各点输出电压分别为V 0=Vin ,V 1=0.316Vin ,V 2=0.1Vin ,V 3=0.0316Vin ,V 4=0.01Vin 。

通过开关可以进行电压增益G 的调节,

放大倍数分别为100、31.6、10、3.16、1,

即40dB 、30dB 、20dB 、10dB 、0dB 。

此方案原理简单,硬件电路容易搭

建,易于焊接,但是对电阻的精密度要

求很高,对运放的带宽和性能也有很高

的要求,开关的闭合、断开对电路的影

响也不容忽视,对电路的稳定性不利。

图1-1-1 步进放大器原理简图

方案三:采用低噪声、高精度的仪表放大器INA103进行放大器的设计制作。它具有非常宽的频带宽度和优越的动态响应特性。INA103外围电路非常简单,只需外接反馈电阻R G 就可以对电压增益进行设置,由芯片使用手册可知增益与反馈电阻R G 的关系式为G=1+6K Ω/R G , 表1-1-1 增益与R G 值 表1-1-1列出了常用增益值和R G 近似值。

INA103增益30 dB 时,带宽略大于2 MHz 。根据表1-1制作电阻网络,通过控制模拟开关选择反馈电阻,就可以实现增益10dB 步进可调。

综上所述,方案一实现10dB步进可调比较困难;方案二对电阻精度和运放要求较高,难以实现;方案三中选择的仪表放大器INA103带宽宽,性能高,能满足设计指标的要求。因此选择方案三。

2.滤波器模块

设计任务要求滤波器可设置为低通滤波器或高通滤波器,滤波器-3 dB截止频率f C在1K Hz~20K Hz范围内可1K HZ步进可调,R=1KΩ。根据设计任务可有以下几种方案可供参考。

方案一:用RC网络和集成运放搭建滤波器。根据参数要求计算出RC的值,组成RC网络,通过单片机控制开关的通断即选择不同R、C组合值来实现截止频率f C的步进可调,并通过开关进行低通滤波器和高通滤波器的切换。此方案原理简单明了,但是,截止频率f C范围大,计算量大,电阻电容的标称值跟理论计算值有偏差,精度难以达到设计要求,RC网络数目过多,使得整个电路结构庞大,焊接工作量大,调试麻烦,且不利于系统的组装。

方案二:采用双二阶开关电容有源滤波器芯片MAX262进行滤波器的设计。MAX262具有75KHZ中心频率范围,64步中心频率控制,128步品质因素Q控制,独立的中心频率和品质因素编程等特性。它有四种工作模式,可由单片机对工作模式,中心频率控制字和品质因数进行精确编程控制,实现不同的低通、高通滤波器。

此方案硬件电路简单,电路稳定,控制易于实现,不必花太多时间在硬件调试上,为竞赛争取时间,但成本相应有所增加。综合考虑采用方案二。

同样,四阶椭圆型滤波器的设计也有如下两种方案。

方案一:由RC网络和运算放大器组成椭圆低通滤波器。此方案原理简单,电路也简单,但电容和电阻的理论计算值和标称值存在偏差,精度难以达到设计要求。

方案二:采用模拟可编程器件isPAC80,通过设计软件isPAC1.3完成四阶椭圆低通滤波器的设计和仿真。此方案所需外围电路少,且软件设计调试、修改比较方便,又采用仿真软件辅助设计,提高了设计精度。

综合考虑,选择方案二。

3.时钟产生方案

由于采用专用滤波器芯片MAX262来完成设计,而MAX262工作需要外部时钟,又因为-3 dB截止频率f C在1K Hz~20K Hz范围内可1K Hz步进,经计算知:当滤波器时钟固定时难以满足要求,因此时钟频率必须根据不同的截止频率来进行相应调整(详细计算过程见系统整体设计)。可采用对固定频率进行分频的方法得到所需的各种时钟频率。有以下两种方案:

方案一:采用有源晶振,通过可预置数分频器得到所需的时钟频率。此方案硬件电路简单,控制方便。

方案二:利用FPGA直接做数控分频器,由单片机对分频数直接控制。FPGA 具有丰富的逻辑资源,降低了电路的复杂性,提高了系统的稳定性,分频数控制起来也比较简单。

综上所述,两种方案均可行。根据实际条件,采用方案二。

4.简易幅频特性测试

设计任务要求制作一个简易幅频特性测试仪,其扫频输出信号的频率变化范围为100 Hz ~200K Hz,频率步进10K Hz。根据设计要求,主要是信号源的设计和幅度测量。采用直接数字频率合成技术DDS来完成信号源设计,实现DDS有以下几种方案:

方案一:由可编程逻辑器件和D/A转换器等外部器件组成,此方案可以灵活的发挥DDS信号源的各项优良的性能,但仍需外接D/A转化器等器件,且设计工作量大。

方案二:采用专用DDS集成芯片。此方案只需要少量外围器件,而且与可编程逻辑器件设计的DDS信号源相比,其性能更好。目前市面上有多种专用DDS 芯片可供参考选择。

综上所述,根据实际需要采用DDS集成芯片AD9851,完成信号源的设计,幅度测量采用有效值检测芯片AD637完成。

二、系统整体设计

1.系统整体方案

经方案论证后,确定了系统的整体电路。系统以高性能单片机C8051F020最小系统为核心,包括放大器,滤波器,和幅频特性测试仪等几部分。C8051F020是基于51内核的单片机,它自带8位和12位的AD,两个12位DA,5个16位计数器/定时器,22个矢量中断源,4532字节内部数据RAM,64K字节flash,资源丰富,功能完善,开发简单。通过单片机控制模拟开关及继电器的通断来选择不同的反馈电阻以实现增益的10dB步进及低通滤波器和高通滤波器的切换,控制和处理DDS及AD采样实现幅频特性测试,系统框图如图2-1所示。

图2-1-1 系统框图

2.实际硬件电路

1)放大器电路

根据设计任务要求,采用两片INA103级联来完成放大器的设计。设置每片INA103增益分别为0 dB、10 dB、20 dB和30dB,这样即可实现0dB~60dB之间的10dB步进。开关采用低导通电阻的模拟开关Max312实现,原理图见附图1。2)滤波器电路

根据设计要求,低通滤波器与高通滤波器分别在2f C处和0.5f C处与放大器总增益不大于30dB。由于一阶滤波器在2f C处衰减为6dB,故选择四阶滤波器。MAX262是双二阶有源滤波器,通过开关切换就可以分别实现低通和高通。滤波器原理图见附图1。

(1)滤波器的时钟选择

由MAX262数据手册知,f CLK/ f0=1.57N+40.84(N=0~63),计算知f CLK/ f0取值在40.84~139.75范围内,又因截止频率f C在1 KHz ~20 KHz之间,则中心频率f0范围应更广,暂取中心频率f0范围1 KHz~20 KHz,由上式可得f CLK的范围为:40.84KHz~817KHz,实际上f CLK的范围应更广才能满足要求。使用时,在保证N的取值在0~63间时选取适当的时钟分频系数来满足系统要求。

(2)滤波器的参数设置

为了方便使用,设置两级二阶滤波器的参数相同。当两级滤波器级联时,实际带宽会发生变化,当设置为低通滤波器时,带宽会缩小至原来的0.644倍;当设置为高通滤波器时,带宽会增大为原来的1/0.644倍,约为1.553倍。因此在设置时,应预先把滤波器的截止频率进行相应的扩大或缩减。

(3)椭圆滤波器的设计

由isPAC80数据手册知,其输入电压范围为1V—4V。10mV输入电压以放大倍数60dB计算,为10V,超过了isPAC80的输入电压范围,则在其前级加一衰减电路。为保证滤波器的增益,则在其后级加一放大电路。原理图见附图1。

4)简易幅频特性测试仪电路

单片机控制DDS专用芯片AD9851产生扫频信号,信号经调理后,正弦信号后送入被测网络,被测信号通过有效值检测芯片AD637,再由单片机控制A/D 转换器对被测网络进行采样,并由单片机对采样数据进行处理,得到幅度,频率及幅频特性曲线,并将结果送入液晶显示,即完成了幅频特性测试。

三、系统软件设计

本系统的软件程序相对独立简单,模块之间相互独立的工作,由按键的中断进入相应的工作界面。在放大器增益控制设置工作界面,按键控制模拟开关的通断来选取电阻实现放大器的10dB增益步进,在滤波器工作模式下,通过按键控制继电器的通断来完成低通滤波器和高通滤波器的切换,在幅频特性测试仪工作模式下,进行幅频特性特性测试。主程序流程图如图3-1所示。

四、系统测试

1.测试仪器仪表

函数信号发生器(GFG8255A 5MHz)

双函数多功能信号发生器/频率计(SG1467 7MHz/)

晶体交流毫伏表(WY2294 100V)

数字存储示波器(TDS1002 60MHz)

五位半数字万用表(VCIOR8155)

2.系统调试过程

中的问题及解决

方案

1)由于单片机直接接

入系统,输入灌电流较

大容易导致单片机损

坏。对单片机输出端口

加入缓冲电路后,单片

机正常稳定的工作。

2)由于采用FPGA来

实现数控分频器,引入

了较大的干扰。采用光图3-1 程序流程图耦6N137对FPGA进行隔离,消除了FPGA引入的干扰,系统能稳定的工作。

3.测试步骤及测试结果

根据设计任务要求,首先对放大器进行单独测试,然后对放大器和滤波器进行联调,最后对简易幅频特性测试仪进行调试。

1)放大器的测试

由双函数多功能信号发生器/频率计提供振幅为10mV的正弦信号,在设定增益的条件下改变输入信号频率,在示波器监测输出波形不失真的情况下,由晶体交流毫伏表测量输入输出电压,即可计算出电压增益,与设定的增益值比较找出放大器的通频带。主要测试结果如表4-2-1所示,完整测试情况如附表一所示。由测试结果得放大器的通频带为90 Hz~45K Hz,电压增益误差控制在4%以内,超过了设计要求。

2)滤波器的测试

将信号经放大器放大后送入滤波器,滤波器接入1KΩ的负载电阻。改变输入信号的频率,在设定的滤波器-3dB的截止频率f C情况下测试电压的总增益。并测得使滤波器输入衰减0.707的频率,即为截止频率f C实值。再分别测量低通

滤波器2f

c 处和高通滤波器0.5f c处与放大器的总增益。滤波器的主要测试结果如

Y

表4-2-2所示,完整测试数据如附表二和附表三。四阶椭圆型低通滤波器的测试结果如附表四所示。由测试结果知,滤波器的截止频率可在1K Hz ~20K Hz范围内可调,步进为1K Hz,低通滤波器在2f c处与放大器的总增益不大于30dB,达到了设计任务,截止频率误差不大于5%,超出了设计要求。

经实测,椭圆低通滤波器-3dB的通频带为54.8KHz,通带误差9.6%,200KHz 处与放大器的总电压增益小于5dB,带内起伏≤1dB。

4)幅频特性测试仪的检测

单片机控制DDS频率步进,测出网络的幅频特性,并在液晶上显示出幅频特性曲线。

结束语

本系统在调试过程中,发现FPGA对系统的干扰较大以及系统工作电流较大,容易造成干扰和损坏单片机,通过在单片机的输出端口加入缓冲电路,同时用光耦对FPGA进行隔离,提高了系统的稳定性和可靠性。测试结果表明,部分指标达到了或超过了设计要求,较好的完成了设计任务。

参考文献

1.童诗白,华成英.模拟电子技术基础.北京:高等教育出版社,2000,第三版

2.马场清太郎[著].何希才[译].运算放大器应用电路设计.北京:科学出版社,2007,第一版

3.3DE约翰逊,JR约翰逊,HR穆尔[著] .李国荣[译] .有源滤波器精确设计手册.山东:电子工业出版社,1984年,第1版

4.童长飞.C8051F系列单片机开发与C语言编程.北京:北京航空航天大学出版社,2005

5.孙锴,李树华.有源滤波器芯片MAX262的特性及应用.内蒙古大学学报(自然科学版),2002年,第33卷第3期,341—343

6.蒋瑜,陈循,杨雪.基于MAX262的程控滤波器的实现.兵工自动化,2001年,第20卷第2期,36—39

附图1

附表一:放大器测试表

附表二:

低通滤波器测试表

附表三:

高通滤波器测试表

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

有源带通滤波器设计报告

有源带通滤波器设计报告 学生姓名崔新科 同组者王霞吴红娟 指导老师王全州

摘要 该设计利用模拟电路的相关知识,设定上线和下限频率,采用开环增益80dB 以上的集成运算放大器,设计符合要求的带通滤波器。再利用Multisim 仿真出滤波电路的波形和测量幅频特性。通过仿真和成品调试表明设计的有源滤波器可以基本达到所要求的指标。其主要设计内容: 1.确定有源滤波器的上、下限频率; 2.设计符合条件的有源带通滤波器;- 3.测量设计的有源滤波器的幅频特性; 4.制作与调试; 5. 总结遇到的问题和解决的方法。 关键词:四阶电路有源带通滤波器极点频率 The use of analog circuit design knowledge, on-line and set the lower limit frequency, the use of open-loop gain of 80dB or more integrated operational amplifier designed to meet the requirements of the bandpass filter. Re-use Multisim circuit simulation waveform and filter out the measurement of amplitude-frequency characteristics. Finished debugging the simulation and design of active filters that can basically meet the required targets. The main design elements: 1. Determine the active filter, the lower limit frequency; 2. Designed to meet the requirements of the active band-pass filter; - 3. Designed to measure the amplitude-frequency characteristics of active filters; 4. Production and commissioning; 5 summarizes the problems and solutions. Keywords: fourth-order active band-pass filter circuit pole frequency

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

带通滤波器的设计

目录 一.设计概述 二.设计任务及要求 2.1 设计任务 2.2 设计要求 三.设计方案 3.1设计结构 3.2元件参数的理论推导 3.3仿真电路构建 3.4仿真电路分析四.所用器件 五.实验结果 5.1 实验数据记录 5.2 实验数据分析六.实验总结 6.1 遇到的主要问题 6.2 解决问题的措施 6.3 实验反思与收获 附图 参考文献

一.设计概述 根据允许的通过的频率范围,可以将滤波器分为低通滤波器,高通滤波器,带通滤波器和带阻滤波器4种。其中,带通滤波器是指允许某一频率范围内的频率分量通过,其他范围的频率分量衰减到极低水平的滤波器。 在滤波器中,信号能够通过的范围成为通频带或通带,信号受到很大衰减或完全被抑制的频率范围成为阻带,通带和阻带之间的界限称为截止频率。对于一个理想的带通滤波器,通带范围内则完全平坦,对传输信号基本没有增益的衰减作用,其次,通带之外的所有频率均能被完全衰减掉,通带和阻带之间存在一定的过渡带。 在带通滤波器的实际设计过程中,主要参数包括中心频率f0,频带宽度BW,上限截止频率fH和下限截止频率fL。一般情况下,为使滤波器在任意频段都具有良好的频率分辨能力,可采用固定带宽带通滤波器(如收音机的选频)。所选带宽越窄,则频率选择能力越高。但为了覆盖所要检测的整个频率范围,所需要的滤波器数量就很大。因此,在很多场合,固定带宽带通滤波器不一定做成固定中心频率的,而是利用一个参考信号,使滤波器中心频率跟随参考信号的频率而变化,其中,参考信号是由信号发生器提供的。上述可便中心频率的固定带宽带通滤波器,经常用于滤波和扫描跟踪滤波应用中。 二.设计任务及要求 1)设计任务 带通滤波器的设计方案有很多,本实验将采用高通滤波器和低通滤波器级联的设计方案实现一个带通滤波器,通过多级反馈,减少干扰信号对滤波器的影响。为了检测滤波电路的通带特性,设计一个带宽检测电路,通过发光二极管的亮灭近似检测电路的带宽范围。 设计要求 2)设计要求 (1)性能指标要求 1.输入信号:有效值为1V的电压信号。 2.输出信号中心频率f0通过开关切换,分别为500Hz 1.5KHz 3KHz 10KHz 误差10%。 3.带通滤波器带宽BW

(整理)带通滤波器设计

实验八 有源滤波器的设计 一.实验目的 1. 学习有源滤波器的设计方法。 2. 掌握有源滤波器的安装与调试方法。 3. 了解电阻、电容和Q 值对滤波器性能的影响。 二.预习要求 1. 根据滤波器的技术指标要求,选用滤波器电路,计算电路中各元件的数值。设计出 满足技术指标要求的滤波器。 2. 根据设计与计算的结果,写出设计报告。 3. 制定出实验方案,选择实验用的仪器设备。 三.设计方法 有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。 巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 21)(??? ? ??+= ωωω , n=1,2,3,. . . (1) 写成: n c uo u A j A 211) (??? ? ??+=ωωω (2) )(ωj A u 其中A uo 为通带内的电压放大倍数,ωC A uo 为截止角频率,n 称为滤波器的阶。从(2) 式中可知,当ω=0时,(2)式有最大值1; 0.707A uo ω=ωC 时,(2)式等于0.707,即A u 衰减了3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性越接近于理想特性。如图1所示。ω 当 ω>>ωC 时, n c uo u A j A ??? ? ??≈ωωω1 )( (3) 图1低通滤波器的幅频特性曲线

两边取对数,得: lg 20c uo u n A j A ωω ωlg 20)(-≈ (4) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为衰减估算式。 表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。 在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = c s ω,ωC 是低通 滤波器的截止频率。 对于一阶低通滤波器,其传递函数: c c uo u s A s A ωω+= )( (5) 归一化的传递函数: 1 )(+= L uo L u s A s A (6) 对于二阶低通滤波器,其传递函数:2 22)(c c c uo u s Q s A s A ωωω++ = (7) 归一化后的传递函数: 1 1)(2 ++= L L uo L u s Q s A s A (8) 由表1可以看出,任何高阶滤波器都可由一阶和二阶滤波器级联而成。对于n 为偶数的高阶滤波器,可以由2n 节二阶滤波器级联而成;而n 为奇数的高阶滤波器可以由2 1-n 节二

有源低通滤波器设计报告要点

课程设计(论文)说明书 题目:有源低通滤波器 院(系):信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师: 职称: 2010年 12 月 19 日

摘要 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 关键词:低通滤波器;集成运放UA741;RC网络 Abstract Low-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design . Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

有源带通滤波器设计

二阶有源模拟带通滤波器设计 摘要 滤波器是一种具有频率选择功能的电路,它能使有用的频率信号通过。而同时抑制(或衰减)不需要传送频率范围内的信号。实际工程上常用它来进行信号处理、数据传送和抑制干扰等,目前在通讯、声纳、测控、仪器仪表等领域中有着广泛的应用。 以往这种滤波电路主要采用无源元件R、L和C组成,60年代以来,集成运放获得迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。 通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。 滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。文中结合实例,介绍了设计一个二阶有源模拟带通滤波器。 设计中用RC网络和集成运放组成,组成电路选用LM324不仅可以滤波,还可以进行放大。 关键字:带通滤波器 LM324 RC网络

目录 目录 (2) 第一章设计要求 (3) 1.1基本要求 (3) 第二章方案选择及原理分析 (4) 2.1.方案选择 (4) 2.2 原理分析 (5) 第三章电路设计 (7) 3.1 实现电路 (7) 3.2参数设计 (7) 3.3电路仿真 (9) 1.仿真步骤及结果 (9) 2.结果分析 (11) 第四章电路安装与调试 (12) 4.1实验安装过程 (12) 4.2 调试过程及结果 ..................................................................................................... 错误!未定义书签。 4.2.1 遇到的问题 .................................................................................................. 错误!未定义书签。 4.2.2 解决方法 ...................................................................................................... 错误!未定义书签。 4.2.3 调试结果与分析 (12) 结论 (13) 参考文献 (14)

fir低通滤波器设计报告

滤波器设计原理 本文将介绍数字滤波器的设计基础及用窗函数法设计FIR 滤波器的方法,运用MATLAB 语言实现了低通滤波器的设计以及用CCS软件进行滤波效果的观察。读取语音文件,并加入一定的随机噪声,最后使用窗函数滤波法进行语音滤波,将加噪后的语音文件转换为.dat文件使其能和ccs软件链接,输出个阶段的时域和频域波形。 根据数字滤波器冲激响应函数的时域特性。可将数字滤波器分为两种,即无限长冲激响应( IIR) 滤波器和有限长冲激响应(FIR) 滤波器。IIR 滤波器的特征是具有无限持续时间的冲激响应;FIR 滤波器冲激响应只能延续一定时间。其中FIR 滤波器很容易实现严格的线性相位,使信号经过处理后不产生相位失真,舍入误差小,稳定等优点。能够设计具有优良特性的多带通滤波器、微分器和希尔伯特变换器,所以在数字系统、多媒体系统中获得极其广泛的应用。FIR数字滤波器的设计方法有多种,如窗函数设计法、最优化设计和频率取样法等等。而随着MATLAB软件尤其是MATLAB 的信号处理工具箱和Simulink 仿真工具的不断完善,不仅数字滤波器的计算机辅助设计有了可能而且还可以使设计达到最优化。 FIR滤波器的窗函数法的设计 采用汉明窗设计低通FIR滤波器 使用b=fir1(n,Wn)可得到低通滤波器。其中,0Wn1,Wn=1相当于0.5。其语法格式为 b=fir1(n,Wn); 采用:b=fir1(25, 0.25); 得到归一化系数:

或者在命令行输入fdatool进入滤波器的图形设置界面,如下图所示 得到系数(并没有归一化) const int BL = 26; const int16_T B[26] = { -26, 33, 126, 207, 138, -212, -757, -1096, -652, 950, 3513, 6212, 7948, 7948, 6212, 3513, 950, -652, -1096, -757, -212, 138, 207, 126, 33, -26 }; FIR滤波器的设计(Matlab) 技术指标为:采用25阶低通滤波器,汉明窗(Hamming Window)函数,截止频率为1000Hz,采样频率为8000Hz,增益40db。 下面的程序功能是:读取语音文件,并加入一定的随机噪声,最后使用窗函数滤波法进行语音滤波,将加噪后的语音文件转换为.dat文件使其能和ccs软件链接,输出个阶段的时域和频域波形。

低通滤波器的设计

低通滤波器的设计 模拟滤波器在各种预处理电路中几乎是必不可少的,已成为生物医学仪器中的基本单元电路。有源滤波器实质上是有源选频电路,它的功能是允许指定频段的信号通过,而将其余频段上的信号加以抑制或使其急剧衰减。各种生物信号的低噪声放大,都是首先严格限定在所包含的频谱范围之内。 最常用的全极点滤波器有巴特沃斯滤波器和切比雪夫滤波器。就靠近ω=0处的幅频特性而言,巴特沃斯滤波器比切比雪夫滤波器平直,即在频率的低端巴特沃斯滤波器幅频特性更接近理想情况。但在接近截止频率和在阻带内,巴特沃斯滤波器则较切比雪夫滤波器差得多。本设计中要保证低频信号不被衰减,而对高频要求不高,因此选择了巴特沃斯滤波器。巴特沃思滤波电路(又叫最平幅度滤波电路)是最简单也是最常用的滤波电路,这种滤波电路对幅频响应的要求是:在小于截止频率ωc。的范围内,具有最平幅度响应,而在ω>ωc。后,幅频响应迅速下降。 因为本设计中要保证低频信号不被衰减,而对高频要求不高,所以选择 二阶滤波器即可。本系统采用二阶Butterworth低通滤波器,截止频率f H=100HZ,其电路原理图如1: 图1 低通滤波器图 根据matlab软件算得该设计适合二阶低通滤波器,FSF=628选Z=10000,则

Z R R FSF Z ?=?=的归一值的归一值 C C 3.2脉象信号的的前置放大 由于人体信号的频率和幅度都比较低,很容易受到空间电磁波以及人体其它生理信号的干扰,因此在对其进行变换、分析、存储、记录之前,应该进行一些预处理,以保证测量结果的准确性。因此需要对信号进行放大,“放大”在信号预处理中是第一位的。根据所测参数和所用传感器的不同,放大电路也不同。用于测量生物电位的放大器称为生物电放大器,生物电放大器比一般放大器有更严格的要求。 在本研究中放在传感器后面的电路就是前置放大电路,由于从传感器取得的信号很微弱,且混杂了一些其他的干扰信号。因此前置放大电路的主要功能是,滤除一些共模干扰信号,同时进行一定的放大。该电路由4部分构成:并联型双运放仪器放大器,阻容耦合电路,由集成仪用放大器构成的后继放大器和共模信号取样电路。并联型双运放仪器放大器的优点是不需要精密的匹配电阻,理论上它的共模抑制比为无穷大,且与其外围电阻的匹配程度无关。集成仪用放大器将由并联型双运放仪器放大器输出的双端差动信号转变为单端输出信号,并采用阻容耦合电路隔离直流信号,可以使集成仪用放大器取得较高的差模增益,从而得到很高的共模抑制比。共模取样驱动电路由两个等值电阻和一只由运放构成的跟随器构成,能够使共模信号不经阻容耦合电路的分压直接加在集成放大器的输入端,避免了由于阻容耦合电路的不匹配而降低电路整体的共模抑制比。此电路中也采用了右腿驱动电路来抑制位移电流的影响。前置放大电路参数选择:此部分总的增益取为1000,其中并联型双运放仪器放大器的增益为5,集成仪用放大器的增益为200。具体设计电路如图2所示

带通滤波电路设计

带通滤波电路设计一.设计要求 (1)信号通过频率范围 f 在100 Hz至10 kHz之间; (2)滤波电路在 1 kHz 电路的幅频衰减应当在 的幅频响应必须在± 1 kHz 时值的± 3 dB 1 dB 范围内,而在 范围内; 100 Hz至10 kHz滤波 (3)在10 Hz时幅频衰减应为26 dB ,而在100 kHz时幅频衰减应至少为16 dB 。 二.电路组成原理 由图( 1)所示带通滤波电路的幅频响应与高通、低通滤波电路的幅频响应进行比较, 不难发现低通与高通滤波电路相串联如图(2),可以构成带通滤波电路,条件是低通滤波电路的截止角频率 W H大于高通电路的截止角频率 W L,两者覆盖的通带就提供了一个带通响应。 V I V O 低通高通 图( 1) 1 W H低通截止角频率 R1C1 1 W L高通截止角频率 R2C2 必须满足W L

│A│ O │A│ O │A│ O 低通 W w H 高通 W w L 带通 W W w L H 图( 2) 三.电路方案的选择 参照教材 10.3.3 有源带通滤波电路的设计。这是一个通带频率范围为100HZ-10KHZ的带通滤波电路,在通带内我们设计为单位增益。根据题意,在频率低端f=10HZ 时,幅频响应至少衰减 26dB。在频率高端 f=100KHZ 时,幅频响应要求衰减不小于16dB。因此可以选择一个二阶高通滤波电路的截止频率fH=10KHZ,一个二阶低通滤波电路的fL=100HZ,有源器件仍选择运放 LF142,将这两个滤波电路串联如图所示,就构成了所要求的带通滤波电路。 由教材巴特沃斯低通、高通电路阶数n 与增益的关系知 A vf1 =1.586 ,因此,由两级串联的带通滤波电路的通带电压增益(Avf1 ) 2=( 1.586 )2=2.515, 由于所需要的通带增益为0dB, 因此在低通滤波器输入部分加了一个由电阻R1、 R2组成的分压器。

基于巴特沃斯的低通滤波器的设计原理

课程设计报告 ——基于虚拟仪器的幅频特性自动测试系统的实现 2010年12月25日 一、实验内容 基于虚拟仪器的幅频特性自动测试系统的实现 二、实验目的 1、通过对滤波器的设计,充分了解测控电路中学习的各种滤波器的工作原理以及工作机制。学习幅频特性曲线的拟合,学会基本MATLAB操作。 2、进一步掌握虚拟仪器语言LabVIEW设计的基本方法、常用组件的使用方法和设计全过程。以及图形化的编程方法;学习非线性校正概念和用曲线拟合法实现非线性校正;练习正弦波、方波、三角波产生函数的使用方法;掌握如何使用数据采

集卡以及EIVIS产生实际波形信号。了解图形化的编程方法;练习DIO函数的使用方法;学习如何使用数据采集卡以及EIVIS产生和接受实际的数字信号。3、掌握自主化学习的方法以及工程设计理念等技能。 三、实验原理 滤波器是具有频率选择作用的电路或运算处理系统。滤波处理可以利用模拟电路实现,也可以利用数字运算处理系统实现。滤波器的工作原理是当信号与噪声分布在不同频带中时,可以在频率与域中实现信号分离。在实际测量系统中,噪声与信号的频率往往有一定的重叠,如果重叠不严重,仍可利用滤波器有效地抑制噪声功率,提高测量精度。 任何复杂地滤波网络,可由若干简单地、相互隔离地一阶与二阶滤波电路级联等效构成。一阶滤波电路只能构成低通和高通滤波器,而不能构成带通和带阻。可先设计一个一阶滤波电路来熟悉电路设计思路以及器件使用要求和软件地进一步学习。 滤波器主要参数介绍: ①通带截频f p=w p/(2π)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。 ②阻带截频f r=wr/(2π)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。 ③转折频率f c=w c/(2π)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。 ④固有频率f0=w0/(2π)为电路没有损耗时,滤波器的谐振频率,复杂电路往

带通滤波器设计模拟电子技术课程设计报告大学论文

模拟电子技术课程设计报告带通滤波器设计 班级:自动化1202 姓名:杨益伟 学号:120900321 日期:2014年7月2日 信息科学与技术学院

目录 第一章设计任务及要求 1、1设计概述------------------------------------3 1、2设计任务及要求------------------------------3 第二章总体电路设计方案 2、1设计思想-----------------------------------4 2、2各功能的组成-------------------------------5 2、3总体工作过程及方案框图---------------------5 第三章单元电路设计与分析 3、1各单元电路的选择---------------------------6 3、2单元电路软件仿真---------------------------8 第四章总体电路工作原理图及电路仿真结果 4、1总体电路工作原理图及元件参数的确定---------9 4、2总体电路软件仿真---------------------------11 第五章电路的组构与调试 5、1使用的主要仪器、仪表-----------------------12 5、2测试的数据与波形---------------------------12 5、3组装与调试---------------------------------14 5、4调试出现的故障及解决方法-------------------14 第六章设计电路的特点及改进方向 6、1设计电路的特点及改进方向-------------------14 第七章电路元件参数列表 7、1 电路元件一览表---------------------------15 第八章结束语 8、1 对设计题目的结论性意见及改进的意向说明----16 8、2 总结设计的收获与体会----------------------16 附图(电路仿真总图、电路图) 参考文献

带通滤波器设计步骤

带通滤波器设计步骤 1、根据需求选择合适的低通滤波器原型 2、把带通滤波器带宽作为低通滤波器的截止频率,根据抑制点的频率距离带通滤波器中心频点距离的两倍作为需要抑制的频率,换算抑制频率与截止频率的比值,得出m 的值,然后根据m 值选择低通滤波器的原型参数值。 滤波器的时域特性 任何信号通过滤波器都会产生时延。Bessel filter 是特殊的滤波器在于对于通带内的所有频率而言,引入的时延都是恒定的。这就意味着相对于输入,输出信号的相位变化与工作的频率是成比例的。而其他类型的滤波器(如Butterworth, Chebyshev,inverse Chebyshev,and Causer )在输出信号中引入的相位变化与频率不成比例。相位随频率变化的速率称之为群延迟(group delay )。群延迟随滤波器级数的增加而增加。 模拟滤波器的归一化 归一化的滤波器是通带截止频率为w=1radian/s, 也就是1/2πHz 或约0.159Hz 。这主要是因为电抗元件在1弧度的时候,描述比较简单,XL=L, XC=1/C ,计算也可以大大简化。归一化的无源滤波器的特征阻抗为1欧姆。归一化的理由就是简化计算。 Bessel filter 特征:通带平坦,阻带具有微小的起伏。阻带的衰减相对缓慢,直到原理截止频率高次谐波点的地方。原理截止频率点的衰减具有的经验公式为n*6dB/octave ,其中,n 表示滤波器的阶数,octave 表示是频率的加倍。例如,3阶滤波器,将有18dB/octave 的衰减变化。正是由于在截止频率的缓慢变化,使得它有较好的时域响应。 Bessel 响应的本质截止频率是在与能够给出1s 延迟的点,这个点依赖于滤波器的阶数。 逆切比雪夫LPF 原型参数计算公式(Inverse Chebyshev filter parameters calculate equiations ) ) (cosh )(cosh 11Ω=--Cn n 其中 1101.0-=A Cn , A 为抑制频率点的衰减值,以dB 为单位;Ω为抑制频率与截止频率的比值 例:假设LPF 的3dB 截止频率为10Hz,在15Hz 的频点需要抑制20dB,则有: 95.91020*1.0==Cn ;Ω=15/10=1.5 1.39624.0988.2) 5.1(cosh )95.9(cosh 11===--n ,因此,滤波器的阶数至少应该为4

带通滤波器设计实验报告

电子系统设计实践 报告 实验项目带通功率放大器设计学校宁波大学科技学院 学院理工学院 班级12自动化2班 姓名woniudtk 学号12******** 指导老师李宏 时间2014-12-4

一、设计课题 设计并制作能输出0.5W功率的语音放大电路。该电路由带通滤波器和功率放大器构成。 二、设计要求 (1)电路采用不超过12V单(或双)电源供电; (2)带通滤波器:通带为300Hz~3.4kHz,滤波器阶数不限;增益为20dB; (3)最大输出额定功率不小于0.5W,失真度<10%(示波器观察无明显失真);负载(喇叭)额定阻抗为8?。 (4)功率放大器增益为26dB。 (5)功率放大部分允许采用集成功放电路。 三、电路测试要求 (1)测量滤波器的频率响应特性,给出上、下限截止频率、通带的增益; (2)在示波器观察无明显失真情况下,测量最大输出功率 (3)测量功率放大器的电压增益(负载:8?喇叭;信号频率:1kHz); 四、电路原理与设计制作过程 4.1 电路原理 带通功率放大器的原理图如下图1所示。电路有两部分构成,分别为带通滤波器和功率放大器。 图1 滤波器电路的设计选用LM358双运放设计电路。LM358是一个高输入阻抗、高共模抑制比、低漂移的小信号放大电路。高输入阻抗使得运放的输入电流比较小,有利于增大放大电路对前级电路的索取信号的能力。在信号的输入的同时会不可避免的掺杂着噪声和温漂而影响信号的放大,因此高共模抑制比、低温漂的作用尤为重要。 带通滤波器的设计是由上限截止频率为3400HZ的低通滤波器和下限截止频率为300HZ 的高通滤波器级联而成,因此,设计该电路由低通滤波器和高通滤波器组合成二阶带通滤波器(巴特沃斯响应)。 功率放大电路运用LM386功放,该功放是一种音频集成功放,具有自身功耗低、电压增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。 4.2电路设计制作 4.2.1带通滤波电路设计 (1)根据设计要求,通带频率为300HZ~2.4KHZ,滤波器阶数不限,增益为 20dB,所以采取二阶高通和二阶低通联级的设计方案,选择低通放大十倍。高通不放大。

等波纹低通滤波器的设计及与其他滤波器的比较

燕山大学 课程设计说明书题目:等波纹低通滤波器的设计 学院(系):里仁学院 年级专业:仪表10-2 学号: 学生姓名: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 2013年7月5日

摘要 等波纹最佳逼近法是一种优化设计法,它克服了窗函数设计法和频率采样法的缺点,使最大误差(即波纹的峰值)最小化,并在整个逼近频段上均匀分布。用等波纹最佳逼近法设计的FIR数字滤波器的幅频响应在通带和阻带都是等波纹的,而且可以分别控制通带和阻带波纹幅度。这就是等波纹的含义。最佳逼近是指在滤波器长度给定的条件下,使加权误差波纹幅度最小化。与窗函数设计法和频率采样法比较,由于这种设计法使滤波器的最大逼近误差均匀分布,所以设计的滤波器性能价格比最高。阶数相同时,这种设计法使滤波器的最大逼近误差最小,即通带最大衰减最小,阻带最小衰减最大;指标相同时,这种设计法使滤波器阶数最低。实现FIR数字滤波器的等波纹最佳逼近法的MATLAB信号处理工具函数为remez和remezord。Remez函数采用数值分析中的remez多重交换迭代算法求解等波纹最佳逼近问题,求的满足等波纹最佳逼近准则的FIR数字滤波器的单位脉冲响应h(n)。由于切比雪夫和雷米兹对解决该问题做出了贡献,所以又称之为切比雪夫逼近法和雷米兹逼近法。 关键词:FIR数字滤波器 MATLAB remez函数 remezord函数等波纹

目录 摘要---------------------------- ----------------------------------------------------------------2 关键字------------------------------------------------------------------------------------------2 第一章第一章数字滤波器的基本概-------------------------------------------------4 1.1滤波的涵义----------------------------------------------------------------------4 1.2数字滤波器的概述-------------------------------------------------------------4 1.3数字滤波器的实现方法-------------------------------------------------------4 1.4 .数字滤波器的可实现性------------------------------------------------------5 1.5数字滤波器的分类-------------------------------------------------------------5 1.6 FIR滤波器简介及其优点----------------------------------------------------5- 第二章等波纹最佳逼近法的原理-------------------------------------------------------5 2.1等波纹最佳逼近法概述-------------------------------------------------------9 2.2.等波纹最佳逼近法基本思想-------------------------------------------------9 2.3等波纹滤波器的技术指标及其描述参数介绍---------------------------10 2.3.1滤波器的描述参数-----------------------------------------------------10 2.3.2设计要求-----------------------------------------------------------------10 第三章matlab程序------------------------------------------------------------------------11 第四章该型滤波器较其他低通滤波器的优势及特点--------------------12 第五章课程设计总结---------------------------------------------------------------------15 参考文献资料-------------------------------------------------------------------------------15

低通滤波器设计课题研究报告

1、 课题背景 滤波器是具有一定传输选择特性的、对信号进行加工处理的装置,它允许输入信号中的一些成分通过,抑制或衰减另一些成分。其功能是将输入信号变换为人们所需要的输出信号。 滤波器按照处理的信号不同可分为模拟滤波器和数字滤波器;按功能不同可分为低通、高通、带通和带阻。 本次课设是完成低通滤波器的设计,目前常用的方法有模拟滤波器设计的巴特沃斯和切比雪夫滤波器以及数字滤波器设计的冲激响应不变法和双线性变换法。 巴特沃斯滤波器的频率特性曲线,无论在通带还是阻带都是频率的单调减函数。因此,当通带边界处满足指标要求时,通带内肯定会有较大富余量。因此,更有效的设计方法应该是将逼近精确度均匀地分布在整个通带内,或者均匀分布在整个阻带内,或者同时均匀分布在两者之内。这样,就可以使滤波器阶数大大降低。 切比雪夫滤波器的幅频特性就具有这种等波纹特性。它有两种形式: 振幅特性在通带内是等波纹的、在阻带内是单调下降的切比雪夫Ⅰ型滤波器; 振幅特性在通带内是单调下降、在阻带内是等波纹的切比雪夫Ⅱ型滤波器。 脉冲响应不变法的优点是频率变换关系是线性的,即ω=ΩT ,如果不存在频谱混叠现象,用这种方法设计的数字滤波器会很好地重现原模拟滤波器的频响特性。另外一个优点是数字滤波器的单位脉冲响应完全模仿模拟滤波器的单位冲激响应波形,时域特性逼近好。但是,有限阶的模拟滤波器不可能是理想带限的,所以,脉冲响应不变法的最大缺点是会产生不同程度的频率混叠失真,其适合用于低通、带通滤波器的设计,不适合用于高通、带阻滤波器的设计。 双线性变换法的优点:避免了频率响应的混叠,数字域频率与模拟频率之间是单值映射。缺点:除了零频附近外,数字域频率与模拟频率之间存在严重非线性。 2、 方案设计 2.1、模拟滤波器 具有单调下降的幅频特性 1、由技术指标要求确定滤波器阶次 对于本次课设,已经要求是三阶,故此步可省略 2、由阶次确定归一化后的表达式 对于3阶的归一化表达式为:1221 )(23+++=p p p p H (1)

相关主题
文本预览
相关文档 最新文档