当前位置:文档之家› 09Aptamer-Nanoparticle Strip Biosensor for senstitve detection of cancer cells

09Aptamer-Nanoparticle Strip Biosensor for senstitve detection of cancer cells

09Aptamer-Nanoparticle Strip Biosensor for senstitve detection of cancer cells
09Aptamer-Nanoparticle Strip Biosensor for senstitve detection of cancer cells

Aptamer-Nanoparticle Strip Biosensor for Sensitive Detection of Cancer Cells

Guodong Liu,*,?,?Xun Mao,?Joseph A.Phillips,§Hui Xu,?Weihong Tan,*,§and Lingwen Zeng*,?

Key Laboratory of Regenerative Biology,Guangzhou Institute of Biomedicine and Health,Chinese Academy of Sciences,Guangzhou,Guangdong,China510663,Department of Chemistry and Molecular Biology,North Dakota State University,Fargo,North Dakota58105,and Center for Research at Bio/Nano Interface,Department of Chemistry,Shands Cancer Center,Department of Physiology and Functional Genomics,UF Genetics Institute and McKnight Brain Institute,University of Florida,Gainesville,Florida32611-7200

We report an aptamer-nanoparticle strip biosensor(ANSB) for the rapid,speci?c,sensitive,and low-cost detection of circulating cancer cells.Known for their high speci?city and af?nity,aptamers were?rst selected from live cells by the cell-SELEX(systematic evolution of ligands by exponential enrichment)process.When next combined with the unique optical properties of gold nanoparticles (Au-NPs),ANSBs were prepared on a lateral?ow device. Ramos cells were used as a model target cell to demon-strate proof of principle.Under optimal conditions,the ANSB was capable of detecting a minimum of4000 Ramos cells without instrumentation(visual judgment) and800Ramos cells with a portable strip reader within 15min.Importantly,ANSB has successfully detected Ramos cells in human blood,thus providing a rapid, sensitive,and low-cost quantitative tool for the detection of circulating cancer cells.ANSB therefore shows great promise for in-?eld and point-of-care cancer diagnosis and therapy.

The noninvasive early detection of cancer and monitoring of its progress are high on the agenda of oncologists.1Studies suggest that the circulating cancer cells found in patients are associated with short survival.2Cancer of blood including leuke-mia,lymphoma,and myeloma is one of the most common types of cancers.Each year in the United States,about140000people are diagnosed with some type of blood cancer.About53000die from it.It has been hypothesized that very sensitive monitoring of blood cancer cells could provide an easier and more effective way to monitor progression of the disease.3-7From this perspec-tive,identi?cation and detection of circulating cancer cells is fundamental to early diagnosis and therapy and a means of monitoring the relevant biological processes of cancers.Various techniques,including polymerase chain reaction(PCR)-based methods,cytometric methods,and cell-enrichment methods,have been developed,and some are commercially available.4Although they have a high detection rate,many of these methods are expensive and time-consuming.They also require advanced instrumentation and enrichment of the target cells in the sample or expression of protein biomarkers or antibodies in the cells. There is,therefore,a need for an inexpensive,quick,and simple tool with high sensitivity and speci?city for detecting cancer cells in blood.

The most recent efforts in cancer cell detection have focused on biosensors with good sensitivity and selectivity,as well as rapid and easy operation.Various biosensors using different transducers have been reported as effective in detecting and identifying cancer cells,including those based on quartz crystal measurement (QCM),8electrochemical measurement,9-11?uorescence measure-ment,12,13single nanotube?eld effect transistor array,14,15or micro?uidic devices.16,17Most of these reported biosensors are based on the speci?c interaction between antibody and protein receptor on the cell surface.Although many of them have been applied at the laboratory research level,they have not been applied in the?eld or for point-of-care detection because of the relatively long assay time or multiple washing and separation steps.

To solve many of these challenges,we have turned to the use of aptamers,which are single-stranded oligonucletides selected by a process called SELEX(systematic evolution of ligands by

*To whom correspondence should be addressed.E-mail:guodong.liu@https://www.doczj.com/doc/d73345042.html, (G.L.);tan@chem.u?.edu(W.T.);zeng6@https://www.doczj.com/doc/d73345042.html,(L.Z.).

?Chinese Academy of Sciences.

?North Dakota State University.

§University of Florida.

(1)Uhr,J.W.Nature2007,450,1168–1169.

(2)Chang,Y.;Di Tomaso,E.;McDonald,D.M.;Jones,R.;Jain,R.K.;Munn,

L.L.Proc.Natl.Acad.Sci.U.S.A.2000,97(26),14608–14613.

(3)Vlems,F.A.;Ruers,T.J.;Punt,C.J.;Wobbes,T.;van Muijen,G.N.Eur.

J.Surg.Oncol.2003,29,289–302.

(4)Paterlini-Brechot,P.;Benali,N.L.Cancer Lett.2007,253(2),180–204.

(5)Pantel,K.;Woel?e,U.Biochim.Biophys.Acta2005,1756(1),53–64.

(6)Zieglachmid,V.;Hollmann,C.;Bocher,https://www.doczj.com/doc/d73345042.html,b.Sci.2005,

42(2),155–196.

(7)Mocellin,S.;Keilholz,U.;Rossi,C.R.;Nitti,D.Trends Mol.Med.2006,

12(3),130–139.

(8)Hayden,O.;Bindeus,R.;Dickert,F.L.Meas.Sci.Technol.2003,14,1876–

1881.

(9)He,F.;Shen,Q.;Jiang,H.;Zhou,J.;Cheng,J.;Guo,D.D.;Li,Q.N.;Wang,

X.M.;Fu,D.G.;Chen,B.A.Talanta2009,77(3),1009–1014.

(10)Liu,Q.J.;Yu,J.J.;Xiao,L.;Tang,J.C.O.;Zhang,Y.;Wang,P.;Yang,M.

Biosens.Bioelectron.2009,24(5),1305–1310.

(11)Andreescu,S.;Sakik,O.A.Methods2005,37(1),84–93.

(12)Tibbe,A.G.J.;Grooth,B.G.D.;Greve,J.;Liberti,P.A.;Dolan,G.J.;

Terstappen,L.W.M.M.Nat.Biotechnol.1999,17(12),1210–1213. (13)Kang,C.C.;Chang,C.C.;Chang,T.C.;Liao,L.J.;Lou,P.J.;Xie,W.J.;

Yeung,E.S.Analyst2007,232,745–749.

(14)Shao,N.;Wickstrom,E.;Panchapakesan,B.Nanotechnology2008,46(19),

465101.

(15)Teker,K.Mater.Sci.Eng.,B2008,153(1-3),83–87.

(16)Du,Z.;Colls,N.;Cheng,K.H.;Vaughn,M.W.;Gollahon,L.Biosens.

Bioelectron.2006,21(10),1991–1995.

(17)Phillips,J.A.;Xu,Y.;Xia,Z.;Fan,H.;Tan,W.Anal.Chem.2009,81,1033–

1039.

Anal.Chem.XXXX,xxx,000–000

10.1021/ac901889s CCC:$40.75 XXXX American Chemical Society A

Analytical Chemistry,Vol.xxx,No.xx,Month XX,XXXX

exponential enrichment)from a DNA or RNA pool by repetitive binding of the target molecules.18,19In comparison with molecular probes currently available for biomarker recognition,aptamers possess high speci?city,low molecular weight,easy and reproduc-ible production,versatility in application,and easy discovery and manipulation.20Aptamers have had many important applications in bioanalysis,biomedicine,and biotechnology.21-23Most aptam-ers reported so far have been selected using simple targets,such as a puri?ed protein.Recently,however,aptamer selection against complex targets,such as red blood cell membranes and endot-helial cells,was also demonstrated.24-27With the use of cell-SELEX,our group has created aptamers that bind to lymphocytic and myeloid leukemia,small-cell and non-small-cell lung cancer, and liver cancer cells.28-30One bene?t of using aptamers derived from cell-SELEX is that these aptamers can be created in the absence of any explicit molecular signature that would otherwise distinguish between cancer cells and healthy cells.More recently, the aptamer-modi?ed micro?uidic device has been developed for the enrichment of cancer cells to achieve a rapid assay without pretreatment of cells.17Thus,it shows great promise to use these aptamers as probes for the development of biosensors for cancer cell detection.

In this article,we report the development and working principle of an aptamer-nanoparticle strip biosensor(ANSB)for the rapid, sensitive,and low-cost detection of cancer cells in https://www.doczj.com/doc/d73345042.html,-bining the high selectivity and af?nity of aptamers with the unique optical properties of gold nanoparticles(Au-NPs),ANSB is prepared on a lateral?ow device.A pair of aptamers capable of speci?cally binding Ramos cells is used to prepare the ANSB.A thiolated aptamer(thiol-TD05)is immobilized on the Au-NPs, and a biotinylated aptamer(biotin-TE02)is immobilized on the test zone of the ANSB.Ramos cells interact with aptamer probes of the Au-NP-aptamer conjugates to form the Au-NP-aptamer-cell complexes and continue to migrate along the strip.A large number of Au-NPs then accumulate on the test zone and produce a characteristic red band,which can be used for either qualitative, i.e.,visual evaluation,or quantitative detection of cells by a portable strip reader.A DNA probe(complementary with the thiol-TD05)is immobilized on the control zone to capture the excess of Au-NP-aptamers,resulting in a second red band.The feasibility of this biosensor is evaluated by detecting Ramos cells spiked in human blood.

EXPERIMENTAL SECTION

Apparatus.The Airjet AJQ3000dispenser,Biojet BJQ3000 dispenser,clamshell laminator,and the guillotine cutting module CM4000were from Biodot Ltd.(Irvine,CA).The portable strip reader DT1030was purchased from Shanghai Goldbio Tech.Co., Ltd.(Shanghai,China).

Reagents.Streptavidin from Streptomyces avidinii,HAuCl4, sucrose,hydroxylamine,Tween-20,dithiothreitol(DTT),Triton X-100,trisodium citrate,bovine serum albumin(BSA),sodium chloride-sodium citrate(SSC)buffer20×concentrate(pH7.0), and phosphate buffer saline(PBS,pH7.4,0.01M)were purchased from Sigma-Aldrich.Glass?bers(GFCP000800), cellulose?ber sample pads(CFSP001700),laminated cards (HF000MC100),and nitrocellulose membranes(HFB18004and HFB24004)were purchased from Millipore(Billerica,MA). Human whole blood was purchased from the U.S.Food and Drug Administration.

The following aptamers were selected to prepare ANSB:TDO5 aptamer,CACCGGGAGGATAGTTCGGTGGCTGTTCAGGGT-CTCCTCCCGGTG;TE02aptamer,TAGGCAGTGGTTTGACGTC-CGCATGTTGGGAATAGCCACGCCT.

Both the thiolated and biotinylated versions of the aptamer sequences were synthesized in our lab.A DNA probe(on the control zone of ANSB)was purchased from Integrated DNA Technologies,Inc.(Coralville,IA)and had the following sequence: 5′-biotin-ATT GTA CAA AAT ACG TTT TG-3′.

CCRF-CEM cells(CCL-119T-cell,human acute lymphoblastic leukemia)and Ramos cells(CRL-1596,B-cell,human Burkitt’s lymphoma)were obtained from ATCC(American Type Culture Collection).The cells were cultured in RPMI medium supple-mented with10%fetal bovine serum(FBS)and100IU/mL penicillin-streptomycin.After the cells had been dispersed in RPMI cell media buffer,they were centrifuged at920rpm for5 min.They were then redispersed in cell media three times and ?nally redispersed again in a1mL of cell media buffer.The cell density was determined using a hemocytometer,and this was performed prior to any experiments.During all experiments,the cells were kept in an ice bath at4°C.

All chemicals used in this study were analytical reagent grade. All other solutions were prepared with ultrapure(>18M?)water from a Millipore Milli-Q water puri?cation system(Billerica,MA).

Preparation of Gold Nanoparticles(Au-NP)and Au-NP-Aptamer Conjugates.Au-NPs with average diameter15±3.5nm were prepared according to the reported method with slight modi?cations.31A thiolated aptamer(thiol-TD05)was used for conjugation with Au-NPs.Before the conjugation,the thiolated olignocleotide was activated by the following procedure:98μL of thiol-TD05(1.0OD)was mixed with2μL of triethylamine and 7.7mg of DTT to react for30min at room temperature(RT); then the excess DTT was removed by extraction four times with 400μL of ethyl acetate solution.Conjugation reactions were carried out by adding the activated DNA probe to1mL of the 5-fold concentrated Au-NP solution.After standing at4°C for24h, the solution was subjected to“aging”by the addition of NaCl up

(18)Ellington,A.D.;Szostak,J.W.Nature1990,346(30),818–822.

(19)Tuerk,C.;Gold,L.Science1990,249(4968),505–510.

(20)Jayasena,S.D.Clin.Chem.1999,45(9),1628–1650.

(21)Fang,X.;Sen,A.;Vicens,M.;Tan,W.ChemBioChem2003,4(9),829–

834.

(22)Guo,K.;Wendel,H.P.;Scheideler,L.;Ziemer,G.;Scheule,A.M.J.Cell.

Mol.Med.2005,9(3),731–736.

(23)Yang,C.J.;Jockusch,S.;Vicens,M.;Turro,N.;Tan,W.Proc.Natl.Acad.

Sci.U.S.A.2005,102(48),17278–17283.

(24)Morris,K.N.;Jensen,K.B.;Julin,C.M.;Weil,M.;Gold,L.Proc.Natl.

Acad.Sci.U.S.A.1998,95(6),2902–2907.

(25)Blank,M.;Weinschenk,T.;Priemer,M.;Schluesener,H.J.Biol.Chem.

2001,276,16464–16468.

(26)Daniels,D.A.;Chen,H.;Hicke,B.J.;Swiderek,K.M.;Gold,L.Proc.Natl.

Acad.Sci.U.S.A.2003,100(26),15416–15421.

(27)Wang,C.;Zhang,M.;Yang,G.;Zhang,D.;Ding,H.;Wang,H.;Fan,M.;

Shen,B.;Shao,N.J.Biotechnol.2003,102(2),15–22.

(28)Shangguan,D.;Li,Y.;Tang,Z.;Cao,Z.C.;Chen,H.W.;Mallikaratchy,P.;

Sefah,K.;Yang,C.J.;Tan,W.Proc.Natl.Acad.Sci.U.S.A.2006,103

(32),11838–11843.

(29)Shangguan,D.;Cao,Z.C.;Li,Y.;Tan,W.Clin.Chem.2007,53(6),1153–

1158.

(30)Shangguan,D.;Meng,L.;Cao,Z.C.;Xiao,Z.;Fang,X.;Li,Y.;Cardona,D.;

Witek,R.P.;Liu,C.;Tan,W.Anal.Chem.2008,80(3),721–728. (31)Olson,L.G.;Lo,Y.;Beebe,T.P.;JM.;Harris,J.M.Anal.Chem.2001,

73,4268–4276.

B Analytical Chemistry,Vol.xxx,No.xx,Month XX,XXXX

to a concentration of150mM,and a certain quantity of1%sodium dodecyl sulfate(SDS)was added to reach a?nal concentration of0.01%.The solution was allowed to stand for another24h at4°C,and the excess of reagents was removed by centrifugation for12min at12000rpm.The supernatant was discarded,and the red pellet was redispersed in1mL of eluent buffer containing 20mM Na3PO4,5%BSA,2.5%Tween-20,and10%sucrose.

Preparation of the ANSB.The ANSB consists of four components:sample application pad,Au-NP-aptamer conjugate pad,nitrocellulose membrane,and absorbent pad(see the Sup-porting Information,Figure S1).All of the components were mounted on a common backing layer(typically an inert plastic, e.g.,polyester)using the clamshell laminator(Biodot,Irvine,CA). The sample application pad(17mm×30cm)was made from glass?ber(CFSP001700,Millipore)and saturated with a buffer (pH8.0)containing0.25%Triton X-100,0.05M Tris-HCl,5% Tween-20,and0.15M NaCl.It was then dried and stored in a desiccator at RT.The conjugate pad(8mm×30cm)was prepared by dispensing a desired volume of Au-NP-aptamer conjugates solution onto the glass?ber pad with the Airjet AJQ3000 dispenser,leaving it to dry at RT.The pad was stored in a

desiccator at4°C.A nitrocellulose membrane(25mm×30cm) was used to immobilize the capture aptamer probes(biotin-TE02 aptamer probe)and control DNA probes at different zones to form the test zone and control zone,respectively.To facilitate the immobilization of biotinylated aptamers and biotinylated DNA probes on the nitrocellulose membrane,streptavidin was used to react with the biotinylated probes to form the streptavidin-biotin-aptamer and streptavidin-biotin-DNA conjugates.Brie?y,60μL of1mM biotinylated aptamer(or DNA)probes and140μL of PBS were added to300μL of1.67mg/mL streptavidin solution, and the mixture was incubated1h at RT.The excess aptamer (DNA)probes were removed by centrifugation for20min with a centrifugal?lter(cutoff30000,Millipore)at6000rpm.The conjugates were washed three times with1mL of PBS in the same centrifugal?lter.Finally,500μL of PBS was added into the remaining solution in the?lter.The conjugates were then dispensed on the nitrocellulose membrane with the Biojet BJQ 3000dispenser.The distance between the test zone and control zone was around2mm.The aptamer-and DNA probe-loaded membrane was then dried at RT for1h and stored at4°C in a dry state.Finally,the sample pad,conjugate pad,nitrocellulose membrane,and absorption pad were assembled on a plastic adhesive backing(60mm×30cm)using the clamshell laminator. Each part overlapped2mm to ensure migration of the solution through the strip during the assay.Strips with a4mm width were cut by using the guillotine cutting module CM4000.

Sample Assay Procedure.In a typical cell test on ANSB,80μL of sample solution containing a desired amount of Ramos cells in0.01M PBS containing1%BSA(PBSB)was applied to the sample application zone.After waiting for a speci?c time(e.g.,7 min),another50μL of PBSB was applied to wash the ANSB.The bands were visualized within15min.For quantitative measure-ments,the ANSB was inserted into the DT1030strip reader.The optical intensity of the test line and control line could be recorded simultaneously by using the“GoldBio strip reader”software.In the case of detecting Ramos cells in blood,the desired amount of Ramos cells was spiked into blood,and5μL of blood was applied to the sample application pad.An additional75μL of PBSB was added to transport blood into a downstream portion of ANSB. Other procedures were the same as those described above.

RESULTS AND DISCUSSION

Principle of ANSB Measurement.Known for their high speci?city and af?nity,aptamers were selected from live cells by cell-SELEX.When combined with the unique optical properties of Au-NPs,ANSB was prepared on a lateral?ow device(see the Supporting Information,Figure S1).The principle of ANSB is based on the speci?c binding between the aptamers and cells, and the protocol is illustrated in Figure1.Ramos cells are used as a model cell line to demonstrate the proof of principle.Brie?y, a pair of aptamers capable of speci?cally binding Ramos cells is used to prepare the ANSB.A thiolated aptamer(thiol-TD05)is immobilized on the Au-NPs,and a biotinylated aptamer(biotin-TE02)is immobilized on the test zone of ANSB.In a typical assay, a sample solution containing Ramos cells is applied on the ANSB sample pad.The solution migrates by capillary action,passes the conjugate pad,and then rehydrates the Au-NP-aptamer conju-gates.Ramos cells interact with aptamer probes of the Au-NP-aptamer conjugates to form the Au-NP-aptamer-cell com-plex and continue migrating along the strip.The Au-NP-aptamer-cell complexes are captured on the test zone by a second reaction between Ramos cells and the immobilized aptamers(Figure1A).The accumulation of Au-NPs on the test zone is visualized as a characteristic red band(test line).The excess of Au-NP-aptamer conjugates continues to migrate and pass the control zone,in which a DNA probe(complementary with the thiol-TD05)is immobilized.The excess of Au-NP-aptamer conjugates is then captured by hybridization events between the thiolated aptamer and DNA,thus forming a second red band(control line,Figure1B).In the absence of Ramos cells, no red band is observed in the test zone.In this case,a red control band(control line)shows that the ANSB is working properly. Qualitative analysis(visual detection)is performed by observing the color change of the test zone,and quantitative analysis is Figure1.Schematic diagram of the detection of Ramos cells on aptamer-nanoparticle strip biosensor(ANSB):(A)capturing Au-NP-aptamer-Ramos cells on the test zone of ANSB through speci?c aptamer-cell interactions and(B)capturing the excess of Au-NP-aptamer on the control zone of ANSB through aptamer-DNA hybridization reaction.

C Analytical Chemistry,Vol.xxx,No.xx,Month XX,XXXX

realized by reading the optical intensity of the test line with a portable strip reader.

Figure 2presents the typical photo images and corresponding optical responses of 0Ramos cells (control,Figure 2a),8×104CCL cells (control,Figure 2b),8×104Ramos cells (Figure 2c),and the mixture of 8×104CCL cells and 8×104Ramos cells (Figure 2d).Two red bands were observed in the presence of Ramos cells (Figure 2c),and only one red band (control line,top)was observed in the absence of Ramos cells (Figure 2a)and presence of CCL cells (Figure 2b).The presence of CCL cells shows a slight interference on the signal of Ramos cells (Figure 2d).The intensities of the bands were recorded by the strip reader shown on the bottom of Figure 2.Well-de?ned peaks were observed,and the peak areas were proportional to the amount of the captured Au-NPs in the test zone (right side)and control zone (left side).The above results indicated that the ANSB would provide a rapid and simple tool for qualitative and quantitative detection of cancer cells.

Optimization of ANSB Fabrication and Assay Parameters.Optimal Combination of the Aptamer Pairs for the Fabrication of ANSB.A group of aptamers with different equilibrium dissociation constants (K d )for Ramos cells was selected by cell-SELEX,but only one pair of aptamers (TD05and TE02)with nanomolar K d values (high binding af?nities)was used to prepare the ANSB.Considering that Ramos cells have multiple binding sites for the aptamer probes,both TD05and TE02could be used as both detection probe (conjugated with Au-NP)and capture probe (immobilized on the test zone).To obtain the best sensitivity of ANSB,four aptamer pairs [TD05(capture probe)-TD05(detection probe),TE02(capture probe)-TE02(detection probe),TD05(capture probe)-TE02(detection probe),and TE02(capture probe)-TD05(detection probe)]were used to prepare ANSBs.Figure 3A presents the response of 8×104Ramos cells for different aptamer pair-based ANSBs.It can be observed that the best response was obtained by using the TE02(capture probe)-TD05(detection probe)pair.TE02-TE02and TD05-TD05pair-based ANSBs gave relatively low responses.It seems obvious that using the same aptamer as both detection probe and capture probe reduces the amount of the cells captured on the test zone because of limited binding sites on the surface of Ramos cells.The response difference between TD05(capture probe)-TE02(detection probe)-based ANSB and TE02(capture probe)-TD05(detection probe)-based ANSB arises from different binding af?nities to Ramos cells.The K d of TE02(0.76±0.13nM)is much smaller than that of TD05(74.8±8.7nM)and would offer high binding capability to capture Ramos cells on the test zone.Therefore,

a TE02(capture probe)-TD05(detection probe)pair was used to prepare ANSB throughout the experiments.

Optimization of the Amount of Au-NP -Aptamer on the Conjugate Pad of ANSB.The intensities of red bands (test line and control line)on the ANSB depend on the amount of captured Au-NP -aptamer conjugates,which,in turn,corresponds to the amount of Au-NP -aptamer on the conjugate pad.Figure 3B presents the histogram of the responses of 8×104Ramos cells on ANSBs,which were prepared with different amounts of Au-NP -aptamer conjugates (i.e.,the dispensing of various cycles of Au-NP -aptamer conjugates on the conjugate pads).It can be seen that the responses of ANSB increased up to three dispensing cycles on the conjugate pad,thereafter tending toward saturation.Since increase of the dispensing cycles causes increasingly nonspeci?c adsorption and assay time,three dispensing cycles were used to prepare the ANSB for most of the experiments.

Selection of Appropriate Membrane Materials for the Preparation of ANSB.Sandwich-type Au-NP -aptamer -cell -aptamer com-plexes were formed on ANSB,and the reaction time,which depends on the migration time of the sample solution on the nitrocellulose membrane,plays an important role for the sensitivity of ANSB.The migration time of solution differs with different membranes.Two kinds of nitrocellulose membranes,including HFB18004and HFB24004(Millipore),were used to prepare the ANSB.According to the manufacturer’s instructions,the migration times of the buffer in HFB 18004and HFB24004membranes are 3and 4min,respectively.Figure 3C presents the responses of 8×104Ramos cells on the ANSBs prepared with the above nitrocellulose membranes.It can be seen that the response of ANSBs prepared with the HFB24004is signi?cantly higher than the response of those prepared with HFB18004.This indicates that a relatively long migration time is helpful in increasing the sensitivity of ANSB.Since the whole assay time of ANSB prepared with HFB24004is around 15min,the HFB24004nitrocellulose membrane was used to prepare the ANSB.Selection of Appropriate Buffers for the Fabrication of ANSB and Cell Tests.Another important factor affecting the sensitivity and reproducibility of ANSB involves the components of buffers during the fabrication of ANSB and cell tests.One of the most important issues for nanoparticle-based bioassays and biosensors is non-speci?c adsorption of nanoparticles,which causes high back-ground and low sensitivity of the tests.The use of appropriate buffers would minimize nonspeci?c adsorption of Au-NP -aptamer on the membrane and increase the sensitivity and reproducibility of the ANSB.In the current study,three kinds of buffers were used in ANSB fabrication and cell tests.The sample pad of ANSB was treated for 1h with the buffer (pH 8.0)containing 0.25%Triton X-100,0.05M Tris -HCl,5%Tween-20,and 0.15M NaCl.This treatment facilitates the transport of cells into a downstream portion of the lateral ?ow device and reduces entrapment of cells in the sample pad.During the preparation of Au-NP -aptamer conjugates,the Au-NP -aptamer conjugate pellets were dispersed in the buffer containing 20mM Na 3PO 4,5%BSA,2.5%Tween-20,and 10%sucrose.The addition of BSA,Tween-20,and sucrose stabilizes the Au-NPs and facilitates the release of the Au-NP -aptamer conjugates from the conjugate pad.The addition of these components in the buffer also

reduces

Figure 2.Typical photo images (top)and corresponding responses (bottom)of ANSB with sample solutions containing 0Ramos cells (a),8×104CCL cells (b),8×104Ramos cells (c),and 8×104CCL cells and 8×104Ramos cells.The sample solutions were prepared with 0.01M PBS containing 1%BSA:volume of the sample solution,80μL;assay time,15min.

D

Analytical Chemistry,Vol.xxx,No.xx,Month XX,XXXX

the nonspeci?c adsorption of Au-NP -aptamer conjugates on the nitrocellulose membrane during cell tests.After applying a sample solution on ANSB,the Au-NP -aptamer conjugates on the conjugate pad are rehydrated.The components (BSA,Tween-20,and sucrose)are dispersed in the sample solution and,migrating along the strip,will block the nitrocellulose membrane naturally without additional blocking steps.The buffer used to prepare the sample solutions also has a strong effect on the performance of ANSB.Four kinds of buffers,including 0.01M PBS containing 1%BSA (PBSB),0.01M PBS containing 0.1%Tween-20(PBST),0.1M Tris -HCl,and SSC buffers,were tested.Figure 3D presents the responses of ANSB with the sample solutions prepared with the above buffers.Since the best response of ANSB was obtained with PBSB,a 0.01M PBSB was used for the following experiments.

Analytical Performance.Under optimal experimental conditions,we examined the performance of ANSB with the sample solutions containing different amounts of Ramos cells.The visual judgment of the test line (color change of the test line)could be used for the qualitative detection of Ramos cells.Quantitative detections were performed by recording the intensities of the test lines with the portable strip reader.Figure 4A displays the typical photo images (left)and corresponding optical responses (right;the intensities of test line and control line)of ANSBs with the sample solutions containing different amounts of Ramos cells.For qualita-tive analysis (visual judgment),the red band in the test zone of ANSB was observed with as low as 4000Ramos cells in the sample solution (Figure 4A,curve b).The red bands appearing on the control zone of ANSBs indicated that the ANSBs were working properly.Well-de?ned peaks were observed with a portable strip reader,and the peak areas increased with the increase of target cell amount (Figure 4A,curves a -g).The resulting calibration plot (Figure 4B)of the peak areas versus the logarithm of Ramos cell number is linear over the 4×103to 2×105range and is suitable for quantitative work.The S-shaped curve of the calibration plot on a log -linear scale is due to saturation at high concentration or variations in aptamer -cell af?nity.The detection limit of 800Ramos cells (based on S/N )3)was estimated in connection with the 15min assay time.The speci?c response was coupled with high reproducibility.A series of measurements of 2×104Ramos cells with 8ANSBs yielded a reproducible signal with an RSD of 6.3%(data not shown).

Detection of Ramos Cells in Human Blood.To evaluate the feasibility of ANSB for the detection of cancer cells in biological ?uids,ANSB was used to detect Ramos cells in human blood.First we studied the matrix effect by adding different volumes of human blood in the sample solution.It was found there was no matrix effect on the responses of ANSB when the volume of added blood is less than 5μL (data not shown).However,a signi?cant decrease of the signal was observed after adding 10μL of blood.The signal would be masked in the presence of more blood because of the nonspeci?c adsorption of erythrocyte cells on the membrane.Therefore,5μL of human blood was used in the following experiments.The resulting calibration plot (data not shown)of the peak areas versus the logarithm of the number of the Ramos cells is linear over an 8×103to 4×105range and is suitable for quantitative work.The assay time with ANSB is less than that of most reported methods,which require 30min to several hours.32,33A series of measurements of Ramos cells with eight ANSBs yielded a reproducible signal with an RSD of 7.3%(data not

shown).

Figure 3.(A)Responses of different aptamer pair-based ANSBs;(B)effect of dispensing cycles of Au-NP -aptamer conjugates on the response of ANSB;(C)effect of nitrocellulose membranes on the response of ANSB;(D)effect of the buffers used to prepare sample solutions on the response of ANSB:amount of Ramos cells,8×104;volume of the sample solution,80μL;assay time,15min.

E

Analytical Chemistry,Vol.xxx,No.xx,Month XX,XXXX

CONCLUSIONS

We have successfully developed an ANSB for rapid,sensitive,and quantitative detection of cancer cells.Under optimal condi-tions,the ANSB was capable of detecting a minimum of 4000Ramos cells without instrumentation (visual detection)and 800Ramos cells with a portable strip reader within 15min.In comparison with our previous works based on ?uorescent nanoparticles,32a gold nanorods,32c and the micro?uidic channel 17in association with aptamer probes,ANSB offers a simple,rapid,and low-cost tool for both the qualitative and quantitative detection of cancer cells circulating in the bloodstream.ANSB shows great promise for ?eld use,as well as point-of-care cancer diagnosis and therapy.The adoption of multiple aptamers,which can bind speci?c cancer cells,would expand the capabilities of ANSB for

multiplex cancer cell detection.The sensitivity of ANSB has not met the requirement of detecting circulating tumor cells from solid tumors in general (found at very low concentrations 33).Further improvements in the sensitivity of ANSB could be achieved by using more sensitive detectors (?uorescence readers)and dye-doped polystyrene nanosphere or silica nanoparticle labels.ACKNOWLEDGMENT

G.L.acknowledges ?nancial support from the North Dakota Experimental Program to Stimulate Competitive Research (EPS-CoR)and new faculty startup funds of North Dakota State University.W.T.thanks NIH Grants for this work.

SUPPORTING INFORMATION AVAILABLE

Additional information as noted in text.This material is available free of charge via the Internet at https://www.doczj.com/doc/d73345042.html,.

Received for review August 21,2009.Accepted October 26,2009.

AC901889S

(32)(a)Smith,J.E.;Medley,C.D.;Tang,Z.W.;Shangguan,D.;Lofton,C.;

Tan,W.Anal.Chem.2007,79,3075–3082.(b)Medley,C.D.;Smith,J.E.;Tang,Z.;Wu,Y.;Bamrungsap,S.;Tan,W.Anal.Chem.2008,80,1067–1072.(c)Huang,Y.F.;Chang,H.T.;Tan,W.H.Anal.Chem.2008,80,567–572.

(33)Cristofanilli,M.;Budd,T.;Ellis,M.J.;Stopeck,A.;Matera,J.;Miller,C.;

Reuben,J.M.;Doyle,G.V.;Allard,W.J.;Terstappen,L.W.M.M.;Hayes,D.F.N.Engl.J.Med.2004,351(8),781–791

.

Figure 4.(A)Typical responses of ANSB with increasing amounts of Ramos cells.From a to g,the amounts of target cells are 0,4×103,8×103,2×104,4×104,8×104,2×105and (B)the resulting calibration curve.Other conditions are the same as those shown in Figure 2.

F Analytical Chemistry,Vol.xxx,No.xx,Month XX,XXXX

常温发黑液的配方资料讲解

常温发黑液的配方

常温发黑液的配方 一、常温发黑液的组成 ①主盐无论是硒化物系,还是非硒化物的常温发黑剂,Cu2+都是成膜的关键组分,最常用的为硫酸铜。 ②氧化剂在常温发黑剂中,必有氧化剂和铜盐、铁基体等参与氧化还原反应才能成膜,常用的有二氧化硒、亚硒酸等,此外还有硝酸、亚硝酸盐、硝酸盐等。 ③加速剂起催化作用,能提高反应成膜速度,最常用的为氯化镍、硫酸镍等。 ④络合剂主要作用是络合铜,控制其置换速度,以保障结合力、常用的有柠檬酸盐、酒石酸盐、氟化物、磺基水杨酸等。 ⑤稳定剂主要是维持发黑剂pH值稳定。从而使常温发黑操作正常稳定。常选材料有硼酸、磷酸、磷酸缓冲液、氨水、磷酸二氢盐等。 ⑥表面活性剂使基体表面润滑、发黑膜均匀一致,可消除发花、浮灰现象,常用的有OP乳化剂、十二烷基硫酸钠等。 二、钢铁常温发黑液具体配Fang 现根据各种杂志所刊发钢铁常温发黑论文资料,并依据我公司研究成果,公布以下具体配Fang,供进行此项研究者参考。 配Fang1: 硫酸铜4~8 g/L 二氧化硒4~8 g/L 磷酸盐7~15 g/L 硝酸盐2~4 g/L 柠檬酸盐2~4 g/L 稳定剂20 ml/L pH 2.0~2.5 时间3~5 min 配Fang2(武汉水运工程学院提供): 硫酸铜1~3 g/L 亚硒酸2~3 g/L 磷酸2~4 g/L 有机酸 1.0~1.5 g/L 十二烷基硫酸钠0.1~0.3 g/L 复合添加剂10~15 g/L pH 2~3 时间2~6 min

配Fang3(贵州航空发动机公司提供):硫酸铜3~7 g/L 硫酸镍2~3 g/L 乙二胺四乙酸二钠4~5 g/L 亚硒酸4~5 g/L 磷酸盐 2.0~3.0 g/L pH值 2.0~3.0 时间30~60 s 配Fang4(大庆石油学院提供): 硫酸铜 2.0~2.5 g/L 硝酸 1.0~2.0 ml/L 二氧化硒 2.5~3.0 g/L 磷酸 1.0~1.5 ml/L 对苯二酚0.8~1.2 g/L 发黑促进剂 1.5~2.0 g/L 乙二胺四乙酸二钠0.5~0.8 g/L OP-10乳化剂适量 配Fang5(南方轻工研究所提供): 硝酸铜4~6 g/L 亚硒酸5~10 g/L 磷酸5~10 ml/L 氯化钠1~2 g/L pH 1.1~1.2 配Fang6(河南中原机械厂提供): 硫酸铜2~4 g/L 二氧化硒 4 g/L 磷酸10~15 g/L 氯化镍10~15 g/L 酒石酸钾钠 2 g/L 柠檬酸钾 2 g/L 时间3~6 min 配Fang7(杭州大学化学系提供): 硫酸铜(CuSO 4.5H 2 O) 3 g/L 磷酸缓冲液(H 3PO 4 .KH 2 PO 4 ) 4 g/L 亚硒酸(H 2SeO 3 ) 1 g/L 添加剂 3 g/L 时间1~3 min 配Fang8:

外墙涂料配方设计的基本原则外墙涂料是外用建筑涂料中用量最大的涂料品种

外墙涂料配方设计的基本原则外墙涂料是外用建筑涂料中用量最大的涂料品种。由于直接处于大气环境中,自施工成膜开始,即受到大气和自然界中各种因素的影响,因而对外墙涂料的性能要求是严格的,尤其是耐久性和耐污染性更是首当其冲。外墙涂料的这一性能要求决定了其配方设计的基本原则,这就是在满足对比率(遮盖力)要求的前提下其PVC值小于临界PVC(CPVC)值。在涂料的PVC 值高于其CPVC值情况下,涂料基料无法包覆所有的颜料颗粒,而只能使其松散地存在于涂膜中,在颜料颗粒之间存在有孔隙,即涂膜中存在孔隙,从而使涂膜的质量变差。这种情况对于涂膜的耐久性和耐污染性的影响尤为严重。当涂料的PVC值为零时,是只有基料和助剂组成的清漆(透明涂料)。随着其中颜料、填料的数量的不断增大,涂料的PVC值逐渐增大,涂料的某些性能随之降低。因而,要保证涂料满足对比率要求,就要在涂料中使用一定数量的颜料、填料,而为了保证涂料的PVC值不超过CPVC值,则基料的用量必须保持在一定水平。这样,就能够保证涂料具有足够的乳液的用量。当然,涂料的PVC值大于其CPVC值,也能够生产具有一定性能要求的涂料。但是,由于涂料的PVC 值超过其CPVC值时,涂料的主要性能会迅速劣化,因而笔者认为使用PVC值高于CPVC值的配方生产外墙涂料在多数情况下是不适当的,对于高耐久性要求的涂料尤其如此。在涂料的PVC值大于其CPVC值的情况下只能够得到性能一般的涂料,很难得到高性能的外墙涂料。使涂料的PVC值大于其CPVC值的方法除了保证基料的用量以外,还要使用高密度的颜料、填料。例如,在保持基料不变的情况下,使用重质碳酸钙、轻质碳酸钙、高岭土等填料时,由于这几种填料的密度都很低,在相同重量下占据更多的体积,有可能使涂料的PVC值大于其CPVC值;而将这几种填料换成等重量的重晶石粉或者沉淀硫酸钡时,所占据的体积就会小得多,涂料的PVC值就不会超过其CPVC值。当然,使用等重量的钛白粉也会具有同样的结果,但成本提高,而前者不会提高涂料的成本。 3 涂料配方应当包含的内容目前我国建筑涂料的生产工艺基本上是物理混合以及颜料、填料的分散过程,不涉及化学反应。这种情况使得涂料配方对于涂料的生产具有非常重要的意义。直接决定涂料的生产过程和产品的质量。一个能够供实际生产使用的涂料配方,并不是仅仅是原材料名称和用量,而是需要更详细的内容,即除了原材料的实际名称、功能或作用提示、生产厂商、商品型号、技术要求和配比方式(通常使用的配比方式有质量比、重量比、体积比等)、用量等要素外,还应当包含:①配方目标涂料的名称和配方的使用条件;②基本的配方参数,例如涂料配方的PVC值、颜料-基料比,涂料分散介质的pH值范围以及涂料的干密度、湿密度等;③配方的使用说明,例如对于溶剂型涂料,应当给出生产过程中溶剂损耗的补充说明;对于硅溶胶-合成树脂乳液复合涂料,应当给出硅溶胶加料前预分散物料的pH值范围等;对于合成树脂乳液涂料,应当给出某些助剂的加入条件(例如成膜助剂的加入条件、乳液型增稠剂的加入条件等)的说明和④某些特殊说明。这样的配方才是完善的、具有使用价值的。通常书籍和资料中给出的仅包含原材料名称(甚至连确切的原材料名称也没有给出)和较大范围用量的配方一般仅具有参考意义。 4 外墙涂料配方需要调整的几种情况通常情况下,可能鉴于涂料耐久性要求、满足配色需要、对涂料耐沾污性要求的提高和使用场合的变化等而需要对外墙涂料的配方进行调整。 4.1 鉴于涂料耐久性要求鉴于涂料耐久性要求而对涂料配方进行调整的情况十分常见。这里的配方调整,是指同一类涂料(例如合成树脂乳液涂料),因对涂料耐用年限的不同而进行适当调整。从这一意义上来说,可以将外墙涂料分成表1所示的几类而考虑其配方调整的问题。表1 从耐用年限不同考虑配方调整而对外墙涂料的分类分类类别分类类别主要成膜物质主要涂料种类耐久性特征合成树脂乳液类聚丙烯酸酯乳液、苯乙烯-丙烯酸酯共聚乳液、有机硅-丙烯酸酯共聚乳液、有机氟改性丙烯酸酯乳液等普通外墙涂料(乳胶漆、有光外墙涂料、弹性外墙涂料等通常因涂料成膜物质的不同,耐久性可产生较大差异。在相同配方条件下耐久性高、低的顺序大致为:有机氟改性丙烯酸酯乳液涂料>有机硅-丙烯酸酯乳液复合涂料>苯丙乳液涂料溶剂型外墙涂料聚丙烯酸酯树脂、苯乙烯-丙烯酸酯共聚树脂、有机硅-丙烯酸酯共聚树脂、聚氨酯-丙烯酸酯共聚树脂、氟树脂等半光外墙涂料、金属光泽外墙涂料、有光外墙涂料等通常因涂料种类的不同,耐久性可产生较大差异。在相同配方条件下耐久性高、低的顺序大致为:氟树脂涂料>聚氨酯-丙烯酸酯复合涂料>有机硅-丙烯酸酯复合涂料>聚丙烯酸酯涂料>苯丙树脂涂料有机-无机复合类硅溶胶-苯丙乳

发黑配方

一,出油污 1.碳酸钠 7%,氢氧化钠 3%.磷酸钠 3%,硅酸钠 2%。水 85% 2,溶液加热值 70~80 摄氏度,浸泡 30 分钟左右二,酸洗 ~15%硫酸溶液 2,溶液加热之 70~80 摄氏度,浸泡 30 分钟左右三,反黑 1、加入发黑烟(加热型) 1: 1 比例兑水 2、将溶液加热至 130~145 摄氏度, chuli50~80 分钟四、皂化 1、方:肥皂水溶液( 30~50g/L ) 2、加热到 80~100 摄氏度,处理十分钟左右。 常温发黑液的方(转载) 常温发黑液的组成 ①主盐无论是硒化物系,还是非硒化物的常温发黑剂, Cu2+都是成膜的关键组分,最常用的为硫酸铜。 ②氧化剂在常温发黑剂中,必有氧化剂和铜盐、铁基体等参与氧化还原反应才能成膜,常用的有二氧化硒、亚硒酸等,此外还有硝酸、亚硝酸盐、硝酸盐等。 ③加速剂起催化作用,能提高反应成膜速度,最常用的为氯化镍、硫酸镍等。 ④络合剂主要作用是络合铜,控制其置换速度,以保障结合力、常用的有柠檬酸盐、酒石酸盐、氟化物、磺基水杨酸等。 ⑤稳定剂主要是维持发黑剂 pH 值稳定。从而使常温发黑操作正常稳定。常选材料有硼酸、磷酸、磷酸缓冲液、氨水、磷酸二氢盐等。 ⑥表面活性剂使基体表面润滑、发黑膜均匀一致,可消除发花、浮灰现象,常用的有 OP 乳化剂、十二烷基硫酸钠等。 4 钢铁常温发黑液具体方现根据各种杂志所刊发钢铁常温发黑论文资料,并依据我公司研究成果,公布以下具体方,供进行此项研究者参考 配方 1: 硫酸铜4~ 8 g/L 二氧化硒4~ 8 g/L 磷酸盐7~ 15 g/L 硝酸盐2~ 4 g/L 柠檬酸盐2~ 4 g/L 稳定剂20 ml/L pH 时间3~ 5 min 配方 2 硫酸铜1~ 3 g/L 亚硒酸2~ 3 g/L

常温发黑液的使用技巧

常温发黑液的使用技巧 常温发黑是近年来推广普及的表面处理新技术。由于它的诸多优点,一问世即受到人们的关注。它使用简单、不须加温(室温使用)、工作效率高、无三废排放、可有效地改善工作条件,经济实用、不需专用设备、特别适用于小批、零星工件的发黑处理。因此深受广大用户的欢迎。常温发黑也称‘常温发蓝’这是人们习惯上的称呼,处理后的工件为正黑色。正确使用药液处理的工件油黑发亮,药膜坚固,摩擦不掉,长期不锈。达到令人满意的效果。 但是,在实际使用中,由于用户对此产品了解不足,使用不当,有时却难以达到令人满意的程度。任何工作都有技巧,它来自对此事物的较深刻的认识和了解。常温发黑液的使用也是如此,如使用不当就会使它的功效降低,甚至达不到工艺要求。因此,深入了解其性能,正确使用常温发黑液就成了普及新技术的重要问题。 常温发黑液使用中最关键的环节是工件的预先清洗,工件在发黑前必须用除油清洗剂进行除油清洗(批量生产时可采用碱性煮沸除油),注意清洗液表面漂浮的油膜不要在工件取出时再次污染工件。然后用浓度不低于15%的盐酸除锈,(看似无锈的工件也应在盐酸中进行表面‘活化’)不能草率了事。否则会影响发黑效果。 发黑中的问题大致有以下几种: 1、花斑现象; 2、膜层不牢; 3、‘变色’问题; 4、药液失效快。 为了使大家对此新工艺有较多了解,使这一简便易行的新工艺迅速普及。现就北京光华热化材料厂生产的常温发黑液的使用技巧加以介绍。该常温发黑液由两种液体配合而成,溶液呈弱酸性。正确使用可使工件表面形成坚固的黑色氧化膜,其坚固程度可与传统的‘煮黑’工艺相媲美。 ??一、避免出现花斑现象: 在常温发黑中较常遇到的问题就是工件表面在发黑后颜色不匀,严重的甚至有明显的花斑现象。此现象主要是由以下几种原因造成的: 1.工件表面预处理不好,没有彻底清洗干净。有残留的油渍或锈斑。 解决此现象的办法是:在发黑前对工件进行彻底的除油清洗。并注意避免二次污染,不要带油污手套拿取清洗后的工件。 二是用盐酸清除工件表面的锈迹和氧化层,使表面活化。在水洗后立即进行发黑处理。 (建议用15%以上浓度的盐酸水溶液清洗工件,市售工业盐酸浓度一般为30%左右) 2.在发黑过程中工件紧压在一起,妨碍了药液与工件表面的均匀接触。也易造成花斑现象。 解决此问题的办法是尽量使工件表面都能均匀接触药液。对于较小的不宜分别吊装的工件可用网篮盛装,在发黑处理中随时抖动网篮,尽量使全部工件都能均匀接触药液。 3.在刚刚发黑后的工件有轻微发花时,可不作处理,本药液有自身修复功能,工件放置24小时后颜色会自动变得均匀。对严重花斑的工件须重新进行脱膜处理后酸洗,才能再次进行补救发黑处理。 二、让发黑膜更牢固 在常温发黑液刚刚问世时,发黑膜不牢是此类产品的通病。也是此工艺产品最难解决的重点问题。工件发黑后表面的发黑膜附着力较差,严重的用手一摩擦即出现脱落现象。致使许多试验过此类产品的人一提起此类产品即摇头。北京光华热化材料厂经过几年的不断研究、改进,目前出产的第四代常温发黑液已妥善解决了此问题。但如果使用不当,有时仍会出现。它出现的原因有以下几种: 1.发黑膜可摩擦掉,擦后工件颜色明显变浅。此现象是由于工件的除油清洗不彻底,或存在二次污染现象。机加工的工件都必须进行清洗(因机床润滑液中即含有油脂)。砂纸打磨无法代替酸洗除锈。 2.发黑膜可摩擦掉,擦后工件颜色仍是黑色。是因发黑处理时间过长,致使工件表面的发黑层过厚。形成一个发黑浮层,故附着力差。 解决办法是:在工件达到要求黑色时及时取出工件,工件在脱离药液后的一段时间内会继续反应使工件表面进一步黑化。这样既节约时间又可增长药液的使用寿命。 3.工件酸洗后水洗不彻底,将残余酸液带到发黑液中,造成反应过快。严重时会影响药液使用。 解决办法是:工件在酸洗后要用水冲洗干净。再进行发黑处理。除油后水洗、酸洗后水洗、发黑后水洗不要用同一个水池,并尽量用活水冲洗。 4.发黑工件表面有浮锈也是造成发黑膜不牢的原因之一,工件在酸洗、水洗后应立即进行发黑。

涂料配方设计

1,介绍: 粉末涂料由于其具有的无溶剂、施工简单、利用率高等特点而在全球市场高速增长,有机硅耐高温粉末涂料在美国八十年代在烤炉方面首先得到应用,而在九十年代中期快速在欧美市场快速增长。随着中国逐渐成为全球的灶具、烤炉等主要的生产基地。市场对耐高温粉末涂料的需要也日益增长。本文对耐高温粉末涂料的配方设计、问题处理、生产工艺等进行了介绍。 2,原理及性能介绍 2.1 原理 有机硅树脂的反应机理都是非常类似,其自身可以交联。在高温下的固化反应式如下: ~Si - OH + HO - Si ~ - - - > ~Si - O - Si ~ + H2O ~Si - OR + HO - Si ~ - - - > ~Si - O - Si ~ +ROH 此外,有机硅树脂中侧基不同的有机基团的热稳定性也有所不同:苯基〉甲基〉乙基〉丙基〉丁基〉己基 通常,有机硅树脂的固化温度不能低于200度。而270 和 350 °C之间的温度范围对于有机硅耐高温粉末涂料来说是个比较敏感的范围点。因为在此时有机硅组分还没有完全烧结完成,而有机组分已经开始燃烧分解。 此外,由于低Tg的有机硅树脂在储存和生产运输过程中遇到的结块问题使开发高Tg(玻璃化温度)的有机硅树脂也成为必然。现在,德国瓦克化学公司已经推出了Tg 〉65 的应用于耐高温粉末涂料的有机硅树脂,成功解决了高温天气下的运输、储存问题。 2.2 有机硅粉末涂料应该具有的性能? 与有机树脂不同的是,与适当的颜、填料配合使用的有机硅树脂应具有优秀的长期耐热性(200 - 650 °C)。 此外,对于食品接触的场合,有机硅树脂还应符合FDA 175.300 and BGVV – XV。良好的冷热交变性。通过把热板直接浸入冷水中,而涂膜不会损坏。 3.配方设计 3.1 基料的选择: 有机硅树脂是耐高温粉末涂料的必不可少的基料,有机硅树脂可以单独作为基料或与聚酯、环氧树脂拼用提高涂膜的耐高温性。同时配方中也应选用耐高温的无机颜料与填料以及适当的助剂。目前用于耐高温粉末涂料的有机硅树脂主要分为以下两种:

常温发黑处理工艺

常温发黑处理工艺 本发明主要是涉及一种常温发黑处理工艺,主要由以下工艺步骤 完成:1)清洗;2)脱脂:工件必须完全浸入脱脂液中;脱脂液浓度ph 值12-14,处理时间10-30min,每过3-5分钟上下抖动几次,药液浓度低于ph12时补充脱脂粉;3)水洗;4)酸洗:酸洗液浓度ph值2-4, 处理时间5-10min; 5)水洗;6)发黑:池液浓度ph值2.5-3.5,处理时间10-12min; 7)水洗;8)吹干;9)上油。本发明有益的效果是:1?发 黑安全不用电,用碱性高温发黑需100%用电。2?提高工效:共需1-2 分钟。3?发黑成本低,设备简单,操作方便;对发黑时间作了严格的控制。4.工艺适应性强: 金属材料发黑工艺 钢制件的表面发黑处理,也有被称之为发蓝的。 发黑处理现在常用的方法有传统的碱性加温发黑和出现较晚的常温 发黑两种。 但常温发黑工艺对于低碳钢的效果不太好。 A3钢用碱性发黑好一些。 碱性发黑细分出来,又有一次发黑和两次发黑的区别。 发黑液的主要成分是氢氧化钠和亚硝酸钠。 发黑时所需温度的宽容度较大,大概在135摄氏度到155摄氏度之间都可以得到不错的表面,只是所需时间有些长短而已。

实际操作中,需要注意的是工件发黑前除锈和除油的质量,以及发黑后的钝化浸油。发黑质量的好坏往往因这些工序而变化。 金属“发蓝”药液 采用碱性氧化法或酸性氧化法;使金属表面形成一层氧化膜,以防止金属表面被腐蚀,此处理过程称为“发蓝”。 黑色金属表面经“发蓝”处理后所形成的氧化膜,其外层主要是四氧 化三铁,内层为氧化亚铁。 一、碱性氧化法“发蓝”药液 1. 配方:硝酸钠50?100克氢氧化钠600?700克亚硝酸钠100?200克水1000克 2. 制法:按配方计量后,在搅拌条件下,依次把各料加入其中,溶解,混合均匀即可。 3. 说明: (1)金属表面务必洗净和干燥以后,才能进行“发篮”处理。 (2)金属器件进行“发蓝”处理条件与金属中的含碳量有关,“发蓝” 药液温度及金属器件在其中的处理时间可参考下表。金属中含碳量%工作温度(C )处理时间(分)开始终止>0.0-300.5-0.0-50<0.4142-145153- 15540-60 合金钢 142-145153-15560-90

最新常温发黑液的配方

常温发黑液的配方 1 2 一、常温发黑液的组成 3 ①主盐无论是硒化物系,还是非硒化物的常温发黑剂,Cu2+都是成膜的关键4 组分,最常用的为硫酸铜。 5 ②氧化剂在常温发黑剂中,必有氧化剂和铜盐、铁基体等参与氧化还原反应6 才能成膜,常用的有二氧化硒、亚硒酸等,此外还有硝酸、亚硝酸盐、硝酸盐等。 7 ③加速剂起催化作用,能提高反应成膜速度,最常用的为氯化镍、硫酸镍等。8 9 ④络合剂主要作用是络合铜,控制其置换速度,以保障结合力、常用的有柠 10 檬酸盐、酒石酸盐、氟化物、磺基水杨酸等。 11 ⑤稳定剂主要是维持发黑剂pH值稳定。从而使常温发黑操作正常稳定。常选 12 材料有硼酸、磷酸、磷酸缓冲液、氨水、磷酸二氢盐等。 13 ⑥表面活性剂使基体表面润滑、发黑膜均匀一致,可消除发花、浮灰现象, 14 常用的有OP乳化剂、十二烷基硫酸钠等。 15 二、钢铁常温发黑液具体配Fang 16 现根据各种杂志所刊发钢铁常温发黑论文资料,并依据我公司研究成果,公布17 以下具体配Fang,供进行此项研究者参考。 18

配Fang1: 19 硫酸铜4~8 g/L 20 二氧化硒4~8 g/L 21 磷酸盐7~15 g/L 22 硝酸盐2~4 g/L 23 柠檬酸盐2~4 g/L 24 稳定剂20 ml/L 25 pH 2.0~2.5 26 时间3~5 min 27 配Fang2(武汉水运工程学院提供): 28 硫酸铜1~3 g/L 29 亚硒酸2~3 g/L 30 磷酸2~4 g/L 31 有机酸 1.0~1.5 g/L 32 十二烷基硫酸钠0.1~0.3 g/L 33 复合添加剂10~15 g/L 34

钢铁常温发黑剂工艺流程、使用方法Word版

GT-FH802钢铁常温发黑剂 长沙固特瑞—专注金属表面处理 我公司改进研制成功的GT-FH802钢铁常温发黑剂具有溶液稳定、发黑时间短色泽适宜、使用工艺方便简单,原材料充足、成本低等优点,特别是发黑膜层的附着力,抗腐蚀能力明显优于原产品。它具有无污染、省能源、无钢型选择性等特点。为解决长期存在的碱性高温发黑污染大、耗能高,选择钢性等问题开辟了新的途径,为各厂家钢铁制品发黑处理提供了理想的先进工艺。本产品广泛用于机械零件、标准件、工艺产品、弹簧等工业部门的钢铁零部件表面发黑装饰及防护处理。 主要特点:(颜色黑,附着力好,防腐性高,做工时间短) 1、节约能源。发黑完全不需用电,同碱性高温发黑比,节电100%。 2、提高工效。碱性发黑需40-80分钟,本常温发黑剂只需2-5分钟。 3、发黑成本低。设备简单、只需塑料、陶瓷槽、盆即可,而且操作容易。 4、工艺适应性强。对钢性无选择,含碳量不同和表面加工状态不同的钢铁零部件均能获得整体表面颜色的一致效果,而且发黑后的工件,既可脱水油封闭;又可封闭剂封闭。 5.附着力牢固、防腐性强、发黑后工件表面稳定,室内环境可有效防锈达2年。 6.不会影响工件尺寸,黑膜层仅为1.0微米至3微米之间的厚度。不须外协加工,节省来回运输交通、货物装卸等时间及金钱,或因此而引起的工件碰伤和时间上不必要的延误。 主要技术指标 1、理化指标: 本品外观为蓝绿色透明液体,不燃不爆、不挥发、不腐蚀、运输安全,长期贮存化学性能稳定。比重:1.04±0.02 PH值:2~2.5 发黑量:60~150公斤/升(3~8M2)。 2、耐蚀性: 经机电部电镀产品质量监督检测中心检测结果为: ⑴、3%CuSO4 ·5H2 O点滴,30秒符合标准; ⑵、20%醋酸点滴:10分钟符合标准; ⑶、5%草酸点滴:8分钟符合标准。 3、耐磨性: 用NOS-ISO壹型磨耗试验机,测试符合Q/OJS0001-1995标准 4、外观和耐蚀性符合GB/T15519-2002化学转化膜-钢铁黑色氧化膜(国家标准)、WJ535-82(兵器工业标准)和MID-DLT-13924D标准。(美国国防部军标) 使用方法: 钢铁常温发黑作为一种简单易行、节能、高效、无污染的新工艺,深受表面处理界及热处理界的欢迎。钢铁常温发黑处理简单的原则:高质量的发黑剂+正确处理工艺=优质产品+高效益。全部工艺流程可以概括为: 前处理—常温发黑—后处理三个阶段

涂料配方设计原理

水溶性醇酸树脂综述 1 概述 醇酸树脂是美国通用电气公司Kienle于1927年提出的,它是以多元醇、多元酸以及脂肪酸为主要原料,通过缩聚反应而制得的一种聚合物.由于合成技术成熟、原料易得、树脂涂膜综合性能好,醇酸树脂已成为合成树脂中用量最大、用途最广的品种之一?但是,同其它溶剂型涂料一样,传统的醇酸树脂涂料含有大量溶剂(质量比大于40 %),在生产施工过程中会严重危害环境和操作人员的身体健康?近年来,世界各国环保法规日益严格,传统的溶剂型涂料受到越来越大的挑战,涂料的水性化、高固体化趋势日益明晰. 水溶性涂料是在成膜聚合物中引进亲水的或水可增溶的基团,使其成为可以水为溶解介质的一种涂料,它是20世纪60年代发展起来的一类新型的低污染、省能源、省资源涂料?由于其优点明显,涂料水溶性的研究应用已引起了广泛的关注并取得了重要进展.水溶性醇酸树脂涂料是新的发展趋势,得到了大量的研究开发. 2 水溶性醇酸树脂涂料的研究现状 2. 1 合成树脂的原料 用于合成醇酸树脂的原料有:植物油或脂肪酸、多元醇、多元酸、共溶剂和 中和剂等.各种原料的作用不同,对水溶性醇酸树脂性能的影响也不同. 植物油或脂肪酸合成醇酸树脂常用的植物油有豆油、亚麻油、红花油、(氢化或脱水)蓖麻油、葵花籽油、桐油、椰子油等.其中蓖麻油、氢化蓖麻油合成的醇酸树脂水溶性最好,椰子油次之,脱水蓖麻油、豆油、亚麻油较差. 多元醇常用于合成醇酸树脂的多元醇有甘油、季戊四醇和三羟甲基丙烷. 由甘油制备的醇酸树脂水溶性、干率和树脂的稳定性较差.季戊四醇反应较甘油活泼,一般与二元醇或三元醇配合使用,使用时要遵循“多元醇摩尔数大于多元酸摩尔数”的规则.三羟甲基丙烷形成的树脂的水解稳定性较甘油或季戊四

发黑配方

发蓝 钢制件的表面发黑处理,也有被称之为发蓝的。 发黑处理现在常用的方法有传统的碱性加温发黑和出现较晚的常温发黑两种。 但常温发黑工艺对于低碳钢的效果不太好。 A3钢用碱性发黑好一些。 碱性发黑细分出来,又有一次发黑和两次发黑的区别。 发黑液的主要成分是氢氧化钠和亚硝酸钠。 发黑时所需温度的宽容度较大,大概在135摄氏度到155摄氏度之间都可以得到不错的表面,只是所需时间有些长短而已。 实际操作中,需要注意的是工件发黑前除锈和除油的质量,以及发黑后的钝化浸油。发黑质量的好坏往往因这些工序而变化。 金属“发蓝”药液 采用碱性氧化法或酸性氧化法;使金属表面形成一层氧化膜,以防止金属表面被腐蚀,此处理过程称为“发蓝”。 黑色金属表面经“发蓝”处理后所形成的氧化膜,其外层主要是四氧化三铁,内层为氧化亚铁。 一、碱性氧化法“发蓝”药液 1.配方:硝酸钠50~100克氢氧化钠600~700克亚硝酸钠100~200克水1000克。

2.制法:按配方计量后,在搅拌条件下,依次把各料加入其中,溶解,混合均匀即可。 3.说明: (1)金属表面务必洗净和干燥以后,才能进行“发篮”处理。(2)金属器件进行“发蓝”处理条件与金属中的含碳量有关,“发蓝”药液温度及金属器件在其中的处理时间可参考下 表。金属中含碳量%工作温度(℃)处理时间(分)开 始终 止>0.7135-13714310-300.5-0.7135-14015030-5 0<0.4142-145153-15540-60 合金钢142-145153-15560-90 (3)每隔一星期左右按期分析溶液中硝酸钠、亚硝酸钠和氢氧化钠的含量,以便及时补充有关成分。一般使用半年后就 应更换全部溶液。 (4)金属“发蓝”处理后,最好用热肥皂水漂洗数分钟,再用冷水冲洗。然后,又用热水冲洗,吹于。 二、酸性氧化法“发蓝”药液 1.配方:磷酸3~10克硝酸钙80~100克过氧化锰10~15克水1000克 2.制法:按配方计量后,在不断搅拌条件下,依次把磷酸、过氧化锰和硝酸钙加入其中,溶解,混合均匀即可。

涂料配方设计原理完整版

涂料配方设计原理 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

水溶性醇酸树脂综述 1概述 醇酸树脂是美国通用电气公司Kienle于1927年提出的,它是以多元醇、多元酸以 及脂肪酸为主要原料,通过缩聚反应而制得的一种聚合物.由于合成技术成熟、原料易得、树脂涂膜综合性能好,醇酸树脂已成为合成树脂中用量最大、用途最广的品种之一.但是,同其它溶剂型涂料一样,传统的醇酸树脂涂料含有大量溶剂(质量比大于40%),在生产施工过程中会严重危害环境和操作人员的身体健康.近年来,世界各国环保法规日益严格,传统的溶剂型涂料受到越来越大的挑战,涂料的水性化、高固体化趋势日益明晰. 水溶性涂料是在成膜聚合物中引进亲水的或水可增溶的基团,使其成为可以水为溶解 介质的一种涂料,它是20世纪60年代发展起来的一类新型的低污染、省能源、省资源 涂料.由于其优点明显,涂料水溶性的研究应用已引起了广泛的关注并取得了重要进展.水溶性醇酸树脂涂料是新的发展趋势,得到了大量的研究开发. 2 水溶性醇酸树脂涂料的研究现状 合成树脂的原料 用于合成醇酸树脂的原料有:植物油或脂肪酸、多元醇、多元酸、共溶剂和中和剂等.各种原料的作用不同,对水溶性醇酸树脂性能的影响也不同. 植物油或脂肪酸合成醇酸树脂常用的植物油有豆油、亚麻油、红花油、(氢化 或脱水)蓖麻油、葵花籽油、桐油、椰子油等.其中蓖麻油、氢化蓖麻油合成的醇酸树脂水溶性最好,椰子油次之,脱水蓖麻油、豆油、亚麻油较差. 多元醇常用于合成醇酸树脂的多元醇有甘油、季戊四醇和三羟甲基丙烷.由甘 油制备的醇酸树脂水溶性、干率和树脂的稳定性较差.季戊四醇反应较甘油活泼,一般与二元醇或三元醇配合使用,使用时要遵循“多元醇摩尔数大于多元酸摩尔数”的规则.三羟甲基丙烷形成的树脂的水解稳定性较甘油或季戊四醇形成的醇酸树脂有明显 提高. 多元酸常用于合成醇酸树脂的多元酸有邻苯二甲酸或其酸酐(苯酐)、间苯二甲酸、己二酸、马来酸、偏苯三酸等.苯酐价格便宜,酯化反应温度低,反应平稳易控制,但它容易形成半酯使树脂相对分子量降低,进而导致涂膜干燥时间延长,硬度降低.采

发黑液的使用方法及操作流程

------xx筑xx技术有限公司 使用方法: 钢铁常温发黑作为一种简单易行、节能、高效、无污染的新工艺,深受表面处理界及热处理界的欢迎。钢铁常温发黑处理简单的原则: 高质量的发黑剂+正确处理工艺=优质产品+高效益。全部工艺流程可以概括为: 前处理—常温发黑—后处理三个阶段 一.前处理工艺 包括除油和除锈活化两道工序。在具有优质发黑剂的前提下,这是常温发黑成败的关键,总的要求是被处理件除油务必彻底,表面活化要好。前者一般都比较重视,而对表面活化往往重视不够,可以肯定活化程度与膜的结合力成正比。针对目前用户的实际情况,我们推荐以下三种工艺流程可供选择: 流程一: GT-FH842高效除油剂中温除油→水洗→水漂洗→常温GT-FH822去锈活化剂活化2-15分钟(氧化皮较厚的零件,可在180-250克/升加热的中去锈。)→水洗→水漂洗→GT-FH802常温钢铁发黑剂(2-5分钟)→水冲洗(1分钟)→浸GT-FX238脱水防锈油(5分钟) (此流程适合油污不多,无厚氧化皮的零件,各道工序处理时间到位,质量稳定,成本低。)流程二: 喷砂→水洗→GT-FH802常温钢铁发黑剂 (此工艺流程适合零件表面有很厚氧化皮、厚油污及难以用酸活化的高硅钢、高锰钢、高铬钢等零件。喷砂机可选用密封式或水性喷砂机,适用于有喷砂设备的企业,无酸、碱废液排放,质量优于化学前处理,膜层牢固可靠。适

用于有喷砂设备的企业无酸、碱废液排放,质量优于化学前处理,膜层牢固可靠。) 流程三: 超声波除油→水洗→除锈活化→水洗→GT-FH802常温钢铁发黑剂 (适用于有深孔、盲孔和形状复杂的零件。) 二、常温发黑处理 经前处理并清洗干净的工件即可转入常温发黑处理: 1、配槽液: GT-FH802常温钢铁发黑剂为浓缩液加2-4倍清洁水为工作液,工作液的PH 值保持为2~ 2.5 2、发黑: 工件进入常温发黑工作液后1分钟,可将工件上下抖动数次,使表面充分接触发黑液,发黑时间2~5分钟,掌握好发黑时间是得到优质发黑膜的关键,不同的材质,不同的工作液浓度发黑时间不一样,判断的依据: 视工件表面有一层均匀黑色膜即可。发黑完毕后,在空气中停留1~2分钟,再经水洗,可充分利用表面的残液,减少发黑液的消耗,降低成本。 3、槽液调整: 发黑液在使用中应注意检查PH值,当PH值超过 2.5时应加以调整,方法为先将溶液过滤去沉淀,再加GT-FH802常温钢铁发黑剂浓缩液,使PH值恢复到2~

涂料配方设计原理

涂料配方设计原理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

水溶性醇酸树脂综述 1 概述 醇酸树脂是美国通用电气公司Kienle 于1927 年提出的 ,它是以多元醇、多元酸以 及脂肪酸为主要原料,通过缩聚反应而制得的一种聚合物 . 由于合成技术成熟、原料易得、树脂涂膜综合性能好,醇酸树脂已成为合成树脂中用量最大、用途最广的品种之一. 但是,同其它溶剂型涂料一样,传统的醇酸树脂涂料含有大量溶剂(质量比大于40 %) ,在生产施工过程中会严重危害环境和操作人员的身体健康. 近年来,世界各国环保法规日益严格,传统的溶剂型涂料受到越来越大的挑战,涂料的水性化、高固体化趋势日益明晰. 水溶性涂料是在成膜聚合物中引进亲水的或水可增溶的基团,使其成为可以水为溶解介质的一种涂料,它是20 世纪60年代发展起来的一类新型的低污染、省能源、省资 源涂料. 由于其优点明显,涂料水溶性的研究应用已引起了广泛的关注并取得了重要进展. 水溶性醇酸树脂涂料是新的发展趋势,得到了大量的研究开发 . 2 水溶性醇酸树脂涂料的研究现状 2. 1 合成树脂的原料 用于合成醇酸树脂的原料有:植物油或脂肪酸、多元醇、多元酸、共溶剂和中和剂等. 各种原料的作用不同,对水溶性醇酸树脂性能的影响也不同. 植物油或脂肪酸合成醇酸树脂常用的植物油有豆油、亚麻油、红花油、(氢化 或脱水) 蓖麻油、葵花籽油、桐油、椰子油等.其中蓖麻油、氢化蓖麻油合成的醇酸树脂水溶性最好,椰子油次之,脱水蓖麻油、豆油、亚麻油较差. 多元醇常用于合成醇酸树脂的多元醇有甘油、季戊四醇和三羟甲基丙烷. 由甘 油制备的醇酸树脂水溶性、干率和树脂的稳定性较差. 季戊四醇反应较甘油活泼,一般与二元醇或三元醇配合使用,使用时要遵循“多元醇摩尔数大于多元酸摩尔数”的规则. 三羟甲基丙烷形成的树脂的水解稳定性较甘油或季戊四醇形成的醇酸树脂有明显提高. 多元酸常用于合成醇酸树脂的多元酸有邻苯二甲酸或其酸酐(苯酐) 、间苯二甲酸、己二酸、马来酸、偏苯三酸等. 苯酐价格便宜,酯化反应温度低,反应平稳易控制,但它容易形成半酯使树脂相对分子量降低,进而导致涂膜干燥时间延长,硬度降低. 采用间

钢铁常温发黑液具体配方

钢铁常温发黑液具体配方 现根据各种杂志所刊发钢铁常温发黑论文资料,并依据我公司研究成果,公布以下具体配方,供进行此项研究者参考。 配方1: 硫酸铜4~8 g/L 二氧化硒4~8 g/L 磷酸盐7~15 g/L 硝酸盐2~4 g/L 柠檬酸盐2~4 g/L 稳定剂20 ml/L pH 2.0~2.5 时间3~5 min 配方2(武汉水运工程学院提供): 硫酸铜1~3 g/L 亚硒酸2~3 g/L 磷酸2~4 g/L 有机酸 1.0~1.5 g/L 十二烷基硫酸钠0.1~0.3 g/L 复合添加剂10~15 g/L pH2~3 时间2~6 min 配方3(贵州航空发动机公司提供): 硫酸铜3~7 g/L 硫酸镍2~3 g/L 乙二胺四乙酸二钠4~5 g/L 亚硒酸4~5 g/L 磷酸盐 2.0~3.0 g/L pH值 2.0~3.0 时间30~60 s 配方4(大庆石油学院提供): 硫酸铜 2.0~2.5 g/L 硝酸 1.0~2.0 ml/L 二氧化硒 2.5~3.0 g/L 磷酸 1.0~1.5 ml/L 对苯二酚0.8~1.2 g/L 发黑促进剂 1.5~2.0 g/L 乙二胺四乙酸二钠0.5~0.8 g/L OP-10乳化剂适量 配方5(南方轻工研究所提供): 硝酸铜4~6 g/L 亚硒酸5~10 g/L 磷酸5~10 ml/L 氯化钠1~2 g/L pH 1.1~1.2

配方6(河南中原机械厂提供): 硫酸铜2~4 g/L 二氧化硒 4 g/L 磷酸10~15 g/L 氯化镍10~15 g/L 酒石酸钾钠 2 g/L 柠檬酸钾 2 g/L 时间3~6 min 配方7(杭州大学化学系提供): 硫酸铜(CuSO4.5H2O) 3 g/L 磷酸缓冲液(H3PO4.KH2PO4) 4 g/L 亚硒酸(H2SeO3) 1 g/L 添加剂 3 g/L 时间1~3 min 配方8: 硫酸铜 4 g/L 硫酸镍 1 g/L 亚硒酸 4 g/L 磷酸二氢锌 2 g/L 硼酸 4 g/L DPE-Ⅲ1~2 ml/L pH 2.5~3.5 时间10~60 s 配方9: 硫酸铜3~5 g/L 亚硒酸3~5 g/L 磷酸二氢锌4~5 g/L 柠檬酸2~3 g/L 硝酸钾 1 g/L 添加剂20 ml/L 配方10: 硫酸铜4~5 g/L 二氧化硒4~5 g/L 硫酸镍3~4 g/L 氧化锌2~3 g/L 磷酸10~15 g/L TX-10乳化剂10 g/L 稳定剂5~10 g/L 时间3~8 min 配方11: 硫酸铜4~6 g/L 二氧化硒 1.5~3 g/L 硫酸镍0.5~2 g/L 柠檬酸钾 2 g/L

发黑配方

一,出油污 1.碳酸钠7%,氢氧化钠3%.磷酸钠3%,硅酸钠2%。水85% 2,溶液加热值70~80摄氏度,浸泡30分钟左右 二,酸洗 1.10~15%硫酸溶液 2,溶液加热之70~80摄氏度,浸泡30分钟左右 三,反黑 1、加入发黑烟(加热型)1:1比例兑水 2、将溶液加热至130~145摄氏度,chuli50~80分钟 四、皂化 1、方:肥皂水溶液(30~50g/L) 2、加热到80~100摄氏度,处理十分钟左右。 常温发黑液的方(转载) 3 常温发黑液的组成 ①主盐无论是硒化物系,还是非硒化物的常温发黑剂,Cu2+都是成膜的关键组分,最常用的为硫酸铜。 ②氧化剂在常温发黑剂中,必有氧化剂和铜盐、铁基体等参与氧化还原反应才能成膜,常用的有二氧化硒、亚硒酸等,此外还有硝酸、亚硝酸盐、硝酸盐等。 ③加速剂起催化作用,能提高反应成膜速度,最常用的为氯化镍、硫酸镍等。 ④络合剂主要作用是络合铜,控制其置换速度,以保障结合力、常用的有柠檬酸盐、酒石酸盐、氟化物、磺基水杨酸等。 ⑤稳定剂主要是维持发黑剂pH值稳定。从而使常温发黑操作正常稳定。常选材料有硼酸、磷酸、磷酸缓冲液、氨水、磷酸二氢盐等。 ⑥表面活性剂使基体表面润滑、发黑膜均匀一致,可消除发花、浮灰现象,常用的有OP乳化剂、十二烷基硫酸钠等。 4 钢铁常温发黑液具体方 现根据各种杂志所刊发钢铁常温发黑论文资料,并依据我公司研究成果,公布以下具体方,供进行此项研究者参考。 配方1: 硫酸铜4~8 g/L 二氧化硒4~8 g/L 磷酸盐7~15 g/L 硝酸盐2~4 g/L 柠檬酸盐2~4 g/L 稳定剂20 ml/L pH 2.0~2.5 时间3~5 min 配方2 硫酸铜1~3 g/L 亚硒酸2~3 g/L

常温发黑液的配方

常温发黑液的配方 一、常温发黑液的组成 ①主盐无论是硒化物系,还是非硒化物的常温发黑剂,Cu2+都是成膜的关键组分,最常用的为硫酸铜。 ②氧化剂在常温发黑剂中,必有氧化剂和铜盐、铁基体等参与氧化还原反应才能成膜,常用的有二氧化硒、亚硒酸等,此外还有硝酸、亚硝酸盐、硝酸盐等。 ③加速剂起催化作用,能提高反应成膜速度,最常用的为氯化镍、硫酸镍等。 ④络合剂主要作用是络合铜,控制其置换速度,以保障结合力、常用的有柠檬酸盐、酒石酸盐、氟化物、磺基水杨酸等。 ⑤稳定剂主要是维持发黑剂pH值稳定。从而使常温发黑操作正常稳定。常选材料有硼酸、磷酸、磷酸缓冲液、氨水、磷酸二氢盐等。 ⑥表面活性剂使基体表面润滑、发黑膜均匀一致,可消除发花、浮灰现象,常用的有OP乳化剂、十二烷基硫酸钠等。 二、钢铁常温发黑液具体配Fang 现根据各种杂志所刊发钢铁常温发黑论文资料,并依据我公司研究成果,公布以下具体配Fang,供进行此项研究者参考。 配Fang1: 硫酸铜4~8 g/L 二氧化硒4~8 g/L 磷酸盐7~15 g/L 硝酸盐2~4 g/L 柠檬酸盐2~4 g/L 稳定剂20 ml/L pH 2.0~2.5 时间3~5 min 配Fang2(武汉水运工程学院提供): 硫酸铜1~3 g/L 亚硒酸2~3 g/L 磷酸2~4 g/L 有机酸 1.0~1.5 g/L 十二烷基硫酸钠0.1~0.3 g/L 复合添加剂10~15 g/L pH 2~3 时间2~6 min 配Fang3(贵州航空发动机公司提供):

硫酸铜3~7 g/L 硫酸镍2~3 g/L 乙二胺四乙酸二钠4~5 g/L 亚硒酸4~5 g/L 磷酸盐 2.0~3.0 g/L pH值 2.0~3.0 时间30~60 s 配Fang4(大庆石油学院提供): 硫酸铜 2.0~2.5 g/L 硝酸 1.0~2.0 ml/L 二氧化硒 2.5~3.0 g/L 磷酸 1.0~1.5 ml/L 对苯二酚0.8~1.2 g/L 发黑促进剂 1.5~2.0 g/L 乙二胺四乙酸二钠0.5~0.8 g/L OP-10乳化剂适量 配Fang5(南方轻工研究所提供): 硝酸铜4~6 g/L 亚硒酸5~10 g/L 磷酸5~10 ml/L 氯化钠1~2 g/L pH 1.1~1.2 配Fang6(河南中原机械厂提供): 硫酸铜2~4 g/L 二氧化硒 4 g/L 磷酸10~15 g/L 氯化镍10~15 g/L 酒石酸钾钠 2 g/L 柠檬酸钾 2 g/L 时间3~6 min 配Fang7(杭州大学化学系提供): 硫酸铜(CuSO 4.5H 2 O) 3 g/L 磷酸缓冲液(H 3PO 4 .KH 2 PO 4 ) 4 g/L 亚硒酸(H 2SeO 3 ) 1 g/L 添加剂 3 g/L 时间1~3 min 配Fang8: 硫酸铜 4 g/L

涂料配方设计与涂料发展概述

欢迎共阅 涂料配方设计与涂料发展概述 涂料配方设计与涂料发展概述 李桂林 (江苏常州涂料化工研究所) 摘要:介绍了涂料配方设计简介(成膜物的固化)、配方设计的应用技术(成膜结构更新技术、协同 增效技术1+1>2、复配改性技术100%+100%=200% (正效应加和)、助剂匹配技术和纳米复合技术 涂装(施工)技术)、配方设计的操作方法(分步法、优选法、预测法、参比法、逆向法、经验法和 计算机法)、涂料配方设计示例(包括UV固化涂料、催化聚合成膜涂料、加成固化成膜涂料和缩聚 固化成膜涂料),并对涂料 发展概述(环境友好涂料和重点开发应用的涂料类型-功能及专用性涂料)。j 关键词:涂料;配方设计;复配改性' 0前言'成膜物包括用于涂料(通用、环保、特种、专用及功能性等品种)、胶粘剂(通用、特种专用及密封胶等)、浇注料、塑封料、模压料、包封料、预浸料、复合材料和绝缘材料等多种新材料中的合成树脂及交联(固化)剂等如何复配是涂料开发的关键技术。本文阐述了涂料配方设计并对涂料发展进行了概述。 1.涂料配方设计简介- 1.1.成膜物的固化- 研究含不同官能团的成膜物固化机理-对涂料及其他新材料配方设计有指导意义,不同固化机理产生不同性能的新材料。, 1.1.1成膜物的物理成膜方式' ' 溶剂或分散介质的挥发成膜主要成膜物是硝酸纤维素、过氯乙烯、热塑性丙烯酸树脂、SBS氯化橡胶、高氯化聚乙烯、石油树脂、热塑性树脂类等。 聚合物粒子凝聚成膜在分散介质挥发时,引起高聚物粒子接近、接触、挤压变形而聚集联结,形成连续涂膜。主要成膜物是水分散乳液(如聚丙烯酸酯系乳液、硅丙微乳液等)、有机溶胶和水分散胶体(如硅溶胶)。 1.1.2成膜物的化学成膜方式 ⑴自动氧化聚合反应含碳-碳双键的成膜物通过自由基链式聚合反应,形成交联固化网络结构 涂膜。利用钻、锰、锌、铁及过渡金属离子促进氧的传递,加速固化。主要成膜物是天然树脂、醇酸树脂、环氧酯树脂、含碳-碳双键的活性稀释剂等。特征: 氧活化双键相邻的a -碳原子产生自由基金属离子促进氧的传递。 ⑵自由基引发聚合反应不饱和聚酯、乙烯基酯树脂和相同官能团的活性稀释剂等成膜物经自由 基引发聚合反应,形成交联固化网络涂膜。特征:过氧化物引发剂产生自由基,引发C=C聚合反 应。 通常,采用引发剂与促进剂组成氧化-还原引发体系,可在常温下分解产生自由基,引发成膜物自由基聚合反应。自由基引发聚合体系主要有三种:成膜物-过氧化酮类-钻 盐类、成膜物-过氧化物-钻促进剂-助促进剂和成膜物-过氧化物-叔胺类。无论哪种氧化-还原引发体系,选用适合的阻聚剂有效地控制反应程度并确保贮存稳定是重要的技术措施。 ⑶辐射固化反应辐射固化反应属于能量引发聚合反应, 紫外线(UV和电子束(EB 作为能量引发聚合的主要形式,在光引发剂存在下,成膜物的自由基加 聚反应非常迅

相关主题
文本预览
相关文档 最新文档