当前位置:文档之家› 2-11互易定理

2-11互易定理

电路分析第4章4 互易定理

特勒根定理 设有电路,A B ,满足:(1)两者的拓扑图完全相同,均有n 个节点b 条支路;(2)对应的支路和节点均采用相同的编号,其中B 电路的电流、电压加“^”号;(3)各支路电流、电压参考方向均取为一致,则有: 功率守恒定理: 01 b U I k k k =∑= ??01b U I k k k =∑= 似功率守恒定理: ?01 b U I k k k =∑= 1 ?0b k k k U I ==∑

适用于各种电路:直流、交流;线性、非线性; 被称为基尔霍夫第三定律。 §2-2互易定理 在线性电路中,若只有一个独立电源作用,网络只含有线性电阻(不含受控源),则在一定的激励与响应的定义下,二者的位置互易后,响应与激励的比值不变。 互易定理的证明需要特勒根定理(或二端网络等效的概念)。 根据激励和响应是电压还是电流,互易定理有三种形式: 1、互易定理的第一种形式

S u S u ?+- 电路在方框内仅含线性电阻,不 含任何独立电源和受控源。电压源s u 接在端子1-1',支路2-2'短路,其电流为2i 。如果把激励和响应位置互 换,此时?s u 接于2-2',而响应则是接于1-1',短路电流1?i 。 21??s s i i u u =,若 ?s s u u =,则21?i i =。 对一个仅含线性电阻的电路,在单一电压源激励而响应为电流时,激励和响应互换位置,不改变同一激励产生的响应。 2、互易定理的第二种形式

2' 2 1' 1 21??s s u u i i = 若?s s i i =,则21?u u =。 3 互易定理的第三种形式 2 1??s s i u i u = 若数值上?s s i u =,则数值上21?i u =。 例 用互易定理求下图中电流i 。

戴维南定理实验报告

戴维南定理 学号:1128403019 姓名:魏海龙班级:传感网技术 一、实验目的: 1、深刻理解和掌握戴维南定理。 2、掌握测量等效电路参数的方法。 3、初步掌握用multisim软件绘制电路原理图。 4、初步掌握multisim软件中的multimeter、voltmeter、ammeter 等仪表的使用以及DC operating point、paramrter sweep等 SPICE仿真分析方法。 5、掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使 用。 6、初步掌握Origin绘图软件的应用。 二、实验器材: 计算机一台、通用电路板一块、万用表两只、直流稳压电源一台、电阻若干。 三、实验原理:一个含独立源、线性电阻和受控源的一端口网络,对 外电路来说,可以用一个电压源和电阻的串联组合来等效置 换,其等效电压源的电压等于该一端口网络的开路电压,其等 效电阻等于该一端口网络中所有独立源都置为零后的数日电 阻。 四、实验内容: 1、电路图:

2、元器件列表: 2、实验步骤: (1)理论分析: 计 算等效电压: 电桥平衡。∴=,331131R R R R Uoc=3 11 R R R +=2.6087V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R =250.355

(2)测量如下表中所列各电阻的实际值,并填入表格: 然后根据理论分析结果和表中世纪测量阻值计算出等效电源电压和等效电阻,如下所示: Uc=2.6087V R=250.355Ω (3)multisim仿真: a、按照下图所示在multisim软件中创建电路 b、用万用表测量端口的开路电压和短路电流,并计算等 效电阻,结果如下:Us= 2.609V I= 10.42mA R=250.38Ω

戴维南定理实验报告

戴维南定理实验报告

戴维南定理 班级:14电信学号:1428403003 姓名:王舒成绩:一实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的. 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a: 等效后的电路图如下b: 测它们等效前后的外特性,然后验证等效前后对电路的影响。 二实验内容及结果

⒈计算等效电压和电阻 计算等效电压:电桥平衡。∴=,33 1131R R R R Θ Uoc=3 11 R R R +=2.609V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ??++3311111221 3111121 R R R R R R =250.355 ⒉用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如下图所示: -+ Ro=250.335O Ω 测量等效电压是将滑动变阻器短路如下图 V120 V R11.8kΩ R2220Ω R112.2kΩ R22270Ω R33330ΩR3270Ω 50% 2 4 J1Key = A XMM1 6 a 1 7 Uo=2.609V ⒊用Multisim 仿真验证戴维南定理 仿真数据

等效电压Uoc=2.609V 等效电阻Ro=250.355Ω 电压/V 2.6 09 2.4 08 2.3 87 2.3 62 2.3 31 2.2 9 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 84 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 4 电压/V 2.6 09 2.4 08 2.3 87 2.3 63 2.3 3 2.2 91 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 85 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 5

第5章 特勒根定理

第五章 特勒根定理 5-1 引言 特勒根定理是关于电网络拓扑结构的定理,它脱离了元件具体的物理性态,因而具有更普遍的意义。 特勒根定理是B.D.H. Tellegen 在本世纪五十年代初提出的[1、 2]。 实际上,在此之前,已出现了许多关于特勒根定理的推导和讨论的文章[3-5]。 最早的工作应追溯到 1883年 O. Heaviside 的论文[6]。尽管如此,先于Tellegen 的作者们没有指出定理的普遍性及其应用上的灵活性,只是将它用于一个特定的目的,或者只作出说明而没有探讨它的应用。定理以 Tellegen 的名字命名是因为他是指出定理有普遍意义的第一人。 特勒根定理不仅具有电网络意义,它还具有更一般的应用价值,文[7]在一般数学方程组的基础上提出了广义特勒根定理,并给出了矩阵互易定理,进一步发展了这一理论。 本章介绍特勒根定理。首先讨论特勒根定理在电网络中的表述,然后给出广义特勒根定理,并进行流图解析,最后是广义特勒根定理的应用举例。 5-2 特勒根定理 定理5-1(特勒根定理1):对n 个节点b 条支路的电网络,在标定支路的参考方向后,必有 0),,,(0 2121=???? ?? ? ??=n n b T b I I I V V V I V (5.1) 其中,b V 和b I 分别是支路电压和支路电流向量。 证明: 由第一章网络的关联性可知 m T b b n T a b I K I V K V == (5.2) 各符号意义同第一章,于是有 b a T n b T b I K V I V ?= (5.3) 由基尔霍夫电流定律 0=b a I K (5.4) 故必有 0=b T b I V (5.5) 证毕。 定理5-2(特勒根定理2):对于两个网络,若拓扑结构完全相同,且支路标定方向完全一致,必有

叠加原理和互易定理

实验三 叠加定理和互易定理 一、实验目的 ⒈ 加深对叠加定理和互易定理的内容和适用范围的理解。 ⒉ 学习自拟实验步骤。 二、原理与说明 ⒈ 叠加定理 ⑴ 如果把独立电源称为激励,由它引起的支路电压、电流称为响应,则叠加定理可简述为: 在任一线性网络中,多个激励同时作用时的总响应等于每个激励单独作用时引起的响应之和。所谓某一激励单独作用,就是除了该激励外,其余激励均为零值。对于实际电源,电源的内阻或内电导必须保留在原电路中。 在线性网络中,功率是电压或电流的二次函数。叠加定理不适用于功率计算。 ⑵ 对含有受控电源的线性电路,叠加定理也是适用的。 图3-1所示电路为含电压控制型电流源的线性电路,在理想情况下,控制量1U 与输出量o I 有如下关系: 12 1 o I U R = 令2 1 g R = ,即 图3-1 含电压控制电流源的线性电路 1o I gU = ⒉ 互易定理 互易定理是不含受控电源的线性网络的主要特性之一。如果把一个由线性定常电阻、电容和电感(包括互感)元件构成的二端口网络称为互易网络,则互易定理可以叙述为: ⑴ 当一电压源s u 作用于互易网络的1、1′端时,在2、2′端上引起的短路电流 2i [ 图3-2(a )],等于同一电压源s u 作用于2、2′端时,在1、1′端上引起的短路电流

1?i [图3-2(b )],即:2i =1?i 图3-2 互易定理第一形式 (a) (b) ?i 2i ⑵ 当一电流源s i 作用于互易网络的1、1′端时,在2、2 ′端上引起的开路电压 2u [图3-3(a )],等于同一电流源s i 作用于2、2′端时,在1、1′端上引起的开路电压1?u [图3-3(b )] ,即:2u =1?u 图3-3 互易定理第二形式 (a) 2u ⑶ 设一电流源s i 作用于互易网络的1、1′端时,在2、2′端上引起的短路电流为2i [图3-4(a ) ],若在2、2′端加一电压源s u ,只要s u 和s i 在所有的时刻都是相等的或者 图3-4 互易网定理第三形式 (a) (b) i 2 i 成正比,则在 1、1′端上引起的开路电压1?u [图3-4(b )]与2i 的数值相等或者成正 比,即按图中所示方向,有 21?s s i i u u

二戴维南定理的验证

实验二 戴维南定理的验证 一、实验目的 1. 验证戴维南定理的正确性。 2. 掌握测量有源二端网络等效参数的一般方法。 二、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维南定理指出:任何一个线性有源网络,总可以用一个等效电压源来代替,此电压源的电动势Es 等于这个有源二端网络的开路电压U OC ,其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视 为开路)时的等效电阻。 U OC 和R 0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U OC ,然后再将其输出端短路,用电流表测其短路电流I SC ,则内阻为 R O =SC OC I U (2) 伏安法 用电压表、电流表测出有源二端网络的外特性如图2-1所示。根据外特性曲线求出斜率tg φ,则内阻 R O =tg φ=SC OC I U ΔI ΔU = 用伏安法,主要是测量开路电压及电流为额定值I N 时的输出端电压值U N ,则内阻为 R O =N N OC I U U - 若二端网络的内阻值很低时,则不宜测其短路电流。

(3) 半电压法 如图2-2所示,当负载电压为被测网络开路电压一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网络的等效内阻值。 (4) 零示法 在测量具有高内阻有源二端网络的开路电压时,用电压表进行直接测量会造成较大的误差,为了消除电压表内阻的影响,往往采用零示测量法,如图2-3所示。 零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”,然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。

互易定理证明

特勒根定理及互易定理的证明 一、特勒根定理 ) 在各节点处(631c5324210 0 6 62211654321=∑=+--+++++-=+++====-=-=-=i i i i u i i i u i i i u i u i u i u p u u u u u u u u u u u u u u u b a c b a c b a b c a )() ()(... 0 6 1 =∑=k k k i u 即 上式成立的条件: ① 各回路均满足KVL ; ② 各节点均满足KCL ; ③ u k 与i k 取关联参考方向。 定理表述: 对于一个具有B 条支路和n 个节点的网络,若在任意回路中都满足KVL ,在任意节点处都满足KCL ,且各支路电压u k 与电流i k 均取关联参考方向,则 01 =∑=B k k k i u 各支路电压u k (图中未标出) 与电流i k 均取关联参考方向 u c u

只要满足定理中所述的条件,可得结论: 1. 对于任意集总参数网络,定理都适用; 2. ∑=≠=B k k k t t t i t u 1 2121 0)()()( 3. (推论) 若两个网络N 和N '的有向图相同,则 0 1 21121='='∑∑==B k k k B k k k t i t u t i t u )()()()(或 (t 1=t 2 或 t 1≠t 2) 二、互易定理的证明 设上图所示网络0N 和0N '相同,则由特勒根定理可得 0 0 1 211 21='='∑∑==B k k k B k k k t i t u t i t u )()()()(或 ② ① 0 3 221132211='+'+'='+'+'∑∑==B k k k B k k k i u i u i u i u i u i u 或即 设网络0N 和0N '为电阻网络,则 + _ + 2 _ 2'

戴维南定理的验证

一、实验目的 1.验证戴维南定理和诺顿定理的正确性,加深对该定理的理解。 2.掌握测量有源二端网络等效参数的一半方法。 二、实验设备 可调直流稳压电源、可调直流恒流源、直流数字电压表、直流数字电流表、万用表、元件箱、戴维南定理实验电路板 三、实验原理 1.戴维南定理指出:任何一个线性有源网络,总可以用一个电压 源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零。 2.有源二端网络等效参数的测量方法 1)开路电压、短路电流法测R0 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc,然后再将其输出端短路,用电流表测其短路电流Isc,则其等效电阻为R0=Uoc/Isc 2)伏安法测R0 用电压表、电流表测出有源二端网络的外特性曲线,如图2-1所示。根据外特性曲线求出斜率tgΦ,则内阻R0=tgΦ=ΔU/ΔI=Uoc/Isc 3)半电压法测R0 当负载电压为被测网络开路电压的一半时,负载电阻(由电阻箱的读书确定)即为被测有源二端网络的等效内阻值。 4)零示法测Uoc 在测量具有高内阻有源二端网络的开路电压时,用电压表直接测

量会造成较大误差,为了消除电压表内阻的影响,往往采用零示测量法。零示测量法的原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表读数将为“0”,然后将电路断开,测量此时稳压电源的输出电压,即为被测有缘二端网络的开路电压。 四、实验内容 被测有源二端网络如图2-4(a) 图2-4(a)戴维南等效电路

戴维南定理验证试验

南京信息工程大学 实验(实习)报告 1.实验目的: 熟悉和掌握多功能电表(万用表)、电流表、电压表的使用方法和测量方法。 2.实验内容: 通过试验验证戴维南定理的正确性,并借助多功能电表(万用表)测量等效电阻、戴维南等效电压。 3.实验步骤: (1)完成上述连线后,启动电源开关,并记录电流表和电压表的读数 U= 2.371V ,I= 5.045mA (2) 求A 、B 两端开路电压th E 和等效电阻th R 。首先将L R 电阻两端开路,用万用表电压挡测量A 、B 两端的开路电压 th E ;在L R 电阻两端开路的同时,再将电池短路,用万用表欧姆挡测量A 、B 两端等效电阻th R th E = 3.8095V ,th R =285.1

(3)得到上述测量值th E 、th R 后,将电阻L R 和th E 、th R 、电流表、电压表重新连线,画出下图电路,启动电源开关,记录电流表和电压表的读数 U=2.371 V ,I= 5.045mA 4.实验分析和总结 由上述实验步骤可以证明戴维南定理的正确性,戴维南原理正确,即任何有缘二端口网络均可等效为一个电压源和一个电阻串联组合,其中电压源U 大小就是有源二端电路的开路电压Uo ;电阻R 大小是有源二端电路除去电源的等效电阻R0。 该实验很好的反映了戴维南定理的实际应用,EWB 是较好电路仿真工具,软件能很方便的进行很多原理的仿真,这对我们今后的工作有很大的帮助。通过一节课的上机实验练习及本次报告的书写,我深深的发现了自身的不足,需要继续健身了解该软件,并不断练习巩固,不断总结经验,在一次次试验中得出模拟数据,能够更好地用于实际电路中。

电路实验实验报告

电路实验实验报告 一、实验题目 二极管伏安特性曲线测量 二、实验摘要 1.设计电路使电压1-5v可调。 2.在面包板上搭接一个测量二极管伏安特性曲线的电路。 3.给二极管测试电路的输入端加Vp-p=4V、f=5kHz的正弦波,用示波器观察该电路的输入输出波形。 4.测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好。 5.用excel画二极管的伏安特性曲线。 三、实验环境 数字万用表、二极管、面包板、导线、电阻、示波器、函数信号发生器等。 四、实验原理 1.晶体二极管的导电特性: 晶体二极管无论加上正向或反向电压,当电压小于一定数值时只能通过很小的电流,只有电压大于一定数值时,才有较大电流出现,相应

的电压可以称为导通电压。正向导通电压小,反向导通电压相差很大。当外加电压大于导通电压时,电流按指数规律迅速增大,此时,欧姆定律对二极管不成立。 2.正向电压: 对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 3.反向电压: 对上述器件施加反向偏置电压时,二极管处于截止状态,其反向电压增加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二极管使用中应竭力避免出现击穿观察,这很容易造成二极管的永久性损坏。所以在做二极管反向特性时,应串联接入限流电阻,以防因电流过大而损坏二极管。 4.将正弦交流电接入二极管,正向的电流可以导通,反向无法导通,则可在示波器上显示出半个正弦波。 五、实验电路

验证戴维南定理实验报告

实验1 戴维南定理 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图。 4.初步掌握Multisim软件中的Multimeter、V oltmeter、等仪表的使用以及DC Operating Point、Parameter Sweep等SPICE仿真分析法。 5.掌握电路板的焊接技术及直流电源、万用表等仪器仪表的使用。 6.掌握origin绘图软件的使用。 二、实验原理 戴维南定理:任何线性有源(独立源、受控源)一端口网络对外电路来说,都可以用一个电压源Us与电阻R0 串联的等效电路替换。其中电压源US大小就是有源二端电路的开路电压UOC;电阻RO大小是有源二端电路除去电源的等效电阻RO 。 三、实验器材与仪器 计算机一台;通用电路板一块;万用表两只;直流稳压电源两只;电阻若干 四、实验方法 1.比较测量法 首先测量原电路的外特性,再测量等效电路的外特性。最后比较两者是否一致。 2.等效参数的获取

等效电压Uoc:直接测量被测电路的开路电压。 等效电阻Ro:将电路中所有独立电压源短路,所有电流源开路,用万用表电阻档测量。 3.测量点个数及间距的选取 (测量点个数及间距的选取,与测量特性和形状有关。对于直线特性,应使测量间距尽量平均,对于非线性的特性应在变化陡峭处多测一些。且一般选取10个点以上) 本实验均匀选取。且应该先选取最大最小值然后均匀选取。 4.电路的外特性测量方法 在输出端口上改变R7的大小,测量端口电压和电流。 实验电路图 五、实验内容与数据记录 1.测量电阻的实际值。填入下表。

戴维南定理实验报告

实验四戴维南定理 一、实验目的 1、验证戴维南定理 2、测定线性有源一端口网络的外特性和戴维南等效电路的外特性。 二、实验原理 戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,总可以用一个理想电压源和电阻的串联形式来代替,理想电压源的电玉等于原一端口的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req,见图4-1。 图4- 1 图4- 2 1、开路电压的测量方法 方法一:直接测量法。当有源二端网络的等效内阻Req与电压表的内阻Rv相比可以忽略不计时,可以直接用电压表测量开路电压。 方法二:补偿法。其测量电路如图4-2所示,E为高精度的标准电压源,R为标准分压电阻箱,G为高灵敏度的检流计。调节电阻箱的分压比,c、d两端的电压随之改变,当Ucd=Uab 时,流过检流计G的电流为零,因此

Uab=Ucd =[R2/(R1+ R2)]E=KE 式中K= R2/(R1+ R2)为电阻箱的分压比。根据标准电压E 和分压比Κ就可求得开路电压Uab,因为电路平衡时I G= 0,不消耗电能,所以此法测量精度较高。 2、等效电阻Req的测量方法 对于已知的线性有源一端口网络,其入端等效电Req可以从原网络计算得出,也可以通过实验测出,下面介绍几种测量方法: 方法一:将有源二端网络中的独立源都去掉,在ab端外加一已知电压U, 测量一端口的总电流I总则等效电阻 Req= U/I总 实际的电压源和电流源具有一定的内阻,它并不能与电源本身分开,因此在去掉电源的同时,也把电源的内阻去掉了,无法将电源内阻保留下来,这将影响测量精度,因而这种方法只适用于电压源内阻较小和电流源内阻较大的情况。 方法二:测量ab端的开路电压Uoc及短路电流Isc则等效电阻 Req= Uoc/Isc 这种方法适用于ab端等效电阻Req较大,而短路电流不超过额定值的情形,否则有损坏电源的危险。 图4 – 3 图4-4 方法三:两次电压测量法 测量电路如图4-3所示,第一次测量ab端的开路Uoc,第二次在ab端接一已知电阻RL (负载电阻),测量此时a、b端的负载电压U,则a、b端的等效电阻Req为:

电路仿真实验报告

实验一电路仿真 一、实验目的 通过几个电路分析中常用定理和两个典型的电路模块,对Multisim的主窗口、菜单栏、工具栏、元器件栏、仪器仪表和一些基本操作进行学习。 二、实验内容 1.叠加定理:在任何由线性元件、线性受控源及独立源组成的线性电路中,每一支路的响应都可以看成是各个独立电源单独作用时,在该支路中产生响应的代数和; 2.戴维南定理:一个含独立源、线性受控源、线性电阻的二端电路N,对其两个端子来说都可以等效为一个理想电压源串联内阻的模型。其理想电压源的数值为有源二端电路N的两个端子间的开路电压u oc,串联的内阻为N内部所有独立源等于零,受控源保留时两端子间的等效电阻R eq,常记为R0; 3.互易定理:对一个仅含线性电阻的二端口,其中,一个端口夹激励源,一个端口做响应端口。在只有一个激励源的情况下,当激励与响应互换位置时,同一激励所产生的响应相同; 4.暂态响应:在正弦电路中,电量的频率、幅值、相位都处于稳定的数值,电路的这种状态称为稳定状态。电路从一种稳态向另一种稳态转换的过程称为过渡过程,由于过渡过程一般都很短暂,因此也称为暂态过程,简称暂态; 5.串联谐振:该电路是一个由电阻、电容和电感串联组成,当激励源的频率达到谐振频率时,输出信号的幅值达到最大。 三、实验结果及分析 1.叠加定理: ①两个独立源共同作用时: ②电压源单独作用时:

③电流源单独作用时: 2.戴维南定理: 所以,根据戴维南定理可知,该电路的戴维南等效电阻 R eq=10.033/(781.609*10-6) =12.8 kΩ3.互易定理: 当激励源与响应互换位置之后, 该激励源所产生的响应不变。

实验四-验证戴维南定理和诺顿定理

实验四-验证戴维南定理和诺顿定理

实验四验证戴维南定理和诺顿定理 一、实验目的 (1)进一步熟悉PSPICE 仿真软件中绘制电路图,初步掌握符号参数、分析类型的设置。 (2)学习Probe窗口的简单设置。 (3)加深对戴维宁定理与诺顿定理的理解。 二、原理与说明 戴维南定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电压源与电阻串联的支路来代替,该电压源的电压U S等于原网络的开路电压 U OC,电阻R O等于原网络的全部独立电源置零后的输入电阻Req。原网络如图4-1(a),其等效变换如图4-1(b)。 诺顿定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电流源与电导并联的支路来代替,该电流源的电流I S等于原网络的短路电流I SC,其电导G O等于原网络的全部独立电源置零后的输入电导Geq ( Geq=1/Req )。其等效变换如图4-1(c)。等效内阻的测量图如图4-2所示。 图4-1 实验原理与说明图4-2 等效内阻的测量 三、实验设备 个人计算机、OrCAD/PSpice9.2软件。 四、实验内容 (1)测量有源一端口网络(如图4-3)等效入端电阻Req和对外电路的伏安

特性。其中U1= 5V,R1= 100Ω,U2= 4V,R2= 50Ω,R3=150Ω。 (2)根据(1)中测出的开路电压U OC、输入电阻Req,组成图4-1(b) 的等效有源一端口网络,测量其对外电路的伏安特性。 (3)根据(1)中测出的短路电流I SC、输入电阻Req,组成图4-1(c) 的等效有源一端口网络,测量其对外电路的伏安特性。 图4-3 原理图 五、实验步骤 R1 100R2 50 R3 150 RL {v ar} V1 5v V2 4v PARAMETERS: R0 1k RLd 1k V3 Is G0 1k RLn 1k 图4-4 绘制的电路图 (1)在Capture环境下绘制图4-4电路原理图,包括取元件、连线、输入参数和设置节点等。分别编辑原电路、戴维宁等效电路和诺顿等效电路(等效参数待定,电压源和电流源默认值为0),检查无误后存盘。 (2)为测量原网络的伏安特性,图4-4 中的R L是电阻值需改变。为此,R L 的阻值要在“PARAM”中定义一个全局变量var(参数值可任意选择如10Ω、1kΩ,同时把R L的阻值也设为该变量{var}。 注:PARAM设置方法是从special库中选取PARAM放置在电路图上,双击该器件在属性栏左上角的New Column,输入名称var,值1k。如要显示该名称和值在电路图上,在数据栏上右键单击,修改display属性。 (3)为测电路的开路电压U OC及短路电流I SC,设定分析类型为“DC

实验5 戴维南定理的验证

实验5 戴维南定理的验证 一、实训目的 1. 验证戴维南定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 二、原理说明 1. 任何具有两个出线端的部分电路称为二端网络。若网络中含有电源称为有源二端网络,否则称为无源二端网络。 戴维南定理:任何一个线性有源二端网络,对外电路来说,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us 等于这个有源二端网络的开路电压Uoc , 其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿南理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is 等于这个有源二端网络的短路电流I SC ,其等效内阻R 0定义同戴维南定理。 Uoc (Us )和R 0或者I SC (I S )和R 0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法测R 0 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc ,然后再将其输出端短路,用电流表测其短路电流Isc ,则等效内阻为 Uoc R 0= ── Isc 如果二端网络的内阻很小,若将其输出端口短路 则易损坏其内部元件,因此不宜用此法。 (2) 伏安法测R 0 图5-1有源二端网络外特性曲线 用电压表、电流表测出有源二端网 络的外特性曲线,如图5-1所示。 根据 外特性曲线求出斜率tg φ,则内阻 △U U oc R 0=tg φ= ──=── △I Isc 也可以先测量开路电压Uoc , 图5-2半电压法测R 0电路 再测量电流为额定值I N 时的输出 U oc -U N 端电压值U N ,则内阻为 R 0=──── I N (3) 半电压法测R 0 如图5-2所示,当负载电压为被测网络开 U I A B I U O ΔU ΔI φ sc oc c /2

利用Multisim验证戴维南定理

利用Multisim 验证戴维南定理 姓名:XXX 学号:xxxxxxxxxx 一、仿真要求 (1) 构建图附1(a)所示实验电路原理图,测量有源线性二端网络的等效参数; (2) 由二端网络的等效参数构建图1 (b)所示的戴维南等效电路; (3) 分别测试二端网络的外特性和等效电路的伏安特性,验证戴维南定理。 图1被测有源二端网络电路 二、电路图设计及理论分析 (1) 设定电路各元件参数如图2所示 R R R L R L L 图2. 电路参数设定 图3. 戴维南等效电路 (2) 理论分析 断开R L 所在支路,)V (932.4142431 3OC =??? ? ?? +-+=U R R R R R R U )(2.458////4213O Ω=+=R R R R R )mA (764.10O OC SC == R U I 戴维南等效电路如图3所示。

三、Multisim 仿真验证 1、用Multisim 绘制二端口实验电路图 键 = A RL 1.0k Ω 图 4 Multisim 绘制的电路 2、测试二端口网络的等效参数 运行仿真,按空格键使S 1向上,置零U 1,双击万用表,选择欧姆档,测量二端口网络的等效电阻,如图5(a)所示。 按空格键接入U 1,更改万用表,分别选择直流电压和直流电流,测量二端口网络的开路电压和短路电流,如图5 (b)和(c)所示。 (a) 测量等效电阻R O 键 = A 1.0k Ω (b) 接入U 1作用测量 (c) 测量开路电压U OC 和短路电流I SC 图5测量二端口网络的等效参数

3、用参数扫描分析二端口网络的外特性 (1) 添加测量探针 停止仿真,将万用表更改为直流电压测量状态,按“A ”键,接入负载R L 支路,并在电路中添加测量探针,双击测量探针,在其属性窗口的参数栏中设置测量参数为直流电流,在其显示栏中将标识改为“IL ”,如图6所示。 键 = A 图6 添加测量探针 (2) 参数扫描分析电路的外特性。 由图6可见,测量二端网络的外特性就是测量U 45和I L 的关系。所以,在此选择“仿真”菜单下的“分析”/“参数扫描”,在分析参数栏设置扫描参数为“RL ”,扫描范围为线性100Ω ~1k Ω,步进100Ω,待分析量为“直流工作点”,并将扫描结果“在表格中显示”。 在“输出”栏设置测量量为“IL ”和表达式“V(4)-V(5)”。最后,单击仿真按钮,得到图7所示结果。 图7 参数扫描输出 4、用Multisim 绘制等效戴维南电路 绘制等效戴维南电路如图8所示。 5、对等效戴维南电路进行参数扫描分析,此处设置扫描参数为“RL2”,输出设置为“V(UL2_IL2)”和“I(UL2_IL2)”。得到的结果如图9所示。 6、结论 将图8与图9所示的结果整理成数据表格,如表2所示。绘制二者的伏安曲线,可以看到,两条伏安曲线完全重合,如图10所示。证明对于负载电阻来说,二端网络和戴维南电路是等效的。

电路分析等效电源定理实验报告

电路分析等效电源定理 实验报告 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

电路分析 等效电源定理 实验报告 一、 实验名称 等效电源定理 二、实验目的 1. 验证戴维宁定理和诺顿定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 三、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us 等于这个有源二端网络的开路电压Uoc , 其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is 等于这个有源二端网络的短路电流I SC ,其等效内阻R 0定义同戴维宁定理。 Uoc (Us )和R 0或者I SC (I S )和R 0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压的测量 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压 Uoc 。 (2)短路电流的测量 在有源二端网络输出端短路,用电流表测其短路电流Isc 。 (3)等效内阻R 0的测量 Uoc R 0= ── Isc 如果二端网络的内阻很小,若将其输出端口短路,则易损坏其内部元件,因此不宜用此法。 四、实验设备

5 万用表 1 自备 6 可调电阻箱 0~99999.9Ω 1 THHE-1 7 戴维宁定理实验电路板 1 THHE-1 五、实验内容 被测有源二端网络如图5-1(a)所示,即HE-12挂箱中“戴维宁定理/诺顿定理”线路。 (a) (b) 图 5-1 1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc 、R 0。 按图5-1(a)接入稳压电源Us=12V 和恒流源Is=10mA ,不接入R L 。测出U Oc 和Isc ,并计算出R 0(测U OC 时,不接入mA 表。),并记录于表1。 表1 实验数据表一 2. 负载实验 按图5-1(a)接入可调电阻箱R L 。按表2所示阻值改变R L 阻值,测量有源二端网络的外特性曲线,并记录于表2。 表2 实验数据表二 3. 验证戴维宁定理 把恒压源移去,代之用导线连接原接恒压源处;把恒流源移去,这时,A 、B 两点间的电阻即为R 0,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc 之值)相串联,如图5-1(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证,数据记录于表3。 表3 实验数据表三 4. 验证诺顿定理 在图5-1(a )中把理想电流源及理想电压源移开,并在电路接理想电压源处用导线短接(即相当于使两电源置零了),这时,A 、B 两点的等效电阻值即为诺顿定理中R 0, 然后令其与直流恒流源(调到步骤“1”时所测得的短路电流Isc 之值)相并联,如图5-2所示,仿照步骤“2”测其外特性,对诺顿定理进行验证,数据记入表4。 图5-2 表4 实验数据表之四 六、实验结果分析 图2—1 图2—2 1.步骤2和3,分别绘出曲线如图2—1.2—2 由这两个图可以明显看出图1中a 等效于b ,也即戴维南定理得证。

戴维南定理的实验验证报告

戴维南定理 学号:姓名:成绩: 一实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a 等效后的电路图如下b所示 测它们等效前后的外特性,然后验证等效前后对电路的影响。 实验内容及结果 1?计算等效电压和电阻 计算等效电压:畀豊,电桥平衡。Uoc = RI R1R3 =2.6087V。 J1 R1 R2 I V1 20 V T 1.8k Q R11 2 ―*| 2.2k Q 220 Q R22 AA/V 270 Q Key = A L_ <4.7k Q W Key=A 50% R33 330 Q R3 270 Q XMM2 XMM1 R4 几50% Key=A

2.用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如 下图所示 Ro=250.335 测量等效电压是将滑动变阻器短路如下图 Uo=2.609V 3.用 Multisim 仿 真数据 等效电压 Uoc=2.609V 等效电阻Ro=250.355欧姆 原电路数据 V1 20 V R1 1.8k Q R2 AA/V 220 Q J1 Q ------ O ------ Key = A XMM2 R11 -WV- 2.2k Q R33 330 Q 0 R22 ■AAAr 270 Q XMM1 50% 计算等效电阻: R= f r 1 R2 + 1 R22 + 1 1 1 1 + + < R1 R3 丿 < R11 R33 =250.355 仿真验证戴维南定理 1 1 s

特勒根定理和互易定理

特勒根定理和互易定理

————————————————————————————————作者:————————————————————————————————日期:

特勒根定理和互易定理 1、特勒根定理1 特勒根定理1内容为:对于一个具有n个结点和b条支路的电路,假设各支路电流和支路电压取关联参考方向,并令、分别为b条支路的电流和电压,则对任何时刻t,有 此定理对任何具有线性、非线性、时不变、时变元件的集总电路都适用,它实质上是电路功率守恒的数学表达式。 2、特勒根定理2 特勒根定理2内容为:如果两个具有n个结点和b条支路的电路,它们具有相同的图,但由不同的支路构成。假设各支路电流和支路电压取关联参考方向,并分别用、和、表示两电路中

b条支路的电流和电压,则对任何时刻t,有 此定理同样对任何具有线性、非线性、时不变、时变元件的集总电路都适用,但它不再是电路功率守恒的数学表达式。有时称它为“拟功率定理”。它仅仅是对两个具有相同拓扑的电路中,一个电路的支路电压和另一个电路的支路电流之间所遵循的数学关系。 <?xml:namespace prefix = o /> 3、互易定理的使用条件 1)电路只含有一个独立电源; 2)电路中没有受控源; 3)电路中的所有无源元件全部为线性电阻。 4、互易定理1 互易定理1内容为:对于一个线性无源网络NS,外加激励电压与网

络响应电流互换位置时,响应电流相同,如图1所示,即=,则有。 图1互易定理1 5、互易定理2 互易定理2内容为:对于一个线性无源网络N,外加激励电流与网络响应电压互换位置时,响应电压相同,如图2所示,即=,则有。

一阶电路实验报告

福建工程学院实验报告专业 班级 座号 姓名 日期

实验二十一一阶线性电路过滤过程的观测 一、实验目的 1、测定RC一阶电路的零输入响应,零状态响应及完全响应。 2、学习电路时间常数的测量方法。 3、掌握有关微分电路和积分电路的概念。 4、学会用示波器测绘图形。 二、实验内容 RC串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<

时间常数的测量 R=4K

R=1K R=6K C=0.22U

R=1K R=1K

三、误差分析 1)实验过程中的读数误差 2)仪器的基本误差 3)导线连接不紧密产生的接触误差 四、实验总结 在RC一阶电路的R=2k,C=0.047u中理论值t=RC=0.094MS,在仿真实验中t=0.093.5ms 其相对误差为r=0.0005/0.094*100%=0.531%<5% 在误差允许的范围内测得的数值可以采用。 当T=t时,Uc(t)=0.368Us,此时所对应的时间就是t,亦可用零状态响应波形增长到0.632Us所对应的时间测量。 在RC的数值变化时,即t=RC也随之变化,t越小其响应变化就越快,反之越慢。 积分电路的形成条件:一个简单的RC串联电路序列脉冲的重复激励下,当满足t=RC>>T/2条件时,且由C端作为响应输出,即为积分电路。 积分电路波形变换的特征:积分电路可以使输出方波转换成三角波或斜波。积分电路可以使矩形脉冲波转换成锯齿波或三角波。 稍微改变电阻值或增大C值,RC值也会随之变化,t越大,锯齿波的线性越好。

《电路与电子技术》实验报告 戴维南定理的验证

湖北科技学院计算机科学与技术学院 《电路与电子技术》实验报告 学号 姓名 实验日期: 实验题目:戴维南定理的验证 【实验目的】 1. 验证戴维南定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 【实验器材】 数字万用表,实验电路箱,导线若干 【实验原理】 戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us 等于这个有源二端网络的开路电压Uoc ,其等效内阻R0等于该网络中所有独立源均置零,理想电压源视为短接,理想电流源视为开路时的等效电阻。 【实验内容与记录】 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法测R0 在有源二端网络输出端开路时 用电压表直接测其输出端的开路电压Uoc 然后再将其输出端短路 用电流表测其短路电流Isc 则等效内阻为R0= Isc Uoc , 如果二端网络的内阻很小 若将其输出端口短路 则易损坏其内部元件 因此不宜用此法。 (2) 伏安法测R0 用电压表、电流表测出有源二端网络的外特性曲线 ,根据 外特性曲线求出斜率tan α, 则内阻 Ro= tan α= Isc Uoc 也可以先测量开路电压Uoc, 再测量电流为额定值IN 时的输出 端电压值UN,则内阻为 R0=In Un Uoc 。 (3) 半电压法测R0 当负载电压为被测网络开路电压的一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网络的等效内阻值。 4) 零示法测UOC 在测量具有高内阻有源二端网络的开路电压时 用电压表直接测量会造成较大的误差。为了消除电压表内 阻的影响,往往采用零示测量法,零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比 较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。然后将电路断开,测量此时稳压电源的输出电压 ,即为被测有源二端网络的开路电压。

相关主题
文本预览
相关文档 最新文档