当前位置:文档之家› 计数原理、排列组合题型与方法

计数原理、排列组合题型与方法

计数原理、排列组合题型与方法
计数原理、排列组合题型与方法

计数原理、排列组合题型与方法

☆基本思路:大的方向分类,类中可能有步或类

例1:架子上有不同的2个红球,不同的3个白球,不同的4个黑球.若从中取2个不同色的球,则取法种数为________.

解:先分类、再分步,共有取法2×3+2×4+3×4=26种.故填26.

☆基本思路:大的方向分步,步中可能有类或步

例1:如图所示,使电路接通,开关不同的开闭方式有( )

A.11种B.20种

C.21种D.12种

解:分两步,第一部分接通,则可能有一个接通或者两个都接通,有3种可能;第二部分接通,则可能恰有一个接通或恰有两个接通或者都接通,有7种可能。从而总共有37=21

种方式。

☆基本思路:排除法间接求解

例1:(2013·济南模拟)电路如图所示,在A,B间有四个开关,

若发现A,B之间电路不通,则这四个开关打开或闭合的方式有

( )

种种

种种

解:各个开关打开或闭合有2种情形,故四个开关共有24种可能,其中能使电路通的情形有:1,4都闭合且2和3中至少有一个闭合,共有3种可能,故开关打开或闭合的不同情形共有24-3=13(种).故选C.

☆剔除重复元素

例1:(2013·四川)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( )

.10 C

解:lg a-lg b=lg a

b

,而

1

3

3

9

3

1

9

3

,故所求为A25-2=18个,故选C.

☆投信问题

例1:将5封信投入3个邮筒,不同的投法共有( )

种种种种

解:第1封信,可以投入第1个邮筒,可以投入第2个邮筒,也可以投入第3个邮筒,共有3种投法;同理,后面的4封信也都各有3种投法.所以,5封信投入3个邮筒,不同的投法共有35种.故选B.

例2:有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法(不一定六名同学都能参加)

(1)每人恰好参加一项,每项人数不限;

(2)每项限报一人,且每人至多参加一项;

(3)每项限报一人,但每人参加的项目不限.

解(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有选法36=729(种).

(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,

第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).

(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步

乘法计数原理,得共有不同的报名方法63=216(种).

☆数字排列问题

例1:用数字0,1,2,3,4,5组成没有重复数字的四位数.

(1)可组成多少个不同的四位数

(2)可组成多少个不同的四位偶数

解:(1)直接法:A15A35=300;间接法:A46-A35=300.

(2)由题意知四位数的个位上必须是偶数,同时暗含了千位不能是0,因此该四位数的个

位和千位是“特殊位置”,应优先处理;另一方面,0既是偶数,又不能排在千位,属“特殊元素”,应重点对待.

解法一:(直接法)0在个位的四位偶数有A35个;0不在个位时,先从2,4中选一个放在个位,再从余下的四个数(不包括0)中选一个放在千位,应有A12A14A24个.

综上所述,共有A35+A12A14A24=156(个).

解法二:(间接法)从这六个数字中任取四个数字组成最后一位是偶数的排法,有A13A35个,其中千位是0的有A12A24个,故适合题意的数有A13A35-A12A24=156(个).

点拨:

本例是有限制条件的排列问题,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置,同时注意题中隐含条件0不能在首位.

例2:用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个(用数字作答).

解析数字2,3至少都出现一次,包括以下情况:

=4(个)四位数.

“2”出现1次,“3”出现3次,共可组成C1

4

“2”出现2次,“3”出现2次,共可组成C2

=6(个)四位数.

4

=4(个)四位数.

“2”出现3次,“3”出现1次,共可组成C3

4

综上所述,共可组成14个这样的四位数.

例3:(2014·武汉模拟)如果正整数M的各位数字均不为4,且各位数字之和为6,则称M为“幸运数”,则三位正整数中的“幸运数”共有____________个.

解:不含4,且和为6的三个自然数可能为(1,2,3),(1,5,0),(2,2,2),(3,3,0),(6,0,0).因此三位正整数中的“幸运数”有A33+2A22+1+A22+1=14(个).故填14.

☆错位排列

例1:将数字1,2,3,4填入标号为1,2,3,4的四个方格中,每格填一个数,则每个方格的标号与所填数字均不相同的填法有________种.

解析编号为1的方格内填数字2,共有3种不同填法;编号为1的方格内填数字3,共有3种不同填法;编号为1的方格内填数字4,共有3种不同填法.于是由分类加法计数原理,得共有3+3+3=9(种)不同的填法.

例2:(2013·成都模拟)用6个字母A,B,C,a,b,c编拟某种信号程序(大小写有区别).把这6个字母全部排到如图所示的表格中,每个字母必须使用且只使用一次,不同的排列方式表示不同的信号,如果恰有一对字母(同一个字母的大小写)排到同一列的上下格位置,那么称此信号为“微错号”,则不同的“微错号”总个数为( )

B.288

解:根据题意,分3步进行:①先确定排到同一列的上下格位置的一对字母,有C13=3种情况,将其放进表格中,有C13=3种情况,考虑这一对字母的顺序,有A22=2种不同顺序;

②再分析第二对字母,其不能排到同一列的上下格位置,假设①选定的一对大小写字母为A 和a,则分析B与b:B有4种情况,b的可选位置有2个;③最后一对字母放入最后两个位置,有A22=2种放法.则共有3×3×2×4×2×2=288个“微错号”.故选B.

☆选派分配问题

例1:2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( )

A.36种B.12种C.18种D.48种

解:根据题意分2种情况讨论,①若小张或小赵入选,则有选法C

21C

2

1A

3

3=24;

②若小张、小赵都入选,则有选法A

22A

3

2=12,共有选法12+24=36种,故选A.

例2:2015年开春之际,六中食堂的伙食在百升老师的带领下进行了全面升级.某日5名同学去食堂就餐,有米饭,花卷,包子和面条四种主食.每种主食均至少有一名同学选择且每人只能选择其中一种.花卷数量不足仅够一人食用,甲同学因肠胃不好不能吃米饭,则不同的食物搭配方案种数为()

A. 96 B. 120 C. 132 D. 240

解:分类讨论:甲选花卷,则有2人选同一种主食,方法为=18,剩下2人选其余主食,方法为=2,共有方法18×2=36种;

甲不选花卷,其余4人中1人选花卷,方法为4种,甲包子或面条,方法为2种,其余3人,若有1人选甲选的主食,剩下2人选其余主食,方法为3=6;若没有人选甲选的主食,方法为=6,共有4×2×(6+6)=96种,

故共有36+96=132种,故选:C.

☆分堆与分配问题

例1:现有6本不同的书:

(1)甲、乙、丙三人每人两本,有多少种不同的分配方法

(2)分成三堆,每堆2本,有多少种分堆方法

(3)分成三堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法

(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本,有多少种不同的分配方法

(5)甲、乙、丙三人中,一人分4本,另两人每人分1本,有多少种不同的分配方法

解:(1)在6本书中,先取2本给甲,再从剩下的4本书中取2本给乙,最后两本给丙,

共有C 26C 24C 2

2=90(种)分配方法;

(2)6本书平均分成3堆,用上述分法重了A 33

倍,故共有C 26C 2

4

A 33

=15(种)分堆方法;

(3)从6本书中,先取1本作为一堆,再在剩下的5本中取2本作为一堆,最后3本作为一堆,共有C 16C 25C 3

3=60(种)分堆方法;

(4)在(3)的分堆中,甲、乙、丙三人任取一堆,共有C 16C 25C 33A 3

3=360(种)分配方法. (5)先分堆、再分配,共有C 46C 12C 1

1

A 22

·A 33=90(种)分配方法.

点拨:

平均分配给不同人的分法等于平均分堆的分法乘以堆数的全排列.分堆到位相当于分堆后各堆再全排列,平均分堆不到指定位置,其分法数为:平均分堆到指定位置

堆数的阶乘.对于分堆与分

配问题应注意:①处理分配问题要注意先分堆再分配.②被分配的元素是不同的(像“名额”等则是相同元素,不适用),位置也应是不同的(如不同的“盒子”).③分堆时要注意是否均匀.如6分成(2,2,2)为均匀分组,分成(1,2,3)为非均匀分组,分成(4,1,1)为部分均匀分组.

例2:4个不同的球,4个不同的盒子,把球全部放入盒内. (1)恰有1个盒不放球,共有多少种放法 (2)恰有2个盒不放球,共有多少种放法

解:(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有多少种放法”即把4个球分成2,1,1的三组,

然后进行全排列,共有C 14

·C 24C 12C 1

1A 22

·A 3

3=144(种)放法.

(2)确定2个空盒有C 24种方法.4个球放进2个盒子可分成(3,1),(2,2)两类,第一类

为有序不均匀分组,有C 34C 11A 22种放法;第二类为有序均匀分组,有C 24C 2

2A 22

·A 2

2种放法,故共有

? ??

??C 34C 11A 22+C 24C 2

2A 22·A 22C 24=84(种).

☆相邻捆绑,不邻插空

例1:3名女生和5名男生排成一排 (1)如果女生全排在一起,有多少种不同排法 (2)如果女生都不相邻,有多少种排法 (3)如果女生不站两端,有多少种排法

(4)其中甲必须排在乙前面(可不邻),有多少种排法 (5)其中甲不站左端,乙不站右端,有多少种排法

解 (1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起

有6个元素,排成一排有A 66种排法,而其中每一种排法中,三个女生间又有A 3

3种排法,因此共有A 66·A 33=4 320(种)不同排法.

(2)(插空法)先排5个男生,有A 5

5种排法,这5个男生之间和两端有6个位置,从中选取3

个位置排女生,有A 36种排法,因此共有A 55·A 36=14 400(种)不同排法.

(3)法一(位置分析法) 因为两端不排女生,只能从5个男生中选2人排列,有A 25种排法,

剩余的位置没有特殊要求,有A 66种排法,因此共有A 25·A 66=14 400(种)不同排法.

法二(元素分析法) 从中间6个位置选3个安排女生,有A 36种排法,其余位置无限制,有

A 55种排法,因此共有A 36·A 55=14 400(种)不同排法.

(4)8名学生的所有排列共A 88

种,其中甲在乙前面与乙在甲前面的各占其中12,∴符合要求的排法种数为1

2

A 88=20 160(种).

(5)甲、乙为特殊元素,左、右两边为特殊位置.

法一(特殊元素法) 甲在最右边时,其他的可全排,有A 77种;甲不在最右边时,可从余下6个位置中任选一个,有A 16种.而乙可排在除去最右边位置后剩余的6个中的任一个上,

有A 16种,其余人全排列,共有A 16·A 16·A 66种.

由分类加法计数原理,共有A 77+A 16·A 16·A 66=30 960(种).

法二(特殊位置法) 先排最左边,除去甲外,有A 17种,余下7个位置全排,有A 77种,但应剔除乙在最右边时的排法A 16·A 66种,因此共有A 17·A 77-A 16·A 66=30 960(种).

法三(间接法) 8个人全排,共A 88种,其中,不合条件的有甲在最左边时,有A 77种,乙在

最右边时,有A7

7种,其中都包含了甲在最左边,同时乙在最右边的情形,有A6

6

种.因此共

有A8

8-2A7

7

+A6

6

=30 960(种).

规律方法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在

实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.

(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制

条件的排列问题的常用方法.

例2:有5盆菊花,其中黄菊花2盆、白菊花2盆、红菊花1盆,现把它们摆放成一排,要求2盆黄菊花必须相邻,2盆白菊花不能相邻,则这5盆花不同的摆放种数是( ) A.12 B.24 C.36 D.48

解:由题意,第一步将黄1与黄2绑定,两者的站法有2种,第二步将此两菊花看作一

个整体,与除白1,白2之外的一菊花看作两个元素做一个全排列有A

2

2种站法,此时隔开了

三个空,第三步将白1,白2两菊花插入三个空,排法种数为A

3

2,则不同的排法种数为

2×A

22×A

3

2=2×2×6=24.故选B.

例3:编号为1、2、3、4、5、6、7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有( )

A.60种 B.8种 C.20种 D.10种

解:四盏不亮灯有5个空位,再安排3亮灯,总有3

510

C 种方案。

例4:某班元旦晚会已经排好4个节目的顺序,先临时要增加2个节目进来,要求不打乱原来节目的顺序,则晚会节目的安排方案有______种。

解:原来4个节目有5个空位,先安排第一个节目,有5种方案;这时有6个空位,再安排第二个节目,有6种方案,所以总共有30种方案。

☆最短路走法问题

例1:A , B两地街道如图所示,某人要从A地前往B地,则路程最短的走法有种(用数字作答).

解:3右2上,共5步,从中选3步来右走余下则上走,走法

有3

510

C 种。

☆无区别元素分配的隔板法

例1. 求方程X+Y+Z=10的正整数解的个数。

解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空

至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x、y、z之值(如下图)。

则隔法与解的个数之间建立了一一对立关系,故解的个数为C

9

2=36(个)。

○ ○ ○∣○ ○ ○∣○ ○ ○ ○

例2:求方程X+Y+Z=10的非负整数解的个数。

解:注意到x、y、z可以为零,故上题解法中的限定“每空至多插一块隔板”就不成立了,怎么办呢只要添加三个球,给x、y、z各一个球。这样原问题就转化为求X+Y+Z=13的正整数

解的个数了,故解的个数为C

12

2=66(个)。

例3:将20个相同的小球放入编号分别为1,2,3,4的四个盒子中,要求每个盒子中的球数不少于它的编号数,求放法总数。

解法1:先在编号1,2,3,4的四个盒子内分别放0,1,2,3个球,剩下14个球,有

1种方法;再把剩下的球分成4组,每组至少1个,由例1知方法有C

13

3=286(种)。

解法2:第一步先在编号1,2,3,4的四个盒子内分别放1,2,3,4个球,剩下10个球,有1种方法;第二步把剩下的10个相同的球放入编号为1,2,3,4的盒子里,由例2

知方法有C

13

3=286(种)。

☆涂色问题

例1:有一个圆被两相交弦分成四块,现用5种不同的颜料给这四块涂色,要求相邻的两块颜色不同,每块只涂一种颜色,共有多少种涂色方法

解:如图,分别用A,B,C,D记这四个部分,A与C,B与D不相邻,因此,它们可以同色,也可以不同色.首先分两类,即A,C涂相同颜色和A,C涂不同颜色:

类型一,分三步:第一步,给A,C涂相同的颜色,有5种涂法;第二步,给B涂色有4种涂法;第三步,给D涂色,由于D与B可以涂相同的颜色,所以有4种涂法.由分步计数原理知,共有5×4×4=80种不同的涂法.

类型二,分四步:第一步,给A涂色,有5种涂法;第二步,给C涂色,有4种涂法;第三步,给B涂色有3种涂法;第四步,给D涂色有3种涂法.由分步计数原理知,共有5×4×3×3=180种不同的涂法.

综上,由分类计数原理可知,共有80+180=260种不同的涂法.

点拨:

本题也可以在分四步的基础上再分类来完成:A有5种涂法,B有4种涂法,若C与A相同,则D有4种涂法,若C与A不同,则C有3种涂法,且D有3种涂法,故有5×4×(4+3×3)=260种涂法.涂色问题多以平面、空间为背景,涂色对象以平面区域居多,也有以点或线为对象的涂色问题.此类问题往往需要多次分类、分步(也有用穷举法解决的题目),常用分类依据有:①所涂颜色种类(如本题,可依用4种、3种、2种色来分类);②可涂同色的区域(或点、线等)是否涂同色.

例2:给一个各边不等的凸五边形的各边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则不同的染色方法共有多少种

解法一:如图,染五条边总体分五步,染每一边为一步.当染边1时有3种染法,则染边2有2种染法.

(1)当边3与边1同色时有1种染法,则边4有2种染法,边5有1种染法,此时染法总数为3×2×1×2×1=12(种).

(2)当边3与边1不同色时,边3有1种染法,①当边4与边1同色时,边4有1种染法,边5有2种染法;②当边4与边1不同色时,边4有1种染法,边5有1种染法.则此时共有染法3×2×1×(1×2+1×1)=18(种).

综合(1)、(2),由分类加法计数原理,可得染法的种数为30种.

解法二:通过分析可知,每种色至少要染1次,至多只能染2次,即有一色染1次,剩余两种颜色各染2次.染五条边总体分两步.第一步选一色染1次有C13C15种染法,第二步另两色各染2次有2种染法,由分步乘法计数原理知,一共有2C13C15=30种染法.

☆几何中的计数问题

例1:从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有种.

3种不同的取法,而其中有2个解:使用间接法,首先分析从6个面中选取3个面,共C

6

3﹣8=12种,故答案为:12.面相邻,即8个角上3个相邻平面,选法有8种,则选法共有C

6

表面(含棱)上与顶点不重合的一点,由点P到四例2:如图,设P为正四面体A BCD

个顶点的距离组成的集合记为M,如果集合M中有且只有2个元素,那么符合条件的点P有()

A.4个个 C. 10个个

解:分以下两种情况讨论:(1)点P到其中两个点的的距离相等,到另外两个点的距离分别相等,且这两个距离相等,此时点P位于正四面体各棱的中点,符合条件的有6个点;(2)点P到其中三个点的的距离相等,到另外一个点的距离与它到其它三个点的距离不相等,此时点P在正四面体各侧面的中心,符合条件的有4个点;综上,满足题意的点共计10个,故答案选C.

例3:正方体8个顶点中取出4个,可组成()个四面体

解:所求问题的方法数=任意选四点的组合数-共面四点的方法数,共C(8,4)-12=70-12=58个。

☆创新问题

例1:(2014·福建)用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab 表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )

A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5

B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5

C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)

D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)

解:分三步:第一步,5个无区别的红球可能取出0个,1个,…,5个,则有(1+a+

a2+a3+a4+a5)种不同的取法;第二步,5个无区别的蓝球都取出或都不取出,则有(1+b5)种不同的取法;第三步,5个有区别的黑球中任取0个,1个,…,5个,有(1+C15c+C25c2+

C3 5c3+C4

5

c4+C5

5

c5)=(1+c)5种不同的取法,所以所求为(1+a+a2+a3+a4+a5)(1+b5)(1+c)5,

故选A.

例2:如果一个三位正整数如“a1a2a3”满足a1a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为( )

A.240 B.204 C.729 D.920

解析若a2=2,则“凸数”为120与121,共1×2=2个.若a2=3,则“凸数”有2×3=6个.若a2=4,满足条件的“凸数”有3×4=12个,…,若a2=9,满足条件的“凸数”

有8×9=72个.∴所有凸数有2+6+12+20+30+42+56+72=240(个).

习题荟萃

1、(2014·北京卷)把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不

相邻,则不同的摆法有________种.

解析记5件产品为A、B、C、D、E,A、B相邻视为一个元素,先与D、E排列,有A22A33种方法;再将C插入,仅有3个空位可选,共有A22A33C13=2×6×3=36(种)不同的摆法.答案36

2、(2014·重庆卷)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的

演出顺序,则同类节目不相邻的排法种数是( )

A.72 B.120 C.144 D.168

解析先不考虑小品类节目是否相邻,保证歌舞类节目不相邻的排法共有A3

3·A3

4

=144种,

再剔除小品类节目相邻的情况,共有A3

3·A2

2

·A2

2

=24种,于是符合题意的排法共有144-

24=120种.答案B

3、(2015·杭州调研)四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方

案有________种.

解析分两步:先将四名优等生分成2,1,1三组,共有C2

4

种;而后,对三组学生全排三

所学校,即进行全排列,有A3

3

种.依分步乘法计数原理,共有N=C24A33=36(种).

4、在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同

排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )

A.10 B.11 C.12 D.15

解析与信息0110至多有两个对应位置上的数字相同的信息包括三类:

第一类:与信息0110有两个对应位置上的数字相同有C2

4

=6(个);

第二类:与信息0110有一个对应位置上的数字相同有C1

4

=4(个);

第三类:与信息0110没有一个对应位置上的数字相同有C0

4

=1(个);

故与信息0110至多有两个对应位置上的数字相同的信息有6+4+1=11(个).

答案B

5、将甲,乙等5位同学分别保送到北京大学,上海交通大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为( )种.

A.240 B.180 C.150 D.540

解:当5名学生分成2,2,1或3,1,1两种形式,

当5名学生分成2,2,1时,共有C

52C

3

2A

3

3=90种结果,

当5名学生分成3,1,1时,共有C

53A

3

3=60种结果,

∴根据分类计数原理知共有90+60=150 故选:C

6、小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有()

A. 4种B. 5种C. 6种D. 9种

解:记反面为1,正面为2;则正反依次相对有,两种;有两枚反面相对有,,;共5种摆法,故选B

7、我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼﹣15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有( )

A .12

B .18

C .24

D .48

解:把甲、乙看作1个元素和戊全排列,调整甲、乙,共有种方法,再把丙、丁

插入到刚才“两个”元素排列产生的3个空位种,有种方法,由分步计算原理可得总的方

法种数为:=24

故选C

8、某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( ) A.60

B.90

C.120

D.180

解:把新转来的4名学生平均分两组,每组2人,分法有2

244221

2

C C A 种,把这两组人安排

到6个班中的某2个中去,有26A 种方法,故不同的安排种数为226412

A C ,故选答案B.

9、如图,A 、B 、C 、D 为四个村庄,要修筑三条公路,将这四个村庄连起来,则不同的修筑方法共有( )

A .8种

B .12种

C .16种

D .20种

10、平面内有4个红点,6个蓝点,其中只有一个红点和两个蓝点共线,其余任意三点不共线,过这十个点中的任意两点所确定的直线中,至少过一红点的直线的条数是( )C A .27 B .28 C .29 D .30

11、已知身穿红、黄两种颜色衣服的各有两人,身穿蓝颜色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有( ) A .48种 B .72种 C .78种 D .84种

解析:由题意知先使五个人的全排列,共有A

5

5种结果.去掉相同颜色衣服的人相邻的情况,

穿蓝色相邻和穿黄色相邻两种情况∴穿相同颜色衣服的人不能相邻的排法是A

55﹣A

2

2A

2

2A

3

3﹣

2A

22A

2

2A

3

2=48,故选A.

12、两个三口之家,共4个大人,2个小孩,约定星期日乘“奥迪”、“捷达”两辆轿车结伴郊游,每辆车最多只能乘坐4人,其中两个小孩不能独坐一辆车,则不同的乘车方法种数是()

A. 40 B. 48 C. 60 D. 68

解:只需选出乘坐奥迪车的人员,剩余的可乘坐捷达.

若奥迪车上没有小孩,则有=10种;

若有一个小孩,则有(++)=28种;

若有两个小孩,则有+=10种.

故不同的乘车方法种数为10+28+10=48种.

故选:B.

13、现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为() A. 232 B. 252 C. 472 D. 484

解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,

故所求的取法共有﹣﹣=560﹣16﹣72=472

故选C.

14、如图所示的五个区域中,现有四种颜色可供选择.要求每一个区域只涂

一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为 ( )C

A.24种 B.48种 C.72种 D.96种

15、给四面体ABCD的六条棱分别涂上红,黄,蓝,绿四种颜色中的一种,使得有公共顶点

的棱所涂的颜色互不相同,则不同的涂色方法共有( )

A . 96

B .144 C. 240 D. 360

解析:先从红,黄,蓝,绿四种颜色中选一种,有1

4C 种,排列种数有44A ,故不同的涂色方法共有14

4

496C A =,故选A. 16、某人根据自己爱好,希望从{,,,}W X Y Z 中选2个不同字母,从{0,2,6,8}中选3 个不同数字编拟车牌号,要求前3位是数字,后两位是字母,且数字2不能排在首位,字母Z 和数字2不能相邻,那么满足要求的车牌号有

(A )198个 (B )180个 (C )216个 (D )234个 解析:不选2时,有32

3472A A 种,

选2,不选Z 时,有1222

2

32372C C A A 种,

选2,选Z 时,2在数字的中间,有211

32

336A C C 种,当2在数字的第三位时,21

3318A A 种,

根据分类计数原理,共有72+72+36+18=198,故选:A

17、将红、黑、蓝、黄4个不同的小球放入3个不同的盒子,每个盒子至少放一个球,且红球和蓝球不能放在同一个盒子,则不同的放法的种数为( ) A .18 B .24 C .30 D .36 解:将4个小球放入3个不同的盒子,

先在4个小球中任取2个作为1组,再将其与其他2个小球对应3个盒子, 共有C 42A 33=36种情况,

若红球和蓝球放到同一个盒子,则黑、黄球放进其余的盒子里,有A 33=6种情况, 则红球和蓝球不放到同一个盒子的放法种数为36-6=30种;故选C .

18、如图所示22?方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个, 允许重复.若填入A 方格的数字大于B 方格的数字,则不同的填法共有_______种(用数字作答).

解:若A 方格填3,则排法有232?种,若A 方格填2,则排法有231?种,所以不同的填法

有27种.

19、把13个相同的球全部放入编号为1、2、3的三个盒内,要求盒内的球数不小于盒号数,则不同的放入方法种数为( ) A

A .36 B. 45 C. 66

20、用直线m y =和直线x y =将区域222≤+y x 分成若干块。现在用5种不同的颜色给这若干块染色,每块只染一种颜色,且任意两块不同色,若共有120种不同的染色方法,则实数m 的取值范围是________;11<<-m

21、在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( ) A .10 B .11 C .12 D .15

解析 与信息0110至多有两个对应位置上的数字相同的信息包括三类: 第一类:与信息0110有两个对应位置上的数字相同有C 24=6(个); 第二类:与信息0110有一个对应位置上的数字相同有C 14=4(个); 第三类:与信息0110没有一个对应位置上的数字相同有C 04=1(个);

故与信息0110至多有两个对应位置上的数字相同的信息有6+4+1=11(个).

22、(2014·重庆卷)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目

的演出顺序,则同类节目不相邻的排法种数是

( )

A .72

B .120

C .144

D .168

解析 先不考虑小品类节目是否相邻,保证歌舞类节目不相邻的排法共有A 33·A 3

4=144种,再剔除小品类节目相邻的情况,共有A 33·A 22·A 22=24种,于是符合题意的排法共有144-

24=120种.

23、(2013·广东适应性测试)如图所示的几何体是由一个正三棱锥P -ABC 与一个正三棱柱ABC -A 1B 1C 1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A 1B 1C 1不染色),要求每面染一色,且相邻的面均不同色,则不同的染色方案共有( )

种种种种

解:先涂三棱锥P-ABC的三个侧面,然后涂三棱柱ABC-A1B1C1的三个侧面,当棱锥颜色确定后,棱柱对应有2种情形,即共有3×2×1×2=12种不同的染色方案.故选B.

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。 例2(1)如图为一电路图,从A 到B 共有 条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是 D C B A

两个基本计数原理教案

第一章计数原理 第1节两个基本计数原理 教材分析 本节课《分类计数原理与分步计数原理》是苏教版普通高中课程标准试验教科书(选修2-3)第一章第一节的内容,是本章后续知识的基础,对后续内容的学习有着举足轻重的作用,另外本节课涉及的分步、分类的思想是解决实际问题的最有效武器,是人们思考问题的最根本方法. 学情分析 高二学生已具备一定的数学知识和方法,能很容易的接受两个原理的内容,并应用原理解决一些简单的实际问题,这些形成了学生思维的“最近发展区”.虽然学生已经具备了一定的归纳、类比能力,但在数学的应用意识与应用能力方面尚需进一步培养.另外,学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。但在合作交流意识欠缺,有待加强. 目标分析 ⑴知识与技能 ①掌握分类计数原理与分步计数原理的内容 ②能根据具体问题的特征选择分类计数原理与分步计数原理解决一些简单实际问题. ⑵过程与方法 ①通过具体问题情境总结出两个计数原理,并通过实际事例学生感悟两个原理的应用并最终学会应用 ②通过“学生自主探究、合作探究,师生共究”更深刻的理解分类计数与分步计数原理,并应用它们解决实际问题 ⑶情感、态度、价值观 树立学生积极合作的意识,增强数学应用意识,激发学生学习数学的热情和兴趣. 教学重难点分析 教学重点:分类计数原理与分步计数原理的掌握 教学难点:根据具体问题特征选择分类计数原理与分步计数原理解决实际问题. 教法、学法分析 教法分析: ①启发探究法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。 ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。 学法分析:本节课要求学生自主探究,学会用类比的思想解决问题,树立学生的合作交流意识. 教学过程 一、创设情境:对于分类计数原理设计如下情境(看多媒体): 该情境是原教材上情境经过加工设计的,比原教材情境更加贴近学生生活,能够增强学生的有意注意,激发学生的兴趣,调动学生的主动性和积极性,从而进入思维情境接着是对情境的处理:在情境处理过程中要启发学生由特殊情形归纳出一般原理,遵循由简单到复杂的认知规律,我处理情境的办法是: 第一步在解决问题时首先让学生尝试分析,然后由学生代表分析解答,教师及时给出评价,并由老师给出解题过程,在这里由老师按分类计数原理给出解题过程,为学生顺利总结概括出原理做好铺垫. 第二步对原问题加以引申:若当天有4次航班,则有多少种不同方法? 设计的意图是让学生更清楚的认识到总方法数是各类方法数之和. 第三步提出问题:你能否尽可能简练的总结出问题1中的计数规律? 接着由学生分组讨论、总结问题1中计数规律,这样由学生总结归纳,并通过讨论准确叙述出分类计数原理,可以提高学生的数学表达意识,激发合作意识和竞争意识,体验获得成功的喜悦,也就完成了情感目标.

基本计数原理和排列组合

附 录 一.两个基本计数原理分类加法计数原理:做一件事情,完成它有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的办法……在第n 类办法中有m n 种不同的方法,那么完成这 件事情共有N=m 1+m 2+…+m n 种不同的方法。 分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一个步骤有m 1种不同的方法,做第二个步骤有m 2种不同的办法……做第n 个步骤有m n 种不同的方法,那么完成这件 事情共有N=m 1×m 2×…×m n 种不同的方法。 两个基本计数原理是解决计数问题最基本的理论根据,它们分别给出了用两种不同方式(分类和分步)完成一件事情的方法总数的计算方法。考虑用哪个计数原理,关键是看完成一件事情是否能独立完成,决定是分类还是分步。如果完成一件事情有n 类办法,每类办法都能独立完成,则用分类加法计数原理;如果完成一件事情,需要分成n 个步骤,各个步骤都是不可缺少的,需要依次完成所有步骤,才能完成这件事情,则用分步乘法计数原理。 二.排列 以下陈述中如无特别说明,n、m 都表示正整数。一般的,从n 个不同的元素中任取m (m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。如果要求排列中诸元素互不相同,则称为选排列;反之,若排列中的元素可以有相同时,则称为可重复排列。可重复排列在生活中比较常见,如电话号码、证件号码、汽车牌照,等等。从n 个不同的元素中任取m(m ≤n)个元素的所有排列的个数,叫做从n 个不同元素中任取m 个元素的排列数。用符号m n A 。为导出m n A 的计算公式,注意到对任一选排列,其第一位(从左到右计)可以放置编号1到n 的n 个元素的任意一个,共有n 种可能的结果;对于第一位的每一种放置结果,第二位可以放置剩下的n-1个元素中的任意一个,共有n-1种可能的结果;...,对于第m-1位的每一种放置结果,第m 位可以放置最后剩下的n-m+1个元素中的任何一个,共有n-m+1种可能结果。因此,根据乘法计数原理,有排列数公式: ) 1()2)(1(+---=m n n n n A m n (1.3)从n 个不同的元素全部取出的一个排列,叫做n 个不同元素的一个全排列,记作n n A ,也记之 为!n 。根据排列数的公式有 .12)1(!????-?=n n n (1.4)

知识点总结--3计数原理

计数原理知识点 知识网络 一、两个计数原理 1. 分类加法计数原理:完成一件事,有n 类办法, 在第1类办法中有1m 种不同的办法; 在第2类办法中有2m 种不同的方法; ..... 在第n 类办法中有n m 种不同的方法 那么,完成这件事共有n m m m N 21中不同的方法. 2. 分步乘法计数原理:完成一件事,需要分成n 个步骤, 做第1步有1m 种不同的方法; 做第2步有2m 种不同的方法; ..... 做第n 步有n m 种不同的方法 那么,完成这件事共有n m m m N 21种不同的方法.

3、两个计数原理的区别 二、排列与组合 1.排列 (1)排列定义:一般地,从n 个不同元素中取出)(n m m 个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。 (2)排列数:从n 个不同元素中取出)(n m m 个元素的所有不同排列的个数叫 做从n 个不同元素中取出m 个元素的排列数。用符号m n A 表示. (3)排列数公式: 其中*,N m n ,并且n m 特殊的,当n m 时,即有 n n A 称为n 的阶乘,通常用!n 表示,即 !n A n n 2. 组合: (1)组合定义:一般地,从n 个不同元素中取出)(n m m 个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。 (2)组合数:从n 个不同元素中取出)(n m m 个元素的所有不同组合的个数叫 做从n 个不同元素中取出m 个元素的组合数。用符号m n C 表示。 !!121m n n m n n n n A m n 1 2321 n n n A n n

小学奥数计数练习题:排列与组合

小学奥数计数练习题:排列与组合经典的排列与组合奥数题及答案 问题:小明所在的班级要选出4名中队长,要求每位同学在选票上写上名字,也能够写自己的名字。结果全班的每位同学都在自己的选票上写了4个互不相同的名字。当小明把同学们的选票收集后发现一个有趣的现象:就是任意取出2张选票,一定有且只有一个人的名字同时出现在2张选票上。请问:小明所在的班级共有多少人? 总体逻辑思路:首先,假设题目所说的情况存有。然后,得出班级人数。最后,构造出一个例子,说明确实存有这种情况。 我们先来证明这个班每个人都恰好都被选了4次。 思路简介:我们首先用反证法证明没有人被选了4次以上。因为平均每人被选了4次,既然没有人被选了4次以上,肯定也不存有被选了4次以下的人。所以,能够得到每个人恰好被选了4次。 首先证明没有人被选了4次以上,我们用反证法。 假设有一个人被选了4次以上(因为很容易证明这个班的人数肯定很多于7人,所以我们能够假设有一个人被选了4次以上),我们设这个人为A同学。接下来我们来证明这种情况不存有。 把所有选择A同学的选票集中到一起,有5张或5张以上。方便起见,我们把这些选票编号,记为A1选票,A2选票,A3选票,A4选票,A5选票,…。意思就是选择A同学的第1张选票,选择A同学的第2张选票,…。 这些选票都选择了A同学。因为任意2张选票有且只有1个人相同,所以这些选票上除了A同学外,其他都是不同的人。 我们还能够证明,这些并不是全部的选票,不是太难,就不证明了。

既然这些(所有选A同学的选票)不是全部的选票,我们再拿一张没有选择A同学的选票。方便起见,称之为B选票。 根据任意2张选票有且只有1个人相同,A1选票上必有一个人和B选票上的一个人是相同的,而且这个人不是A同学。 同样道理,第A2、A3、A4、A5、…上也必有一个人和B选票上的一个人是相同的,而且这个人不是A同学。 因为B选票上只有4个不同的人,而A1、A2、…,的数量大于4.所以,A1、A2、A3、…选票中至少有2张选票,除了A同学外还有一个共同的候选人。根据任意2张选票有且只有1个人相同,我们知道这是不能够的。 所以,没有人被选了4次以上。 因为平均每人被选4次,既然没有人被选4次以上,当然也就不可能有人被选4次以下。 所以,每个人恰好被选了4次!

【高中数学】计数原理总结

【高中数学】计数原理总结 知识梳理: 1. 分类加法计数原理和分布乘法计数原理 (1)如果完成一件事有n 类不同的方案,在第一类中有m1种不同的方法,在第二类中有m2种不同的方法,…,在第n 类中有mn 种不同的方法,那么完成这件事共有N=_________种不同的方法。 (2)如果完成一件事需要n 个不同的步骤,在第一步中有m1种不同的方法,在第二步中有m2种不同的方法,…,在第n 步中有mn 种不同的方法,那么完成这件事共有N=_________种不同的方法。 (3)分类和分布的区别,关键是看事件能否完成,事件完成了就是___________;必须要连续若干步才能完成则是 _____________。分类要用分类计数原理将种数_________,分步要用分步计数原理将种数_________。 2. 排列与组合 (1)排列 (1)(2)(1)()(1)321(1)(2)(1)()(1)321 !()! m n n n n n m n m n m A n n n n m n m n m n n m ---+---??=---+= ---??=- (1)(2)(!()!m n A n n n n n n m =--=- (2)组合 ①组合数公式(1)(2)(1)!()(1)321()!! m n n n n n m n C n m n m n m m ---+==---??- ①组合数的两个性质_______ _ ____、 。 ③区别排列与组合 3. 常见的解题策略有以下几种: (1)特殊元素优先安排的策略 (2)合理分类和准确分布的策略 (3)排列、组合混合问题先选后排的策略 (4)正难则反、等价转化的策略 (5)相邻问题捆绑的策略 (6)不相邻问题插空处理的策略 (7)定序问题除法处理的策略 (8)分排问题直排处理的策略 (9)“小集团”排列问题中先整体后局部的策略 (10)构造模型的策略。 4. 二项式定理 (1)二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n n n (2)通项:展开式的第1+r 项,即) ,,1,0(1n r b a C T r r n r n r ==-+ (3)二项式系数的性质: ①对称性:在二项展开式中,与首末两端等距离的任意两项的二项式系数相等。即 ①增减性与最值:二项式系数先增后减且在中间取得最大值 当n 是偶数时,中间一项取得最大值2n n C 当n 是奇数时,中间两项相等且同时取得最大值21-n n C =21+n n C ③二项式系数的和: 奇数项的二项式系数的和等于偶数项的二项式系数和。即 m n n m n C C -=n n n k n n n n C C C C C 2 210 =+???++???+++∴ 0213n-1n n n n C +C +=C +C +=2

排列组合与计数原理

排列组合与计数原理 【复习目标】1.能熟练的判断利用加法原理和乘法原理。简单的排列组合组合数公式。 【复习重难点】加法原理和乘法原理公式的计算及应用。 1.高三(1),(2),(3)班分别有学生52,48,50人。 (1)从中选1人当学生代表的不同方法有____________种; (2)从每班选1人组成演讲队的不同方法有____________种; (3)从这150名学生中选4人参加学代会的不同方法有____________种; (4)从这150名学生中选4人参加数理化三个课外活动小组,共有不同方法有__________种。 2.假设在200件产品中有三件次品,现在从中任意抽取5件,期中至少有2件次品的抽法有__________种。 3.若,64 3n n C A 则n=___________。 例1.在1到20这20个整数中,任取两个数相加,使其和大于20,共有________种取法。 变式训练:从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为_______。 例2.从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同的选择方案共有______________种. 例3.如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有_______ . 变式训练:要安排一份5天的值班表,每天有一人值班,现有5人,每人可以值多天班或不值班,但相邻两天不准由同一人值班,问此值班表共有_______ 种不同的排法.

两个计数原理与排列组合知识点与例题

两个计数原理与排列组合知识点及例题 两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个)

计数原理知识点总结与训练

计数原理知识点总结 一、两个计数原理 3、两个计数原理的区别 二、排列与组合 1、排列: 一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列 的个数叫做从n 个不同元素中取出m 个元素的排列数。用符号 表 示. 3、排列数公式: 其中 4、组合: 一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。 5、组合数: 从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。用符号 表示。 6、组合数公式: 其中 注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”. 7、性质: m n A m n A ()()() ()! ! 121m n n m n n n n A m n -= +---=Λ . ,,*n m N m n ≤∈并且m n C ()()() ()! !! !121m n m n m m n n n n C m n -= +---= Λ . ,,*n m N m n ≤∈并且m n n m n C C -=m n m n m n C C C 1 1+-=+

三、二项式定理 如果在二项式定理中,设a=1,b=x ,则可以得到公式: 2、性质: 0241351 2 n n n n n n n C C C C C C -=+++=+++=L L 奇数项二项式系数和偶数项二项式系数和:

两个计数原理、排列与组合

全国卷五年考情图解高考命题规律把握 1.考查形式 高考在本章一般命制1道 小题或者1道解答题,分 值占5~17分. 2.考查内容 计数原理常与古典概型综 合考查;对二项式定理的 考查主要是利用通项公式 求特定项;对正态分布的 考查,可能单独考查也可 能在解答题中出现;以实 际问题为背景,考查分布 列、期望等是高考的热点 题型. 3.备考策略 从2019年高考试题可以 看出,概率统计试题的阅 读量和信息量都有所加 强,考查角度趋向于应用 概率统计知识对实际问题 作出决策. 第一节两个计数原理、排列与组合 [最新考纲] 1.理解分类加法计数原理和分步乘法计数原理.2.能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.3.理解排列的概念

及排列数公式,并能利用公式解决一些简单的实际问题.4.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题. 1.两个计数原理 分类加法计数原理 分步乘法计数原理 条件 完成一件事有两类不同方案,在 第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法 完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法 结论 完成这件事共有N =m +n 种不同的方法 完成这件事共有N =mn 种不同的方法 排列的定义 从n 个不同元素中取出 m (m ≤n )个元素 按照一定的顺序排成一列 组合的定义 合成一组 排列数 组合数 定义 从n 个不同元素中取出 m (m ≤n )个元素的所有不同排 列的个数 从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数 公式 A m n =n (n -1)(n -2)…(n -m + 1)= n ! (n -m )! C m n =A m n A m m =n (n -1)(n -2)…(n -m +1)m ! 性质 A n n =n !,0!=1 C m n =C n -m n ,C m n +C m -1n =C m n +1 一、思考辨析(正确的打“√”,错误的打“×”) (1)所有元素完全相同的两个排列为相同排列. ( ) (2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.

计数原理-排列组合

排列组合 知识点 一、排列 定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定顺序排成一列,叫做从n 个不同元素中 取出m 个元素的一个排列;排列数用符号m n A 表示 对排列定义的理解: 定义中包括两个基本内容:①取出元素②按照一定顺序。因此,排列要完成的“一件事情”是“取出m 个元素,再按顺序排列” 相同的排列:元素完全相同,并且元素的排列顺序完全相同。若只有元素相同或部分相同,而排列顺序不相同,都是不同的排列。比如abc 与acb 是两个不同的排列 描述排列的基本方法:树状图 排列数公式:),)(1()2)(1(*∈+-???--=N m n m n n n n A m n 我们把正整数由1到n 的连乘积,叫做n 的阶乘,用!n 表示,即12)2()1(!??????-?-?=n n n n ,并规定1!0=。 全排列数公式可写成!n A n n =. 由此,排列数公式可以写成阶乘式: )!(!)1()2)(1(m n n m n n n n A m n -= +-???--=(主要用于化简、证明等) 二、组合 定义:一般地,从n 个不同元素中取出)(n m m ≤个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合;组合数用符号m n C 表示 对组合定义的理解: 取出的m 个元素不考虑顺序,也就是说元素没有位置要求,无序性是组合的特点. 只要两个组合中的元素完全相同,则不论元素的顺序如何,都是相同的组合.只有当两个组合中的元素不完全相同时,才是不同的组合 排列与组合的区别:主要看交换元素的顺序对结果是否有影响,有影响就是“有序”,是排列问题;没影响就是“无序”,是组合问题。 组合数公式: ),()!(!!!)1()2)(1(n m N m n m n m n m m n n n n A A C m m m n m n ≤∈-=+-???--==*,且 变式:),,()! ()1()2)(1()!(!!n m N m n C m n m n n n m n m n C m n n m n ≤∈=-+???--=-= *-且

计数原理与排列组合

计数原理与排列组合 计数原理一、知识导学 1.分类计数原理:完成一件事n类办法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法. 2. 分步计数原理:完成一件事分成n个步骤,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法. 二、经典例题导讲[例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( ) A .12 种 B .7种 C .24种 D .49种 分析:学生进门有7种选择,同样出门也有7种选择,由分步计数原理,该学生的进出门方案有7×7=49种. ∴应选D . [例3]三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到几个不同的三位数(6不能作9用). 解:解法一 第一步,选数字.每张卡片有两个数字供选择,故选出3个数字,共有3 2=8种选法.第二步,排数字.要排好一个三位数,又要分三步,首先排百位,有3种选择,由于排出的三位数各位上的数字不可能相同,因而排十位时有2种选择,排个位只有一种选择.故能排出3×2×1=6个不同的三位数. [例5] 用0,1,2,3,4,5这六个数字, (1)可以组成多少个数字不重复的三位数? (2)可以组成多少个数字不重复的三位奇数? (3)可以组成多少个数字不重复的小于1000的自然数? 解:(1)分三步:①先选百位数字,由于0不能作为百位数,因此有5种选法;②十位数字有5种选法;③个位数字有4种选法.由分步计数原理知所求三位数共有5×5×4=100个. (3)分三步:①先选个位数字,由于组成的三位数是奇数,因此有3种选法;②再选百位数字有4种选法;③个位数字也有4种选法.由分步计数原理知所求三位数共有3×4×4=48个. (4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数,共有5×5×4=100个.因此,比1000小的自然数共有6+25+100=131个 四、典型习题导练 1.将4个不同的小球放入编号为1、2、3的三个不同的盒子中,其中每个盒子都不空的放法共有( ) A .43种 B .3 4种 C .18种 D .36种

两个计数原理与排列组合知识点及例题

两个计数原理与排列组合知识点及例题两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1 某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个) 【例题解析】 1、某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?

12.1计数原理与简单排列组合问题

第十二章 计数原理 本章知识结构图 第一节 计数原理与简单排列组合问题 考纲解读 1.理解分类加法计数原理和分步乘法计数原理. 2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题. 3.理解排列、组合的概念. 4.能用计数原理推导排列数、组合数公式. 命题趋势探究 1.本节为高考必考内容,一般有1~2道选择题或填空题. 2.题目主要以实际应用题形式出现. 3.试题的解法具有多样性,一般根据计数重复或遗漏来设计错误选项,在解答选择题时可通过正向(分类相加)和反向(总数减去对立数)互相检验,也可以通过排除法筛选正确选项. 知识点精讲 基本概念 1.分类加法计数原理 ○ 1有n 类方法 完成一件事 ○ 2任两类无公共方法(互斥) 共有N = ○ 3每类中每法可单独做好这件事 12n m m m ++???+ 种不同方法.如图12-1所示.

计 计 A 计计计计1 计计1 计计2 计计 m1 计计计计n 计计1 计计2 计计 m n m1计 m n计 计计计计A计计 m1+m2+m3+···+m n计计计计计计 图12-1 2.分步乘法计数原理 ○1必须走完n步,才能完成任务 完成一件事○2前一步怎么走对后一步怎么共有N 走无影响(独立) 12n m m m =??????种不同方法.如图12-2所示. m1计m n计 计计计计B计计m1×m2×m3×···×m n计计计计计 计 m2计m i计 图12-2 两个原理及其区别. 分类加法计数原理和“分类”有关,如果完成某件事情有n类办法,这n类办法之间是互斥的,那么求完成这件事情的方法总数时,就用分类加法计数原理. 分步乘法计数原理和“分步”有关,是针对“分步完成”的问题.如果完成某件事情有n个步骤,而且这几个步骤缺一不可,且互不影响(独立),当且仅当依次完成这n个步骤后,这件事情才算完成,那么求完成这件事情的方法总数时,就用分步乘法计数原理. 当然,在解决实际问题时,并不一定是单一应用分类计数原理或分步计数原理,有时可能同时用到两个计数原理.即分类时,每类的方法可能运用分步完成;而分步后,每步的方法数可能会采取分类的思想求方法数.对于同一问题,我们可以从不同的角度去处理,从而得到不同的解法(但方法数相同),这也是检验排列组合问题的很好方法. 3.排列与排列数 从n个不同元素中取出m(m≤n)个(不同)元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列.从n个不同元素中选取m个元素(n≥m)的排列个数 共有A m n . ()()() A121 m n n n n n m =--???-+ g g g g (m个连续正整数之积,n为最大数). ()() A12321! n n n n n n =--???= g g g g g g 注

计数问题与排列组合问题

计数问题与排列组合问题 一、北京考题特征分析: (05)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚 三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为 ( ) A .4841212 14C C C B .4841212 14A A C C .33484121214A C C C D .33 484121214A C C C 分步计数原理,易错选D. 这种错点训练应当从怎样算完成一件事情分析起,对于错的应当举例说明为什么错. (06年未考) (07理)记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不 排在两端,不同的排法共有( ) A.1440种 B.960种 C.720种 D.480种 以相邻与位置受限相结合(两个条件)基础,有原型略高于简单原型 启发:对基本型适度组 合命题 (07文)某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的 牌照号码共有( ) A.()2142610C A 个 B.242610A A 个 C.()2142610C 个 D.242610A 个 考察分步计算原理与可重复,不可重复问题结合,考察全面,学生审题能力. (08年未考) 但在概率解答题中涉及到. (09理)7.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为 ( ) A .324 B .328 C .360 D .648 (2010年)(4)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为 (A )8289A A (B )8289A C (C ) 8287A A (D )8287A C (2011年) (12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有 __________个。(用数字作答) 北京的考题的确重在凸现两个基本原理,在每一类或是每一步计数考虑正确用排列数或 是组合数来表示。教学时始终抓住完成一件事情需要分为几类或是几步来完成. 教学时注意控制层次,首先学生要能列出符合条件的,不重不漏的列出;能够正确的用 排列数、组合数来表示一个计数问题.

计数原理与排列组合(教师用)

姓名学生姓名填写时间2016-12-7学科数学年级高三教材版本人教版阶段第( 48 )周观察期:□维护期:□ 课题 名称排列组合课时计划 第()课时 共()课时 上课时间2016-12-8 教学目标大纲教学目标 1、理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用 问题. 2、理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解 决一些简单的应用问题. 个性化教学目标体会分类讨论的思想 教学重点1、正确区分排列与组合,熟练排列数与组合数公式 2、能熟练利用排列数与组合数公式进行求值和证明. 教学 难点 分类讨论思想的灵活应用 教学过程问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4 班, 汽车有2班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法 一、分类计数原理 完成一件事,有n类办法. 在第1类办法中有m1种不同的方法,在第2类方法中有m2种不同的方法,……,在第n类方法中有mn种不同的方法,则完成这件事共有 12n N m m m =+++种不同的方法 说明:1)各类办法之间相互独立,都能独立的完成这件事,要计算方法种数,只需将各类方法数相加,因此分类计数原理又称加法原理 2)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数. 第一部分:计数原理

又称乘法原理

一、问题引入 问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另一名同学参加下午的活动,有多少种不同的选法 问题2:从1、2、3、4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数 问题1和2的共同点是什么 二、排列 1、对排列定义的理解. 定义:一般地,从n 个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. 2、相同排列. 如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. 3、排列数. 从n 个不同元素中取出m(m≤n)个元素的所有不同的排列的个数,称为从n 个不同元素中取出m 个元素的排列数.用符号 m n A 表示. 且有:n n A 第二部分:排列

(完整版)计数原理知识点、题型小结doc

第一章、计数原理知识点小结 一、分类加法计数原理与分步乘法计数原理 1.分类计数原理-加法原理:如果完成一件事有 不同的方案,由第1类方案中有1m 种方法, 在第2类方案中有2m 种不同的方法,种方法类方案中有第n m n 那么, 完成这件工作共有 种不同的方法. 2.分步计数原理-乘法原理:完成一件事需要 步骤,完成第1步有1m 种不同的方法,完成第 2步有2m 种不同的方法,,种方法步中有第n m n 那么,完成这件工作共有 种不同方法。 3.两种方法的区别与联系: 4.用两个计数原理解决计数问题时,需要注意的问题有哪些?最重要的是在开始计算之前进行仔细 分析,弄清楚是一件什么事,正确选择是先分类还是先分步.分类要做到“不重不漏”,分类后再分 别对每一类进行计数,最后用加法原理求和;分步要做到“步骤完整”,完成所有步骤,恰好完成任 务. 分步后要计算每一步的方法数,把每一步的方法数相乘,得到总数。 5.常用的方法有:填空法,使用时注意: 6.常见的题型: (1)有关数字排列问题 例1:由数字4,5,6,7组成的所有的不重复的三位数的个数为?(可以重复的三位数字又有多少个 呢?) 变式1:由0,1,2,3,4,5,6,这七个数字可以组成多少个无重复数字的四位偶数? 小结: (2)形如n m m n 和的问题。 例2:5名学生从3项体育项目中选择参赛,若每一名学生只能参加一项,则有多少种不同的参赛方 法? 变式1:若5名学生争夺3项比赛冠军(每一名学生参赛项目不限),则冠军获得者有几种不同的情 况(没有并列冠军) 小结: (3)涂色问题 4块(ABCD )涂色要求共边两块颜色互异,求有多少种不同的涂色方案? 变式:将红、黄、绿、黑四种不同的颜色涂入图中的五个区域内,要求相邻的两个区域的颜色都不 同,则有多少种不同的涂色方法? 小结:

专题十 计数原理第三十讲 排列与组合 (1)

专题十 计数原理 第三十讲 排列与组合 一、选择题 1.(2018全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥 德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112 B .114 C .115 D .118 2.(2017新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人 完成,则不同的安排方式共有 A .12种 B .18种 C .24种 D .36种 3.(2017山东)从分别标有1,2,???,9的9张卡片中不放回地随机抽取2次,每次抽取 1张.则抽到的2张卡片上的数奇偶性不同的概率是 A .518 B .49 C .59 D .79 4.(2016年全国II)如图,小明从街道的 E 处出发,先到 F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 A .24 B .18 C .12 D .9 5.(2016四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为 A .24 B .48 C .60 D .72 6.(2015四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的 偶数共有 A .144个 B .120个 C .96个 D .72个 7.(2014新课标1)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周 日都有同学参加公益活动的概率为 A . 18 B .38 C .58 D .78 8.(2014广东)设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A .60 B .90 C .120 D .130 9.(2014安徽)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60?的共

计数排列与组合

计数排列与组合 一.排列 1.相邻问题——捆绑法 5名男生、2名女生站成一排,求以下情况下不同站法 (1)2名女生相邻 (2)男生相邻 (3)男生站一起,女生站一起 6人站成一排,甲、乙、丙3人必须站在一起的所有排列的种数为( ) A.66A B 333A . C.3333A A D.3344A A 7人站成一排,其中甲、乙相邻且丙丁相邻,共有不同的排数为________. 由1,2,3,4,5组成没有重复数字的四位数中,含数学2,52,5且相邻的四位数的个数 是_________.232332 ,:C A A 一取二排 2.不相邻问题——插空法 5名男生、2名女生站成一排,求以下情况下不同站法 (1)甲、乙不相邻 (2)女生不相邻 8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( ) A.2988A A B 2988C A . C.2788A A D.2788C A 有数学书3本,语文书2本,物理书1本,若将其并排摆放在书架的同一层上,则同类书都不相邻的放法数为_______.120 在5,4,3,2,1的任一排列中,使相邻两数都互质的排列方式共有________种. 某班班会准备从含甲、乙的8名学生中选取4人发言,要求甲、乙2人至少有一人参加,若甲、乙同时参加,则他们发言时的顺序不能相邻,那么不同的发言顺序种数为( ) A.960 B.1040 C.1140 D.1320 (分析:分两类:①甲、乙中只有1人参加发言.此类无特殊要求故134264960C C A = ②甲、乙2人都参加发言.此类有”不相邻”要求故222623180C A A =)

计数原理(最全面的方法汇总)

计数原理(排列组合)插空法,挡板法,捆绑法,优选法,平均分配问题等例题精选+练习 一、挡板法(插板法、隔板法、插刀法) 将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为挡板法。 (1)例题解读 【例1】共有10完全相同的球分到5个盒里,每个盒至少要分到一个球,问有几种不同分法? 解析:我们可以将10个相同的球排成一行,10个球之间出现了9个空隙,现在我们用4个档板”插入这9个空隙中,就“把10个球隔成有序的5份,每个盒子依次按盒子序号分到对应位置的几个球(可能是1个、2个、3个、4个、5个),这样,借助于虚拟“档板”就可以把10个球分到了5个班中。 【基本题型的变形(一)】 题型:有n个相同的元素,要求分到m组中,问有多少种不同的分法? 解题思路:这种问题是允许有些组中分到的元素为“0”,也就是组中可以为空的。对于这样的题,我们就首先将每组都填上1个,这样所要元素总数就m个,问题也就是转变成将(n+m)个元素分到m组,并且每组至少分到一个的问题,也就可以用插板法来解决。 【例2】有8个相同的球放到三个不同的盒子里,共有()种不同方法. A.35 B.28 C.21 D.45 解答:题目允许盒子有空,则需要每个组添加1个,则球的总数为8+3×1=11,此题就有C (10,2)=45(种)分法了,选项D为正确答案。 【基本题型的变形(二)】 题型:有n个相同的元素,要求分到m组,要求各组中分到的元素至少某个确定值S(s>1,且每组的s值可以不同),问有多少种不同的分法? 解题思路:这种问题是要求组中分到的元素不能少某个确定值s,各组分到的不是至少为一个了。对于这样的题,我们就首先将各组都填满,即各组就填上对应的确定值s那么多个,这样就满足了题目中要求的最起码的条件,之后我们再分剩下的球。这样这个问题就转变为上面我们提到的变形(一)的问题了,我们也就可以用插板法来解决。 【例3】15个相同的球放入编号为1、2、3的盒子内,盒内球数不少于编号数,有几种不同的放法? 解析: 编号1:至少1个,符合要求。

相关主题
文本预览
相关文档 最新文档