当前位置:文档之家› 如何提高结构设计的能力

如何提高结构设计的能力

如何提高结构设计的能力
如何提高结构设计的能力

先用铅笔草勾轮廓,再来多加练习反复细细推敲,不断修改成熟,画好了找个人给你看看,指点下你考虑不周全的地方,几次后,你的建筑方案设计水平就大有提高。

总体来说:考虑建筑的交通路线,要把握好房间的主次,以及它们之间的联系。

下面是我从收集的一些网友一:

1)要勤快,多做事。

2)要多问。多问能够避免一些低级错误。

3)尽量跟一个好的老师。(前辈们一再强调这一点的重要性)。

4)很重要的一点是虚心像工地上的人请教

网友二:

1、多看构造手册(补充经验不足)

2、熟悉绘图软件和计算软件(提高工作效率,以免被领导批评)

3、搞好和同志们的关系,多听、多看、少说话(面的显得外行)

4、多看院内成功的图纸(汲取经验)

网友三

1,千万不要眼高手低

2,要有耐性,不甘寂寞,但要耐得住寂寞

3,要从小构件,小工程做起

4,尊敬领导,团结同事

网友四(可能与话题无关,但觉得有用):

结构设计的基本功:

(1)与勘测单位商定基础做法和坦置深度;

(2)配合建筑专业拟定结构布置方案;

(3)估计各结构构件的截面尺寸;

(4)对建筑专业方案指出对结构受力不利的薄弱环节,并修改;

(5)从宏观整体观察对结构抗震性能做出评价;

(6)熟悉结构的构造措施;

(7)掌握机算也要能手算,会用于算草核机算计算结果

(8)绘制清晰正确的施工图纸;

(9)熟记民用建筑设计荷载;

(1O)熟记常用强度等级混凝土及钢筋的设计强度;

(11)熟记各种规格钢筋截面积——以至多根同规格钢筋总截面积。

网友五:

我三年时间就做遍了包括高层的大部分结构。现在做了公司结构组长,我有以下的经验,

1。要用心去钻,遇到问题首先要运用自己的知识去思考,再去查资料,最后在把自己的想法和总工讨论,这样老同志会尊重你且会喜欢你。

2。多学软件,这绝对是年轻人的优势。

3。多积累资料,图纸和论文。

4。自己的设计一定要反复思考复核

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

船体强度与结构设计复习材料

船体强度与结构设计复习材料 绪论 1.船体强度:是研究船体结构安全性的科学。 2.结构设计的基本任务:选择合适的结构材料和结构型式,决定全部构建的尺寸和连接方式,在保证具有充足的强度和安全性等要求下,使结构具有最佳的技术经济性能。 3.全船设计过程:分为初步设计、详细设计、生产设计三个阶段。 4.结构设计应考虑的方面:①安全性;②营运适合性;③船舶的整体配合性;④耐久性;⑤工艺性;⑥经济性。 5.极限状态:是指在一个或几个载荷的作用下,一个结构或一个构件已失去了它应起的各种作用中任何一种作用的状态。 引起船体梁总纵弯曲的外力计算 船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁。 总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。 总纵强度:船体梁抵抗总纵弯曲的能力。 引起船体梁总纵弯曲的主要外力:重力与浮力。 船体梁所受到的剪力和弯矩的计算步骤: ①计算重量分布曲线平p(x); ②计算静水浮力曲线bs(x); ③计算静水载荷曲线qs(x)=p(x)-bs(x); ④计算静水剪力及弯矩:对③积分、二重积分; ⑤计算静波浪剪力及弯矩: ⑥计算总纵剪力及弯矩:④+⑤。 重量的分类: ①按变动情况来分:不变重量(空船重量)、变动重量(装载重量); ②按分布情况来分:总体性重量(沿船体梁全场分布)、局部性重量(沿船长某一区段分布)。静力等效原则: ①保持重量的大小不变;②保持重心的纵向坐标不变; ③近似分布曲线的范围与该项重量的实际分布范围相同或大体相同。 浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线。 载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。载荷、剪力和弯矩之间的关系: ①零载荷点与剪力的极值相对应、零剪力点与弯矩的极值相对应; ②载荷在船中前后大致相等,故剪力曲线大致是反对成的,零点靠近船中,在首尾端约船长的1/4处具有最大正、负值; ③两端的剪力为零,弯矩曲线在两端的斜率为零(与坐标轴相切)。 计算状态:指在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态,一般包括满载、压载、空载等和按装载方案可能出现的最为不利以及其它正常营运时可能出现的更为不利的装载状态。 挠度及货物分布对静水弯矩的影响: ①挠度:船体挠度对静水弯矩的影响是有利的;

《结构的强度和稳定性》教学设计

《技术与设计2》第一章第三节《结构的强度和稳定性》教学设计 《结构的强度和稳定性》教学设计 一、教材分析: 本节是“地质”出版的教材《技术与设计2》中第一章第三节《结构的强度和稳定性》。共需2课时完成。本课为第1课时的学习。该章的总体设计思路是:认识结构——探析结构——设计结构——欣赏结构。“结构”与“设计”是该章的两个核心概念,结构的强度和稳定性则是结构设计中需要考虑的重要因素之一,是对结构及受力认识的基础上作进一步深入的学习。 二、教学目标: 知识与技能: 1、理解力、强度、应力的概念,能进行简单的应力计算,掌握应力和强度的关系。 2、通过实验,明确强度与材料、强度与物体的形状及连接方式的关系。培养学生合作交流能力,对身边事物的观察能力。 3、理解稳定性的概念,及影响稳定性的因素。 过程与方法:通过观察生活和技术实验等方法使学生懂得应用相关的理论知识。 情感态度价值观:让学生亲身体验注重交流,通过分析讨论得到结论,培养学生的观察分析能力,合作交流能力。 三、教学重点与难点: 重点:影响结构强度和稳定性的主要因素。 难点:应力的计算,强度与应力的关系,结构设计需要在容许应力围之。 四、学情分析: 总体来说学生对通用技术这门课程比较感兴趣。他们的思维、生活经验已有一定基础,并在前面章节的学习中已经初步掌握了结构的一些相关知识,在此基础上帮助学生从其生活世界中选择通俗感兴趣的主题和容,对结构问题进行进一步探讨,上升到理论的高度。 五、教学策略:

本课采用在教学中充分利用实验、讨论、小组合作的教学方法。多举生活中的案例,进行师生互动探讨,帮助学生加深对知识的理解。 六、教学安排 1课时 七、教学过程: (一)复习回顾,导入新课 教师引导学生回顾结构的概念,指出事物的性质:强度和稳定性 (二)知识构建 1、强度 对于结构变形,只给以“结实”“不结实”来评说是不够准确的,而对于结构的受力与变形应该有更科学的描述。通常,物体结构抵抗变形的能力,都以强度来表示,我们用应力来衡量强度。 (1)力:外力使构件发生变形的同时,构件的部分子之间随之产生一种抵抗变形的抵抗力,称为力。 (2)应力:作用在单位面积上的力。 【学生活动一】 (3)拓展:探讨强度和应力的关系 示例:粗绳和细绳,两种相比粗绳更结实,牢固,换句话说是抗拉强度更大。绳子所受拉力一定,即构件受到的外力一定,而粗的横截面积大,所以应力小,此时变形小,而抗变形的能力大,即强度大。 结论:应力小,强度大应力大,强度小 【学生活动二】 (4)结合课本分小组探究影响结构强度的因素,同时完成26页问题,答在学案上。 结构的强度,一般取决于它对力和压力两方面的反应能力,具体取决于以下因素: 形状、材料(不同的材料有承受不同应力极限的能力) 材料的连接方式(不同的连接方式,受力传递方式和效果不一样) 师生探讨:如何改进物体结构的强度?

疲劳强度考试整理

1.疲劳的定义:材料在循环应力或循环应变作用下,由于某点或某些点产生了局部的永久 结构变化,从而在一定的循环次数以后形成裂纹或发生断裂的过程称为疲劳。 2.疲劳的分类: (1)按研究对象可以分为材料疲劳和结构疲劳 材料疲劳——研究材料的失效机理,化学成分和微观组织对疲劳强度的影响,使用标准试件。结构疲劳——则以零部件、接头以至整机为研究对象,研究它们的疲劳性能、抗疲劳设计方法、寿命估算方法和疲劳试验方法。 (2)按失效周次可以分为高周疲劳和低周疲劳 高周疲劳——材料在低于其屈服强度的循环应力作用下,经104-105以上循环产生的失效。低周疲劳——材料在接近或超过其屈服强度的应力作用下,低于104-105次塑性应变循环产生的失效。 (3)按应力状态可以分为单轴疲劳和多轴疲劳 单轴疲劳——单向循环应力作用下的疲劳,零件只承受单向正应力或单向切应力。 多轴疲劳——多向应力作用下的疲劳,也称复合疲劳。 (4)按载荷变化情况分为恒幅疲劳、变幅疲劳、随机疲劳 恒幅疲劳——所有峰值载荷均相等和所有谷值载荷均相等。 变幅载荷——所有峰值载荷不等,或所有谷值载荷不等,或两者均不等。 随机疲劳——幅值和频率都是随机变化的,而且是不确定的。 (5)按载荷工况和工作环境可以分为常规疲劳、高低温疲劳、热疲劳、热—机械疲劳、腐 蚀疲劳、接触疲劳、微动磨损疲劳和冲击疲劳 常规疲劳——在室温和空气介质中的疲劳。 高低温疲劳——低于室温的疲劳和高于室温的疲劳。 热疲劳——温度循环变化产生的热应力所导致的疲劳。 热-机械疲劳——温度循环与应变循环叠加。 腐蚀疲劳——腐蚀环境与循环应力的复合作用。 接触疲劳——滚动接触零件在循环应力作用下产生损伤。 微动磨损疲劳——接触面的微幅相对振动造成磨损疲劳。 冲击疲劳——重复冲击载荷所导致的疲劳。 3.金属疲劳破坏机理

《结构的强度和稳定性》教学设计电子教案

《结构的强度和稳定性》教学设计

《技术与设计2》第一章第三节《结构的强度和稳定性》教学设计 《结构的强度和稳定性》教学设计 一、教材分析: 本节是“地质出版社”出版的教材《技术与设计2》中第一章第三节《结构的强度和稳定性》。共需2课时完成。本课为第1课时的学习。该章的总体设计思路是:认识结构——探析结构——设计结构——欣赏结构。“结构”与“设计”是该章的两个核心概念,结构的强度和稳定性则是结构设计中需要考虑的重要因素之一,是对结构及受力认识的基础上作进一步深入的学习。 二、教学目标: 知识与技能: 1、理解内力、强度、应力的概念,能进行简单的应力计算,掌握应力和强度的关系。 2、通过实验,明确强度与材料、强度与物体的形状及连接方式的关系。培养学生合作交流能力,对身边事物的观察能力。 3、理解稳定性的概念,及影响稳定性的因素。 过程与方法:通过观察生活和技术实验等方法使学生懂得应用相关的理论知识。 情感态度价值观:让学生亲身体验注重交流,通过分析讨论得到结论,培养学生的观察分析能力,合作交流能力。 三、教学重点与难点: 重点:影响结构强度和稳定性的主要因素。

难点:应力的计算,强度与应力的关系,结构设计需要在容许应力范围之内。 四、学情分析: 总体来说学生对通用技术这门课程比较感兴趣。他们的思维、生活经验已有一定基础,并在前面章节的学习中已经初步掌握了结构的一些相关知识,在此基础上帮助学生从其生活世界中选择通俗感兴趣的主题和内容,对结构问题进行进一步探讨,上升到理论的高度。 五、教学策略: 本课采用在教学中充分利用实验、讨论、小组合作的教学方法。多举生活中的案例,进行师生互动探讨,帮助学生加深对知识的理解。 六、教学安排 1课时 七、教学过程: (一)复习回顾,导入新课 教师引导学生回顾结构的概念,指出事物的性质:强度和稳定性 (二)知识构建 1、强度 对于结构变形,只给以“结实”“不结实”来评说是不够准确的,而对于结构的受力与变形应该有更科学的描述。通常,物体结构抵抗变形的能力,都以强度来表示,我们用应力来衡量强度。 (1)内力:外力使构件发生变形的同时,构件的内部分子之间随之产生一种抵抗变形的抵抗力,称为内力。

第三章疲劳强度计算练习题dayin

第三章机械零件的疲劳强度设计 三、设计计算题 3-47 如图所示某旋转轴受径向载荷F=12kN作用,已知跨距L=1.6m,直径d=55mm,轴的角速度为ω,求中间截面上A点的应力随时间变化的表达式,并求A点的σmax、σmin、σa和σm。 3-48 一内燃机中的活塞连杆,当气缸发火时,此连杆受压应力σmax=-150MPa,当气缸进气开始时,连杆承受拉应力σmin=50MPa,试求:(1)该连杆的平均应力σm、应力幅σa 和应力比r;(2)绘出连杆的应力随时间而变化的简图。 3-49 一转动轴如图所示,轴上受有轴向力F a=1800N,径向力F r=5400N,支点间的距离L=320mm,轴是等截面的,直径d=45mm。试求该轴危险截面上的循环变应力的σmax、σmin、σm、σa和r。 题3-49图题3-50图 3-50 某一转轴的局部结构如图所示,轴的材料为Q235普通碳钢,精车制成。若已知直径D=120mm,d=110mm,圆角半径r=5mm,材料的力学性能为:σb=450MPa,σs=220MPa,试求截面变化处的疲劳强度综合影响系数KσD和KτD。 3-51 由脆性材料制成的受弯平板的平面尺寸如图所示,板厚30mm。A、B两处各有一个直径5mm的穿透小孔,弯矩M=20kN·m。试分别计算Ⅰ、Ⅱ两截面上的最大应力值。疲劳缺口系数查题3-53附图。 3-52 一转轴的各段尺寸及其受载情况如图所示。所有圆角半径均为r=3mm。试分别计算Ⅰ—Ⅰ至Ⅶ—Ⅶ各截面上的最大弯曲应力的名义值和实际值。疲劳缺口系数查题3-53附图。

题3-51图题3-52图 3-53 用高强度碳钢制成的构件 的平面尺寸如图所示,厚8mm,受拉力 F=50kN。该构件的Ⅰ、Ⅱ、Ⅲ截面上分别 有φ15mm的圆孔、R7.5mm的半圆缺口 和R7.5mm的圆角。试分别计算这三个截 面上的最大应力。 题3-53附图 附注:这三种结构的疲劳缺口系数值可从上图曲线中查得。 3-54 题3-53中如载荷F在25~85kN之间做周期性的变化,材料改为20CrMnTi,其力学性能为σs=835MPa,σ-1=345MPa,σ0=615MPa。危险截面上的疲劳缺口系数Kσ=1.45,尺寸系数εσ=0.75,表面状态系数βσ=0.9,按无限寿命考虑。试画出σm-σa极限应力图,并用图解法和解析法确定安全系数Sσ。 3-55 用题3-54的条件画出σm-σmax和σmin极限应力图,并用图解法和解析法确定安全系数。可参阅[5]。 3-56 按题3-54的条件,除载荷F变为在-32~64kN之间作周期性变化外,其余条件不变。试画出σmin-σmax极限应力简图,并用图解法和解析法确定安全系数。可参阅[5]。 3-57 一阶梯轴轴肩处的尺寸为D=60mm,d=50mm,r=4mm,如材料的力学性能为:σb=650MPa,σs=360MPa,σ-1=200MPa,σ0=320MPa。试绘制此零件的简化极限应力线图。 3-58 如上题中危险截面处的平均应力σm=30MPa,应力幅σa=45MPa,试分别按(1)r=c;(2)σm=c求出该截面上的计算安全系数Sσ。 3-59 一转轴的危险截面上作用有周期性波动的载荷:弯矩M=100~200N·m,转矩T=0~100N·m。轴的材料为45钢,力学性能:σs=400MPa,σ-1=270MPa,σ0=480MPa,τs=216MPa,τ-1=156MPa,τ0=300MPa。若截面直径d=25mm,疲劳缺口系数Kσ=1.78,Kτ=1.45,尺寸系数εσ=0.9,ετ=0.93,表面状态系数βσ=0.91,βτ=0.95。试确定安全系数S。计算时可

提高零件疲劳强度的方法

提高零件疲劳强度的方法 【摘要】机械零件的抗疲劳破坏是造成机械运行故障的主要原因,因此,提高机械零件的疲劳强度是机械结构设计中不容忽视的问题。针对影响零件疲劳强度的因素并结合实际,对在设计过程中如何提高零件的疲劳强度的方法及措施做简要的叙述和相关分析,且对工程中常见的问题,提出相应的控制方法和解决措施。【关键词】疲劳强度;应力集中 1概述 在19世纪初,随着蒸汽机车的发明和铁路建设的迅速发展,机车车辆的疲劳破坏现象时有发生,使工程技术人员认识到交变应力对金属强度的不良影响。很多结构物都承受交变应力的作用,例如飞机,火车,船舶等交通运输工具由于大气紊流,波浪及道路不平引起的颠簸都承受交变应力,即使是房屋,桥梁等看来似乎完全不动的结构物也同样承受变应力作用,因为桥梁上驶过车辆时,房屋中的机器设备运转和振动时,甚至刮风等均会引起交变应力。所以交变应力对于结构物来说是经常遇到的。 绝大多数的机械零件是在循环变应力作用下工作的,如弹簧,齿轮,轴等都是在循环载荷下工作的,承受交变应力或重复应力,如在工作过程中工作应力低于屈服强度时就会发生疲劳破坏,造成重大的经济损失。为避免这些现象的发生,提高零件的疲劳强度,在设计阶段应考虑它的使用环境和受力状态,材料性能,加工工艺等因素。我将基于材料的疲劳特性,对提高零件疲劳强度的方法及措施进行简要的叙述。 2零件的疲劳特性 材料的疲劳特性可用最大应力,应力循环次数,应力比(循环特性)来表述。 10时,属静应力强度,当循环次数在在一定的应力比下,当循环次数低于3 4 310 10时属于低周疲劳,然而一般零件承受变应力时,其应力循环次数通常大~ 10,属高周疲劳,此阶段,如果作用的变应力小于持久疲劳极限,无论应力于4 变化多少次,材料都不会破坏。由于零件受加工质量及强化因素等影响,使得零件的疲劳极限小于材料的疲劳极限,通常等于材料疲劳极限与其疲劳极限的综合影响系数的比值。故可通过改善零件受力状况,将作用在零件上的变应力降低到持久疲劳极限以下,对延长材料的使用寿命具有重要的意义。 3提高零件疲劳强度的方法 影响零件的疲劳强度的因素很多,比如材料的最大应力,工作环境,应力状态,加工质量与加工工艺等。为提高零件的疲劳强度,经查阅资料得出以下方法。(1)材料的选择 材料的选择原则是:在满足静强度要求的同时,还应具备良好的抗疲劳性能。过去静强度选材的一个基本原则是要求强度高,但在疲劳设计中,需从疲劳强度的观点选材: a在达到使用期限的应力值时,材料的疲劳极限必须满足要求。 b材料的切口敏感性和擦伤疲劳敏感性小,在交变载荷作用处要特别注意。 c裂纹扩展速率慢,许用临界裂纹大些,及要求零件的断裂韧性值大,使零件或结构在使用中出现裂纹后,不会很快导致灾难性的破坏。

结构设计及强度校核

专业综合训练任务书: 49.9米150吨冷藏船结构设计及总纵强度计算 一、综合训练目的 1、通过综合训练,进一步巩固所学基础知识,培养学生分析解决实际工程问题的能力,掌握静水力曲线的计算与绘制方法。 2、通过综合训练,培养学生耐心细致的工作作风和重视实践的思想。 3、为后续课程的学习和走上工作岗位打下良好的基础。 二、综合训练任务 1.150吨冷藏船结构设计,提供主要构件的计算书。 2.参考该船图纸和相关静水力资料、邦戎曲线图,按照《钢质内河船舶建造规范》的要求进行总纵 强度计算,提供总纵强度计算书。 3.参考资料: 1)中国船级社. 钢质海船入级与建造规范 2009 2)王杰德等. 船体强度与结构设计北京:国防工业出版社,1995 3)聂武等. 船舶计算结构力学哈尔滨:哈尔滨工程大学出版社,2000 三、要求: 1、专业综合训练学分重,应予以足够重视; 2、计算书格式要符合要求; 如船体结构设计计算书应包括:(a)对设计船特征(船型、主尺度、结构形式等)的概述,设计所根据的规范版本的说明等;(b)应按船底、船侧、甲板的次序,分别写出确定每一构件尺寸的具体过程,并明确标出所选用的尺寸。(c)计算书应简明、清晰、便于检查。 3、强度计算: a)按第一、二章的要求和相关表格做,如静水平衡计算,静水弯矩计算等; b)波浪弯矩等可按规范估算; c)相关表格用计算器计算,表格绘制于“课程设计”本上 注意:请班长到教材室领取课程设计的本子和资料袋(档案袋),各位同学认真填写资料袋封面。 4、专业综合训练总结:300~500字。 四、组织方式和辅导计划: 1、参考资料: a)船体强度与结构设计教材 b)某船的构件设计书 c)某船的总纵强度计算书 d)《钢质内河船舶建造规范》,最好2009版 2、辅导答疑地点:等学校安排。 五、考核方式和成绩评定: 1、平时考核成绩:参考个人进度。 2、须经老师验收合格,故应提前一周交资料,不合格的则需回去修改。 3、第18周星期三下午4:00前必须交资料,资料目录见第2页。 4、一旦发现打印、复印、数据格式完全相同等抄袭现象,均按规定以不及格计。 5、成绩由指导教师根据学生完成质量以及学生的工作态度与表现综合评定,分为优、良、中、及格、 不及格五个等级。 六、设计进度安排: 1、有详细辅导计划,但具体进度可根据个人情况可以自己定。 附录:档案袋内资料前2页如下

疲劳强度设计方法研究

疲劳强度设计方法研究

摘要 疲劳强度是当前机械产品的主要失效形式,在机械强度设计中占有重要的位置。正确地应用疲劳理论于强度设计上,可以得到合理的设计,包括选材、结构尺寸及加工工艺等,或根据工况及给定的零部件估算其寿命。本文从疲劳断裂的过程出发,通过对疲劳强度三种思路的分析,介绍了相应疲劳强度设计及寿命估算的三种方法。 关键词:疲劳强度,寿命估算,疲劳设计,S-N曲线

1. 引言 所谓疲劳,是指材料或构件在长期的循环变应力作用下的失效现象,也称疲劳破坏。当循环变应力远小于强度极限时,经过一定的循环周次,也能使构件发生疲劳破坏。疲劳破坏是机械工程中常见的失效形式。近数十年来,疲劳破坏危及各个领域,飞机由于疲劳破坏而造成机毁人亡的灾难性事故;二次世界大战期间有上万艘焊接船舶、几十座焊接桥梁毁于疲劳破坏;对于车轴、车轨以及机架,曲轴,齿轮、螺栓联接等的疲劳破坏事故更是屡见不鲜。据统计,现代工业中零部件的失效80%是由于疲劳引起的。因此,疲劳问题引起了人们的极大关注。 对在循环变应力作用下的构件,以往的机械设计常常采用静强度设计,靠选取较大的安全系数来保证其使用的可靠性。而实际上是在变载荷作用下的构件由于强度储备大,在按静强度设计有时会将疲劳问题暂时掩盖起来。随着近代机械向高速、高温、大功率和轻重量的方向发展,对机械产品的零构件采用合理的疲劳设计,是提高设计水平、保证产品质量和提升经济效益的一个重要环节。 2. 疲劳断裂的形成 现行的疲劳设计思想与疲劳断裂的过程有关。从疲劳断裂的破坏过程来看一般分为三个阶段: (1)裂纹萌生阶段,或称裂纹成核或形成阶段 由于观察仪器的精密度和分辨率不同,所能观察到的裂纹长度也

船舶强度与结构设计的复习题

复习题 第一章(重点复习局部载荷分配、静水剪力弯矩的计算绘制) 1、局部载荷是如何分配的? (2理论站法、3理论站法以及首尾理论站外的局部重力分布计算) P P P =+21 a P L P P ?=?+)(2 121 由此可得: ?? ? ?? ?? ?-=?+=)5.0()5.0(21L a P P L a P P 分布在两个理论站距内的重力 2、浮力曲线是如何绘制的? 浮力曲线通常按邦戎曲线求得,下图表示某计算状态下水线为W-L 时,通常 根据邦戎曲线来绘制浮力曲线。为此,首先应进行静水平衡浮态计算,以确定船舶在静水中的艏、艉吃水。

帮戎曲线确定浮力曲线 3、M、N曲线有何特点? (1) M曲线:由于船体两端是完全自由的,因此艏、艉端点处的弯矩应为零,亦即弯矩曲线在端点处是封闭的。此外,由于两端的剪力为零,即弯矩曲线在两端的斜率为零,所以弯矩曲线在两端与纵坐标轴相切。 (2) N曲线:由于船体两端是完全自由的,因此艏、艉端点处的剪力应为零,亦即剪力曲线在端点处是封闭的。在大多数情况下,载荷在船舯前和舯后大致上是差不多的,所以剪力曲线大致是反对称的,零点在靠近船舯的某处,而在离艏、艉端约船长的1/4处具有最大正值或负值。 5、计算波的参数是如何确定的? 计算波为坦谷波,计算波长等于船长,波峰在船舯和波谷在船舯。 采用的军标GJB64.1A中波高h按下列公式确定: 当λ≥120m时, 当60m≤λ≤120m时,当λ≤60m时, 20 λ = h(m) 2 30 + = λ h(m) 1 20 + = λ h(m) 6、船由静水到波浪中,其状态是如何调整的? 船舶由静水进入波浪,其浮态会发生变化。若以静水线作为坦谷波的轴线,当船舯位于波谷时,由于坦谷波在波轴线以上的剖面积比在轴线以下的剖面积小,同时船体中部又较两端丰满,所以船在此位臵时的浮力要比在静水中小, 因而不能处于平衡,船舶将下沉ξ值;而当船舯在波峰时,一般船舶要上浮一些。 另外,由于船体艏、艉线型不对称,船舶还将发生纵倾变化。 7、麦卡尔假设的含义。 麦卡尔方法是利用邦戎曲线来调整船舶在波浪上的平衡位臵。因此,在计算 时,要求船舶在水线附近为直壁式,同时船舶无横倾发生。根据实践经验,麦 卡尔法适用于大型运输船舶。 第二章 (重点复习计算剖面的惯性矩、最小剖面模数是如何的计算、折减系数、极限弯矩的计算)1、危险剖面的确定。 危险剖面: 可能出现最大弯曲应力的剖面,由总纵弯曲力矩曲线可知,最大弯矩一般在 船中0.4倍船长范围的,所以计算剖面一般应是此范围内的最弱剖面—既有最大

疲劳寿命设计方法

寿命设计方法 -王光建

目录 …什么是疲劳失效 …无限寿命设计方法 ?S-N曲线(wohler curve)及疲劳极限?基于疲劳极限的评判 ?考虑平均应力的损伤修正…有限寿命设计方法 ?Miner法则(疲劳损伤线性累积) ?雨流计数法?寿命计算…疲劳寿命仿真计算 …疲劳寿命计算的不足

疲劳失效 …疲劳是一种机械损伤过程 …特点: 在这一过程中即使名义应力低于材料屈服强度;破坏前无明显塑性变形,突然发生断裂…本质: ?交变载荷+金属缺陷?金属的循环塑性变形(微观) ?疲劳一般包含裂纹萌生和随后的裂纹扩展两个过程 ?疲劳是损伤的累积 金属内部缺陷微裂纹产生裂纹扩展断裂 (晶体位错) 疲劳发生过程 …疲劳的判断: 金属材料的疲劳断裂口上,有明显的光滑区域与颗粒区域,光滑区域是疲劳断裂区,颗粒区域是脆性断裂区 粗糙的脆性断裂区 光滑的疲劳区 裂纹源

-S-N曲线(Wohler curve)及疲劳极限…S-N曲线是根据材料的疲劳强度实验数据得出的应力和疲劳寿命N的关系曲线 …S-N曲线用于描述材料的疲劳特性 σ S-N curve 1871年,Wohler首先对铁路车轴进行了系统的疲劳研究,发展了S-N曲线及疲劳极限概念

-S-N曲线(Wohler curve)及疲劳极限…疲劳极限:一般规定,循环次数107所对应的最大应力为疲劳极限 σ σ limit S-N curve

-基于疲劳极限的评判 …Alternating stress 作为判断应力 Alternating stress=(σ - σmin)/2 max …判断标准 σAlternating stress<σ limit σσ limit σ √ 2 S-N curve σ × 1

提高钢轨螺栓疲劳强度的有效方法

提高钢轨螺栓疲劳强度的有效方法 X X X 2011年5月20日 摘要:文章应用有限元方法分析了钢轨螺栓根部圆弧半径对其根部应力大小及分布的影响,并在此基础上进一步探讨了增大圆弧半径的方法与途径,为缓解螺纹根部的应力集中,改善应力分布,提高螺栓的疲劳强度提供了可靠的依据。 关键词:钢轨螺栓有限元法应力集中疲劳强度 螺栓是最常见的联接件之一,广泛应用于铁路、机械、汽车以及各种工程结构之中。很多研究成果表明,螺纹根部圆弧半径的尺寸影响螺纹根部应力的大小及分布[1,2],由于螺纹根部存在较大的应力集中,当承受较大载荷时可能出现局部应力超过材料流动极限的现象。虽然这种局部高应力区域较小,且对螺栓的静强度影响不大,但因疲劳裂纹大多发生在高应力区,因此可以说螺纹根部圆弧半径的大小直接关系到螺栓的疲劳强度和使用寿命。 本文在分析钢轨螺栓根部圆弧半径对其根部应力集中系数影响的基础上,进一步探讨了增大圆弧半径的方法和途径,为缓解螺纹根部的应力集中,改善应力分布,提高钢轨螺栓的疲劳强度提供了可靠的依据。 一、钢轨螺栓联接有限元模型 钢轨螺栓联接由钢轨、螺栓、螺母、缓冲垫等组成,如图1所示。本文采用的钢轨螺栓材料为20 MnTiB,弹性模量为210GPa,泊松比为0.28,抗拉强度为1040 MPa,屈服强度为940MPa 。螺栓长度为72mm,公称直径为24mm,螺距为3mm,螺纹中径为22.051mm,螺母直径为40mm,旋合长度为27mm。分析螺纹根部圆弧半径对螺栓最大轴向拉应力及应力集中系数的影响时,在不影响精度的前提下,为了减少计算量,可将螺栓、螺母单独作为研究对象,用接触载荷代替钢轨与螺母间的相互作用。根据螺栓联接结构及受力特点(轴对称),建立的有限元模型如图2所示。此外,由于螺栓和螺母相互接触,应进行非线性的接触分析,而不能将它们看作同一个物体进行有限元分析计算。 有限元模型的单元划分不但影响计算速度,而且影响计算精度。因此,单元

船舶强度与结构设计系统答案

234 5 a p P 1P2 234 P1 P11P12 34 5 P2 P21P22 3、一海船垂线间长Lpp=160m,设计时将分为20个理论站,机舱内有一主机,机电设备重量P=1000KN,主机跨2-3,3-4,4-5三个理论站,距离3-4站跨中位置a=3m,现要将该船进行局部性重力调整,使其主机重量分布2-3,3-4,4-5三个理论站,根据局部重力分配原则,试问分布到2-3,3-4,4-5三个理论站的均布重力分布分别为多少。 解:将三个理论站等分为2个理论站。 将P1分布列2-3,3-4两个理论站 将P2分布列3-4,4-5两个理论站 分配到2-3,3-4,4-5的重力分别为 10、某箱型船,长l=120m,宽b=20m,在淡水中正浮时吃水为6米,假设船的质量沿船长均匀分布,将一个100t的载荷加在船中后50米处的一点上,试画出其载荷,剪力和弯矩曲线,并计算此时船中的弯矩值 4、一海船垂线间长Lpp=100m,设计时将其分为20个理论站,其尾部超出理论站L0站后的船体重量P=1000kn,超出0站的距离a=2m,现将其对该船进行局部重力调整,使其尾部重量分布到0-1,1-2理论站,根据局部重力分配原则,试0-1.1-2站的重力分布为多少? 5、某矩形剖面钢船,其剖面尺寸如图:船长L=72米,型宽B=12米,舱口边板b=3米,型深D=7.5米,吃水d=5.0米(淡水中),假定船重量曲线为三角形(首尾端为零,船中最大),分别画出重量曲线、浮力曲线、载荷曲线、静水力曲线、静水弯矩曲线图;同时求最大的静水弯矩。取甲板的许用应力为[σ]=1000kgf/cm2,试求刚好满足许用应力时的甲板厚度。(假设甲板是等厚的) 解:船在静水受力平衡: 重力方程:

船体强度与结构设计复习

绪论 1.总纵强度:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁,简称船 体梁。船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲,称为总纵弯曲。船体梁抵抗总纵弯曲的能力,称为总纵强度。 2.船体总纵强度计算的传统方法:将船舶静置在波浪上,求船体梁横剖面上的剪力与弯曲 力矩以及相应的应力,并将它与许用应力相比较以判断船体强度。 3.评价结构设计的质量标准:安全性,营运合适性,船舶的整体配合性,耐久性,工艺性,经 济性。 4.按照静置法所确定的载荷来校核船体的总纵强度,就是否反映船体的真实强度,为什 么?答:按照静置法所确定的载荷来校核船体总强度,不反映船体的真实强度,因为海浪就是随机的,载荷就是动态的,而且当L较大时载荷被夸大,但具有相互比较的意义。 第一章引起船体梁总纵弯曲的外力计算 5.总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。(中拱:船体梁中部向 上拱起,首、尾两端向下垂。中垂:船中部下垂,首、尾两端向上翘起。) 6.重量曲线:船舶在某一计算状态下,描述全船重量沿船长分布状况的曲线。绘制重量曲 线的方法:静力等效原则。 7.浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线 8.载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲 线。 9.静水剪力:船体梁在静水中所受到的剪力沿船长分布状况的曲线。 10.弯矩曲线:船体梁在静水中所受到的弯矩沿船长分布状况的曲线。 (重量的分类:按变动情况来分:①不变重量,即空船重量,包括:船体结构、舾装设备、机电设备等各项固定重量。②变动重量,即装载重量,包括货物、燃油、淡水、粮食、旅客、压载等各项可变重量。按分布情况来分:①总体性重量,即沿船体梁全长分布的重量,通常包括:主体结构、油漆、锁具等各项重量。②局部性重量,即沿船长某一区段分布的重量。) 11.局部重量的分配原则(P12):重量的分布原则:静力等效原则。①保持重量的大小不变, 这就就是说要使近似分布曲线所围成的面积等于该项实际重量。②保持重量重心的纵向坐标不变,即要使近似分布曲线所围的面积的形心纵坐标与该项重量的重心坐标相等。③近似分布曲线的范围(分配到理论站的范围)与该项重量的实际分布范围相同或大体相同。 12.如何获得实际船舶重量分布曲线:答:通常将船舶重量按20个理论站距分布(民船尾- 首,军船首-尾编排),用每段理论站距间的重量作出阶梯形曲线,并以此来代替重量曲线。作梯形重量曲线时,应使每一项重量的重心在船长方向坐标不变,其重量分布范围与实际占据的范围应大致对应,而每一项理论站距内的重量则当做就是均匀的。最终,重量曲线下所包含的面积应等于船体重量,该面积的形心纵向坐标应与船体重心的纵向坐标相同。 13.静水力浮力曲线的绘制:浮力曲线的垂向坐标表示作用在船体梁上单位长度的浮力值, 其与纵向坐标轴所围的面积等于作用在船体上的浮力,该面积的形心的纵向坐标即为浮心的纵向位置。浮力曲线通常根据邦戎曲线来求得。 14.用于总纵强度计算的剪力曲线与弯矩曲线的特点:①首尾端点处的剪力与弯矩为零,亦 即剪力与弯矩曲线在端点处封闭②零载荷点与剪力的极值相对应,零剪力点与弯矩的极值相对应③剪力曲线大致就是反对称的,零点在靠近船中的某处,在离首尾约船长的 1/4处具有最大正值或负值④弯矩曲线在两端的斜率为零,最大弯矩一般在船中0、4倍船长范围内。 15.波浪剪力:完全由波浪产生的附加浮力引起的附加剪力。 16.波浪弯矩:船舶静置于波浪上,由于波面下的浮力分布相对于原静水面下的浮力分布的 变化而产生的弯矩。(船舶由静水进入波浪时,重量曲线p(x)并未改变,但水面线发生了变化,从而导致浮力的重新分布。波浪下浮力曲线相对静水状态的浮力增量就是引起静波浪剪力与弯矩的载荷。)

疲劳强度设计

疲劳强度设计 对承受循环应力的零件和构件,根据疲劳强度理论和疲劳试验数据,决定其合理的结构和尺寸的机械设计方法。机械零件和构件对疲劳破坏的抗力,称为零件和构件的疲劳强度。疲劳强度由零件的局部应力状态和该处的材料性能确定,所以疲劳强度设计是以零件最弱区为依据的。通过改进零件的形状以降低峰值应力,或在最弱区的表面层采用强化工艺,就能显著地提高其疲劳强度。在材料的疲劳现象未被认识之前,机械设计只考虑静强度,而不考虑应力变化对零件寿命的影响。这样设计出来的机械产品经常在运行一段时期后,经过一定次数的应力变化循环而产生疲劳,致使突然发生脆性断裂,造成灾难性事故。应用疲劳强度设计能保证机械在给定的寿命内安全运行。疲劳强度设计方法有常规疲劳强度设计、损伤容限设计和疲劳强度可靠性设计。 简史19世纪40年代,随着铁路的发展,机车车轴的疲劳破坏成为非常严重的问题。1867年,德国A.沃勒在巴黎博览会上展出了他用旋转弯曲试验获得车轴疲劳试验结果,把疲劳与应力联系起来,提出了疲劳极限的概念,为常规疲劳设计奠定了基础。 20世纪40年代以前的常规疲劳强度设计只考虑无限寿命设计。第二次世界大战中及战后,通过对当时发生的许多疲劳破坏事故的调查分析,逐渐形成了现代的常规疲劳强度设计,它非但提高了无限寿命设计的计算精确度,而且可以按给定的有限寿命来设计零件,有限寿命设计的理论基础是线性损伤积累理论。早在1924年,德国 A.帕姆格伦在估算滚动轴承寿命时,曾假定轴承材料受到的疲劳损伤的积累与轴承转动次数(等于载荷的循环次数)成线性关系,即两者之间的关系可以用一次方程式来表示。1945年,美国M.A.迈因纳根据更多的资料和数据,明确提出了线性损伤积累理论,也称帕姆格伦-迈因纳定理。 随着断裂力学的发展,美国A.K.黑德于1953年提出了疲劳裂纹扩展的理论。1957年,美国P.C.帕里斯提出了疲劳裂纹扩展速率的半经验公式。1967年,美国R.G.福尔曼等又对此提出考虑平均应力影响的修正公式。这些工作使人们有可能计算带裂纹零件的剩余寿命,并加以具体应用,形成了损伤容限设计。 用概率统计方法处理疲劳试验数据,是20世纪20年代开始的。60年代后期,可靠性设计从电子产品发展到机械产品,于是在航天、航空工业的先导下,开始了可靠性理论在疲劳强度设计中的应用。 1961年联邦德国H.诺伊贝尔提出的关于缺口件中名义应力-应变与局部应力-应变之间的关系,称为诺伊贝尔公式。1968年加拿大R.M.韦策尔在诺伊贝尔公式的基础上,提出了估算零件裂纹形成寿命的方法,即局部应力-应变法,在疲劳强度设计中得到了应用和发展。 常规疲劳强度设计假设材料没有初始裂纹,经过一定的应力循环后,由于疲劳损伤的积累,才形成裂纹,裂纹在应力循环下继续扩展,直至发生全截面脆性断裂。裂纹形成前的应力循环数,称为无裂纹寿命;裂纹形成后直到疲劳断裂的应力循环数,称为裂纹扩展寿命。零件总寿命为两者之和。 根据零件所用材料的试样的疲劳试验结果,以最大应力为纵坐标、以达到疲劳破坏的循环数N为横坐标,画出一组试样在某一循环特征下的应力-

船舶强度与结构设计大作业(二)

船舶总纵强度计算 班级:船海1301 姓名:禹宗昕 学号:U201312263 完成日期:2016.4.18 一.计算依据 1.横剖面图和尺寸 图1.1 横剖面图和尺寸 注:6,18分别为全部的甲板纵骨和船底纵骨;20,21分别为统一水平高度的加强筋。 2.计算载荷 中垂,计算弯矩M=9.0×107N·m 3.船体材料 计算剖面所有的构件均采用低碳钢,屈服极限σr=350N/mm2 4.总纵弯曲许用应力[σ]=0.5σr 二.总纵弯曲正应力

1.总纵弯曲正应力第一次近似计算 剖面简图如上图所示,和图中编号对应的各强力构件尺寸已表明。第一次近似总纵弯曲应力的计算在下表中完成,参考轴取在基线处。 表2.1 总纵弯曲正应力第一次近似计算 第一次近似中和轴参考轴(基线)距离: Δ=2275.61/1756.59=1.580 m 船体剖面对水平中和轴的惯性矩为 I=2*[9928.905+154.262-Δ2 *1756.59]=11394.7448 cm2m2 总纵弯曲应力为 σi=M/I*Z i*10 N/mm2 2.临界应力计算 因为处于中垂状态,下面只列出了中和轴以上部分受压板,纵骨,纵桁的临界应力。 (1)纵骨架式板格按下式计算: σcr=76*(100t/b)2 N/mm2 表2.2.1 纵骨架式板格临界应力计算 (2).纵骨剖面要素及临界应力计算入下表,其中欧拉临界应力计算式: σcr=π2Ei/a2(f+b e t)N/mm2 式中,a为实肋板间距,a=120cm,b e为带板宽度平均值 b=40cm < a/6 =20cm, 因而带板的计算依据a/6. 带板受到压缩应力大于临界应力时应做折减,带板宽度按下式确定: b e=a/6/2*(1+φ) 带入可得,

船舶结构与强度设计报告书

船舶结构 规范 设计书 5000吨江海直达船 指导老师: 班级:船海1101班 小组成员: 姓名:学号: 姓名:学号: 姓名:学号: 姓名:学号: 完成日期:2014/7/2

目录 一.小组成员分工及贡献度 二.小组设计任务 三.5000吨江海直达船说明 四.确定4800mm平台构件尺寸(1)#5 —#12区域 (2)#12—#35区域 (3)#35—#134区域 (4)#134—船首区域 五.4800mm平台甲板结构图六.有限元建模及强度计算七.课程设计总结 八.附件

一.小组成员分工及贡献度 1.成员分工 按规范确定4800mm平台甲板构件尺寸: 绘制4800mm平台甲板结构图: #134—船首有限元建模及结构强度直接计算: Word制作及后期整理: PPT制作: 2.贡献度 xxx 1.0 xxx 1.0 xxx 1.0 xxx 1.0 二.小组设计任务 1.按照规范确定4800mm平台甲板构件尺寸,绘制甲板结构图 2. #134—船首区域有限元建模及结构强度直接计算 三.5000吨江海直达船说明 一.说明 本船主要运输矿石及钢材,兼顾煤碳及水泥熟料等货物。航行于长江武汉至宁波中国近海航区及长江A、B 级航区。船舶结构首尾

为横骨架形式,中部货舱区采用双底双舷、单甲板、纵骨架式形式,所有构件尺寸均按 CCS 《国内航行海船建造规范》(2006)要求计算。 1. 主要尺度 设计水线长:WL L 107.10米 计算船长:L 104.10 米 型宽:B 17.5米 型深:D 7.6米 结构计算吃水:d 5.8米 2.主要尺度比 长深比: 104.1 5.95517.5L B ==> 宽深比:17.5 2.30 2.57.6 B D = =< 2. 肋距及中剖面构件布置: 尾~#10以及#140~首 肋距为600mm #10~#140 肋距为700mm 本船按规范要求的标准肋距为: 1.2.8.1 肋骨、横梁或纵骨(船底、舷侧、甲板)的标准间距Sb 应按下式计算: 0.0160.5Sb L =+ m ,且不大于0.7m

《疲劳强度设计》教学大纲

《疲劳强度设计》教学大纲 课程编码:08241026 课程名称:疲劳强度设计 英文名称:Design of Fatiligue Strength 开课学期:第7学期 学时/学分:总学时/学分(30 /1.5) 讲课学时30(其中实验学时:) 课程类型:专业选修课 开课专业:机械科学与工程学院工程力学专业 选用教材:疲劳强度徐灏编高等教育出版社 1990 主要参考书: 1.结构疲劳强度吴富民编西北工业大学出版社 1985 2.疲劳理论与设计张理苏编吉林工业大学 1985 3.疲劳强度设计徐灏编高等教育出版社 2000 4.结构疲劳强度设计与失效分析王学颜宋广惠编兵器工业出版社 1992 5.疲劳设计准则 [英]T.V达根等著国防工业出版社1982 6.结构中的断裂与疲劳控制 [美]罗尔夫等著机械工业出版社1985 执笔人:聂毓琴 一、课程性质、目的与任务 疲劳强度设计是一门新兴的边缘学科。它涉及材料,力学和设计三个学科领域。 飞机,船舶,汽车,矿山机械,冶金机械,动力机械,起重运输机械,石油钻进设备,以及铁路桥梁等,其主要零件和结构件,大多在循环变化的载荷作用下工作,疲劳是其主要的是失效形式。因此,疲劳强度对于设计各类承受循环载荷的机械和结构,成为重要的研究内容。 进行疲劳强度设计,需要有材料的疲劳性能数据。但有时虽然认为选择了合适的材料,制成零件后,使用中仍有可能发生意外的疲劳断裂事故。这可能是由于设计者在某方面的疏忽,或偶然的过载,或零件制成后使用条件有了改变所致。这些现象都说明,材料的疲劳强度不等于零件的疲劳强度,所以设计理论是重要的。 通过本课程的学习,能够对构件的强度疲劳问题具有明确的基本概念,必要的基础知识,比较熟练的计算能力,一定的分析能力和初步的实践能力。 二、教学基本要求: 通过本课程的学习,能够对构件的强度疲劳问题具有明确的基本概念,必要的基础知识,比较熟练的计算能力,一定的分析能力和初步的实践能力。熟练掌握各章节的主要内容: 1. 材料的疲劳性能,材料的循环特性曲线构件的无限寿命设计; 2. 构件的无限寿命设计,累积损伤的寿命设计,累积损伤理论; 3. 构件的有限寿命设计,材料疲劳裂纹的扩展性能,件的破损-----安全设计; 4. 低周疲劳设计,局部应变集中方法,构件的疲劳强度可靠性设; 5. 随机疲劳强度,腐蚀疲劳。 三、各章节内容及学时分配 第一章绪论(2学时)

相关主题
文本预览
相关文档 最新文档