当前位置:文档之家› 2019年高考数学题型全归纳:解三角形考点归纳(含答案)

2019年高考数学题型全归纳:解三角形考点归纳(含答案)

2019年高考数学题型全归纳:解三角形考点归纳(含答案)
2019年高考数学题型全归纳:解三角形考点归纳(含答案)

高考数学精品复习资料

2019.5

解三角形

【考题回放】

1.设,,a b c 分别是ABC ?的三个内角,,A B C 所对的边,则()2

a b b c =+是2A B =的

( )

(A )充分条件 (B )充分而不必要条件 (C )必要而充分条件 (D )既不充分又不必要条件 2.在ABC ?中,已知C B

A sin 2

tan =+,给出以下四个论断: ① 1cot tan =?B A

② 2sin sin 0≤

+

③ 1cos sin 22=+B A

④ C B A 222sin cos cos =+

其中正确的是( B ) (A )①③

(B )②④ (C )①④ (D )②③

3.在△ABC 中,已知A 、B 、C 成等差数列,则2

tan 2tan 32tan 2tan C

A C A ++的值为__________3.

4.如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形

C .111A B C ?是钝角三角形,222A B C ?是锐角三角形

D .111A B C ?是锐角三角形,222A B C ?是钝角三角形

5.己知A 、C 是锐角△ABC 的两个内角,且tanA, tanC 是方程x 2

-3px+1-p =0

(p≠0,且p∈R),的两个实根,则tan(A+C)=_______,tanA,tanC 的取值范围分别是___ _ 和__ ___,p 的取值范围是__________3;(0,3);(0,3);[

3

2

,1) 6.在ΔABC 中,已知6

6

cos ,364=

=

B AB ,A

C 边上的中线BD=5,求sinA. 【专家解答】 设E 为BC 的中点,连接DE ,则DE//AB ,且3

6

221=

=

AB DE , 设BE=x 在ΔBDE 中可得2222cos BD BE ED BE ED BED =+-?∠,

x x 6636223852??++

=,解得1=x ,3

7-=x (舍去) 故BC=2,从而3

28

cos 2222=

?-+=B BC AB BC AB AC , 即3212=

AC 又630sin =B ,故247sin 10

A =

,1470

sin =A 【考点透视】本专题主要考查正弦定理和余弦定理.

【热点透析】三角形中的三角函数关系是历年高考的重点内容之一,本节主要帮助考生深刻理解正、余弦定理,掌握解斜三角形的方法和技巧 学生需要掌握的能力:

(1)运用方程观点结合恒等变形方法巧解三角形; (2)熟练地进行边角和已知关系式的等价转化;

(3)能熟练运用三角形基础知识,正(余)弦定理及面积公式与三角函数公式配合,通过等价转化或构建方程解答三角形的综合问题,注意隐含条件的挖掘

【范例1】【文】在△ABC 中,若tanA ︰tanB =22b a :,试判断△ABC 的形状.

解析 由同角三角函数关系及正弦定理可推得22

sin cos sin cos sin sin A B A

A B B

=, ∵A、B 为三角形的内角,∴sinA≠0,sinB≠0.

∴2A=2B 或2A =π-2B ,∴A=B 或A +B =2

π

所以△A BC 为等腰三角形或直角三角形.

【点晴】三角形分类是按边或角进行的,所以判定三角形形状时一般要把条件转化为边之间关系或角之间关系式,从而得到诸如a 2

+b 2

=c 2

, a 2

+b 2

>c 2

(锐角三角形),a 2

+b 2

<c 2

(钝

角三角形)或sin(A -B)=0,sinA =sinB ,sinC =1或cosC =0等一些等式,进而判定其形状,但在选择转化为边或是角的关系上,要进行探索.

【范例2】 【文】在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,227

4sin cos 22

B C A +-=. (1)求角A 的度数;

(2)若a=3,b+c=3,求b 和c 的值. 解析 2

7

(1)4sin cos 2180,:22

B C A A B C +-=++=?由及得

2227

2[1cos()]2cos 1,4(1cos )4cos 5

2

1

4cos 4cos 10,cos ,

2

0180,60B C A A A A A A A A -+-+=+-=-+=∴=?<

Q 即

222

22222(2):cos 211

cos ()3.

222

312

3: 2 :.

221

b c a A bc

b c a A b c a bc bc b c b b a b c bc bc c c +-=

+-=∴=∴+-=+===???=+==???===???Q 由余弦定理得代入上式得由得或 【点睛】正弦定理和余弦定理在解斜三角形中应用比较广泛.

【范例3】已知△ABC 的周长为6,,,BC CA AB u u u r u u u r u u u r

成等比数列,求

(1)△ABC 的面积S 的最大值;

(2)BA BC u u u r u u u r

g 的取值范围.

解析 设,,BC CA AB u u u r u u u r u u u r

依次为a ,b ,c ,则a+b+c=6,b2=ac. 在△ABC 中得2222221

cos 2222

a c

b a

c ac ac ac B ac ac ac +-+--==≥=,

故有03

B π

<≤

.又6,22

a c b

b +-=≤

=从而02b <≤.

(1)22111sin sin 2sin 2223

S ac B b B π

=

=≤??=

max S = (2)22222

()2cos 22a c b a c ac b BA BC ac B +-+--===

u u u r u u u r g 22

2(6)3(3)272

b b b --==-++.

02,b <≤Q 218BA BC ∴≤

g .

【点睛】 三角与向量结合是高考命题的一个亮点.问题当中的字母比较多,这就需要我们采用消元的思想,想办法化多为少,消去一些中介的元素,保留适当的主变元.主变元是解答问题的基本元素,有效的控制和利用对调整解题思路是十分有益处的.

【变式】在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c, △ABC 的外接圆半径R=3,且满足

B

C

A B C sin sin sin 2cos cos -=

. (1) 求角B 和边b 的大小;

(2) 求△ABC 的面积的最大值。 解析 (1) 由

B

C

A B C sin sin sin 2cos cos -=

整理得sinBcosC+cosBsinC=2sinAcosB ∴sin(B+C)= 2sinAcosB ∴sinA =2sinAcosB ∴cosB=21 ∴B=3

π

∵ b=2RsinB ∴b=3 (2)∵ABC ?S =

)3

2sin(sin 33sin sin 3sin 212A A C A R B ac -==π

??

?

???+-=

21)62sin(233πA ∴当A=

3

π

时, ABC ?S 的最大值是

4

3

9 . 【点睛】三角函数的最值问题在三角形中的应用

【范例4】某观测站C 在城A 的南20?西的方向上,由A 城出发有一条公路,走向是南40?东,在C 处测得距C 为31千米的公路上B 处有一人正沿公路向A 城走去,走了20千米后,到达D 处,此时C 、D 间距离为21千米,问还需走多少千米到达A 城?

解析 据题意得图02,其中BC=31千米,BD=20千米,CD=21千米,∠CAB=60?. 设∠ACD = α ,∠CDB = β .在△CDB 中,由余弦定理得:

7

1

202123120212cos 222222-=??-+=??-+=BD CD BC BD CD β,

7

3

4cos 1sin 2=

-=ββ. ()CDA CAD ∠-∠-?=180sin sin α ()β+?-?-?=18060180sin

()14

3

523712173460sin cos 60cos sin 60sin =

?+?=

?-?=?-=βββ. 在△ACD 中得15143

52

3

21143560sin 21sin sin =?=??=?=

αA CD AD . 所以还得走15千米到达A 城.

【点晴】 运用解三角形的知识解决实际问题时,关键是把题设条件转化为三角形中的已知元素,然后解三角形求之.

1.在直角三角形中,两锐角为A 和B ,则sinA·sinB( B )

(A ).有最大值

21和最小值 (B ).有最大值2

1

但无最小值

(C ).既无最大值也无最小值 (D ).有最大值1但无最小值

2.已知非零向量AB u u u r 与AC u u u r 满足().0AB AC BC AB AC

+=u u u r u u u r

u u u

r u u u r u u u r 且

1..2

AB AC AB AC =u u u r u u u r u u u r u u u r 则ABC ?为( D )

(A )等边三角形 (B )直角三角形

(C )等腰非等边三角形 (D )三边均不相等的三角形 3.△ABC 中,3sinA+4cosB=6,3cosA+4sinB=1,则∠C 的大小是 ( A ) (A )

6π (B )56π (C )6π或56π (D )3π或23

π 4.一个直角三角形三内角的正弦值成等比数列,其最小内角为( A ) (A)arccos

215- (B)arcsin 215- (C)arccos 251- (D)arcsin 2

5

1- 5. 已知a+1,a+2,a+3是钝角三角形的三边,则a 的取值范围是 . (0,2) 6.已知定义在R 上的偶函数)(x f y =在区间),0[+∞上单调递增,若,0)2

1

(=f

ABC ?的内角A 满足,0)(cos

2(ππ

【文】在ABC ?中,..C 的对边分别为.b .。

(1) 若a,b,c 成等比数列,求f(B)=sinB+3cosB 的值域。 (2) 若a,b,c 成等差数列,且A-C=

3

π

,求cosB 的值。 解析 (1) ∵ac b =2

, ac c a 22

2

≥+ 2

1

222cos 222=-≥-+=ac ac ac ac b c a B

当且仅当c a =时取等号, 3

sin(2π

+

B

3

23

3

π

π

π

+

2,3 (2) ∵,2b c a =+∴ sinA+sinC=2sinB ∵B C A C A -=+=-ππ

,3

∴232B A -=

π C=23B -π ∴sin(232B -π)+sin(2

3B -π)=2sinB

展开,化简,得 2cos 2sin 2*22cos 3B B B = , ∵02

cos ≠B

, ∴ 432sin =

B ∴ cosB=8

5

2sin 212

=-B 8.【文】在ABC ?中,,,a b c 分别为角,,A B C 的对边,且满足274cos cos 2()22

A B C -+= (1)求角大小;

(2)若3b c +=,当取最小值时,判断ABC ?的形状. 解析(1)A B C π++=Q ,

2

27

4cos cos 2()2(1cos )cos 22cos 2cos 322

A B C A A A A ∴-+=+-=-++=, 212cos 2cos 02A A ∴-+

=. 1

cos 2

A ∴=, 0A π<

(2)由余弦定理222

cos 2b c a A bc

+-=,得 222bc b c a =+-.

2229()39393(

)24b c a b c bc bc +∴=+-=-≥-=, 3

2

a ∴≥. 所以的最小值为32,当且仅当3

2

b c ==时取等号.此时ABC ?为正三角形.

解三角形题型总结

解三角形题型分类解析 类型一:正弦定理 1、计算问题: 例1、(2013?北京)在△ ABC 中,a=3, b=5 , sinA=2,贝U sinB= ________ 3 a + b + c = sin A sin B sin C 例2、已知.'ABC中,.A =60 , 例3、在锐角△ ABC中,内角A, B, C的对边分别为a, b, c,且2asinB= 7b. 求角A的大小; 2、三角形形状问题 例3、在ABC中,已知a,b,c分别为角A, B, C的对边, a cos A 1)试确定-ABC形状。 b cosB 2)若—=c°s B,试确定=ABC形状。b cos A 4 )在.ABC中,已知a2 ta nB=b2ta nA,试判断三角形的形状。 5)已知在-ABC中,bsinB=csinC,且sin2 A =sin2 B sin2 C ,试判断三角形的形状。 例4、(2016年上海)已知MBC的三边长分别为3,5,7,则该三角形的外接圆半径等于 __________ 类型二:余弦定理 1、判断三角形形状:锐角、直角、钝角 在厶ABC中, 若a2b2c2,则角C是直角; 若a2b2 ::: c2,则角C是钝角; 若a2b2c2,则角C是锐角. 例1、在厶ABC中,若a=9,bT0,c=12,则厶ABC的形状是______________ , 2、求角或者边 例2、(2016 年天津高考)在△ABC 中,若AB= 13 ,BC=3, Z C =120’ 则AC=. 例3、在△ ABC中,已知三边长a=3 , b=4 , c=—37 ,求三角形的最大内角.

例4、在厶ABC中,已知a=7,b=3,c=5,求最大的角和sinC? 3、余弦公式直接应用 例5、:在也ABC中,若a2=b2+c2+bc ,求角A 例6、:(2013重庆理20)在厶ABC中,内角A B, C的对边分别是a,b,c, 且a2+ b2+、、2 ab= c2. (1)求C 例7、设厶ABC的内角A , B , C所对的边分别为 a , b , c .若(a- c)(a ? b ? c) =ab , 则角C二例8 (2016年北京高考) 在ABC中,a2c^b^ . 2ac (1)求/ B的大小; (2 )求、、.2 cosA - cosC 的最大值. 类型三:正弦、余弦定理基本应用 例1.【2015高考广东,理11】设ABC的内角A , B , C的对边分别为a , b , c ,若a = <::'3 , 1 n sin B = —,C = 一,则b =. 2 6 例 2. (a c) J=1,贝q B等于。 ac 例3.【2015高考天津,理13】在厶ABC中,内角A,B,C所对的边分别为a,b,c,已知 MBC 的面积为3、'15 , b—c =2,cos A =-1,则a 的值为. 4 1 例 4.在厶ABC中,sin(C-A)=1 , sinB= ,求sinA=。 3 例5.【2015高考北京,理12】在厶ABC 中, c=6,则sin2A = sin C

2019年高考试题汇编:解三角形

2019年高考试题汇编:解三角形 1.(2019?新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A﹣b sin B=4c sin C,cos A=﹣,则=() A.6B.5C.4D.3 2.(2019?北京)如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为β,图中阴影区域的面积的最大值为() A.4β+4cosβB.4β+4sinβC.2β+2cosβD.2β+2sinβ 3.(2019?新课标II)△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=. 4.(2019?浙江)在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上,若∠BDC=45°,则BD=,cos∠ABD=. 5.(2019?新课标II)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B =,则△ABC的面积为. 6.(2019?天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3c sin B =4a sin C. (Ⅰ)求cos B的值; (Ⅱ)求sin(2B+)的值. 7.(2019?新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C. (1)求A; (2)若a+b=2c,求sin C. 8.(2019?江苏)在△ABC中,角A,B,C的对边分别为a,b,c. (1)若a=3c,b=,cos B=,求c的值; (2)若=,求sin(B+)的值. 9.(2019?北京)在△ABC中,a=3,b﹣c=2,cos B=﹣. (Ⅰ)求b,c的值;(Ⅱ)求sin(B﹣C)的值. 10.(2019?新课标Ⅲ)△ABC的内角A、B、C的对边分别为a,b,c.已知a sin=b sin A. (1)求B; (2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

高中解三角形题型大汇总

解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则=++++C B A c b a sin sin sin 7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______

备考2019高考数学解三角形文

18 解三角形 1.[2018·白城十四中]在ABC △中,内角A ,B ,C 所对的边为a ,b ,c ,60B =?,4a =,其面积S =则c =( ) A .15 B .16 C .20 D .2.[2018·东师附中]在ABC △中,1a =,π6A ∠=,π 4B ∠=,则c =( ) A B C D 3.[2018·长春质检]在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若1 cos 2 b a C c =+,则角A 为 ( ) A .60? B .120? C .45? D .135? 4.[2018·大庆实验]ABC △中A ,B ,C 的对边分别是a ,b ,c 其面积222 4 a b c S +-=,则中C 的大小是 ( ) A .30? B .90? C .45? D .135? 5.[2018·银川一中]已知ABC △的内角A ,B , C 的对边分别为a ,b ,c ,若cos C =,cos cos 2b A a B +=,则ABC △的外接圆面积为( ) A .4π B .8π C .9π D .36π 6.[2018·黄冈模拟]如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C , 测出AC 的距离为50m ,45ACB ∠=?,105CAB ∠=?后,就可以计算出A ,B 两点的距离为( ) A .m B .m C . D m 7.[2018·长春实验]在ABC △中,a ,b ,c 分别是A ,B , C 所对的边,若cos 4cos a C c A =-,π 3 B =,a =, 则cos C =( ) 一、选择题

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

解三角形题型总结原创

解三角形题型总结 ABC ?中的常见结论和定理: 一、 内角和定理及诱导公式: 1.因为A B C π++=, 所以sin()sin ,cos()cos , tan()tan A B C A B C A B C +=+=-+=-; sin()sin ,cos()cos ,tan()tan A C B A C B A C B +=+=-+=-; sin()sin ,cos()cos ,tan()tan B C A B C A B C A +=+=-+=- 因为,22A B C π++= 所以sin cos 22A B C +=,cos sin 22 A B C +=,………… 2.大边对大角 3.在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°; (3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.

四、面积公式: (1)12a S ah = (2)1()2 S r a b c =++(其中r 为三角形内切圆半径) (3)111sin sin sin 222 S ab C bc A ac B === 五、 常见三角形的基本类型及解法: (1)已知两角和一边(如已知,,A B 边c ) 解法:根据内角和求出角)(B A C +-=π; 根据正弦定理 R C c B b A a 2sin sin sin ===求出其余两边,a b (2)已知两边和夹角(如已知C b a ,,) 解法:根据余弦定理2 2 2 2cos c a b ab C =+-求出边c ; 根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据内角和定理求角)(C A B +-=π. (3)已知三边(如:c b a ,,) 解法:根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据余弦定理的变形ac b c a B 2cos 2 22-+=求角B ; 根据内角和定理求角)(B A C +-=π (4)已知两边和其中一边对角(如:A b a ,,)(注意讨论解的情况) 解法1:若只求第三边,用余弦定理:222 2cos c a b ab C =+-; 解法2:若不是只求第三边,先用正弦定理R C c B b A a 2sin sin sin ===求B (可能出现一解,两解或无解的情况,见题型一); 再根据内角和定理求角)(B A C +-=π;. 先看一道例题: 例:在ABC ?中,已知0 30,32,6===B c b ,求角C 。(答案:045=C 或0135)

2019高考数学专题训练--解三角形(有解析)

2019高考数学专题训练--解三角形(有解析) 专题限时集训(二) 解三角形 (建议用时:60分钟) 一、选择题1.(2018?天津模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,若AB=13,a=3,∠C=120°,则AC等于( ) A.1 B.2 C.3 D.4 A [由余弦定理得13=AC2+9-6ACcos 120° 即AC2+3AC-4=0 解得AC=1或AC=-4(舍去).故选A.] 2. (2018?合肥模拟)△ABC的内角A,B,C的对边分别为a,b,c,若cos C=223,bcos A+acos B=2,则△ABC的外接圆的面积为( ) A.4πB.8πC.9πD.36π C [由bcos A+acos B=2,得b2+c2-a22c +a2+c2-b22c=2 化简得c=2,又sin C=13,则△ABC的外接圆的半径R=c2sin C=3,从而△ABC的外接圆面积为9π,故选C.] 3.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若c2=(a-b)2+6,C=π3,则△ABC的面积( ) A.3 B.932 C.332 D.33 C [因为c2=(a-b)2+6,C=π3,所以由余弦定理得:c2=a2+b2- 2abcosπ3,即-2ab+6=-ab,ab=6,因此△ABC的面积为12absin C=3×32=332,选C.] 4.如图216,为测得河对岸塔AB的高,先 在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高为( ) 图216 A.10米 B.102米 C.103米 D.106米 D [在△BCD中,∠DBC=180°-105°-45°=30°,由正弦 定理得10sin 30°=BCsin 45°,解得BC=102. 在△ABC中,AB=BCtan∠ACB=102×tan 60°=106.] 5.(2018?长沙模拟)在△ABC 中,角A,B,C对应边分别为a,b,c,已知三个向量m=a,cos A2,n=b,cos B2,p=c,cosC2共线,则△ABC的形状为( ) A.等 边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形 A [由m∥n得acosB2=bcosA2,即sin Acos B2=sin Bcos A2化简得sinA2=sinB2,从而A=B,同理由m∥p得A=C,因此△ABC为等边三角形.] 6.如图217,在△ABC中,C=π3,BC=4,点D在边AC上,AD=DB,DE⊥AB,E为垂足.若DE=22,则cos A=( ) 图217 A.223 B.24 C.64 D.63 C [∵DE=22,∴BD=AD=DEsin A=22sin A.∵∠BDC=2∠A,在△BCD中,由正弦定理得BCsin∠BDC=BDsin C,

解三角形题型汇总.docx

《解三角形》知识点归纳及题型汇总 1、①三角形三角关系: A+B+C=180°; C=180°— (A+B); ② . 角平分线性质 : 角平分线分对边所得两段线段的比等于角两边之比. ③ . 锐角三角形性质:若A>B>C则60 A 90 ,0 C 60 . 2、三角形三边关系: a+b>c; a-b

的外接圆的半径,则有 a b c 2R .sin sin sin C 5、正弦定理的变形公式: ①化角为边: a2Rsin, b2Rsin, c2Rsin C ; ②化边为角: sin a, sin b, sin C c ; 2R2R2R ③ a : b : c sin:sin:sin C ; ④a b c a b c=2R sin sin sin C sin sin sin C 6、两类正弦定理解三角形的问题: ①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角. 7、三角形面积公式: S C1 bc sin1 ab sin C1 ac sin.=2RsinAsinBsinC=abc 2 2224R = r (a b c) =p( p a)( p b)( p c) ( 海伦公式 ) 2 8、余弦定理:在 C 中, a2b2c22bc cos,b2a2c22ac cos , c2a2b22ab cosC .9、余弦定理的推论: cos b2c2 a 2, cos a2c2b2, cosC a2b2c2. 2bc2ac2ab 10、余弦定理主要解决的问题: ①已知两边和夹角,求其余的量. ②已知三边求角

2019高二数学解三角形公式总结

2019高二数学解三角形公式总结 解三角形问题是历年高二数学考试考查的重点,属必考内容,掌握好高二数学三角函数的公式必不可少。下面是本人给大家带来的高二数学解三角形公式总结,希望对你有帮助。 高二数学解三角形公式 高二数学学习方法 抓好基础是关键 数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。反之,会使解题速度慢,逻辑混乱、叙述不清。 严防题海战术 做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现

问题的完全解决我应用了怎样的解题策略?只有这样才会培养 自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。 归纳数学大思维 数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。听课是认真,但费力,听完后是满脑子的计算过程,支离破碎。老师的分析是引导学生思考,启发学生自己设计出处理这些问题的大策略、大思维。当教师解答习题时,学生要用自己的计算和推理已经知道老师要干什么。另外,当题目的答案给出时,并不代表问题的解答完毕,还要花一定的时间认真总结、归纳理解记忆。要把这些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一类型问题的经验和技能。同时也解决了学生中会听课而不会做题目的坏毛病。 积累考试经验 本学期每月初都有大的考试,加之每单元的单元测验和模拟考试有十几次,抓住这些机会,积累一定的考试经验,掌握一定的考试技巧,使自己应有的水平在考试中得到充分的发挥。其实,考试是单兵作战,它是考验一个人的承受能力、接受能力、解决问题等综合能力的战场。这些能力的只有在平时的考试中得到培养和训练。 高二数学学习技巧

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

全国卷一专用2019年高考理科数学总复习 解三角形

全国卷一专用2019年高考理科数学总复习 解三角形 一、基础巩固组 1.△ABC的内角A,B,C的对边分别为a,b,c.已知a=,b=2,A=60°,则c=() A. B.1 C. D.2 2.在△ABC中,已知a cos A=b cos B,则△ABC的形状是() A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形 3.已知△ABC的三个内角A,B,C依次成等差数列,BC边上的中线AD=,AB=2,则S△ABC=() A.3 B.2 C.3 D.6 4.在△ABC中,B=,BC边上的高等于BC,则cos A=() A. B. C.- D.- 5.在△ABC中,A,B,C所对的边分别为a,b,c,若b cos A+a cos B=c2,a=b=2,则△ABC的周长为() A.7.5 B.7 C.6 D.5 6.已知△ABC的三个内角A,B,C的对边分别为a,b,c,且满足=sin A-sin B,则 C= . 7.在△ABC中,角A,B,C的对边分别为a,b,c,且2c·cos B=2a+b,若△ABC的面积为S=c,则ab的最小值为. 8.如图所示,长为3.5 m的木棒AB斜靠在石堤旁,木棒的一端A在离堤足C处1.4 m的地面上,另一端B在离堤足C处2.8 m的石堤上,石堤的倾斜角为α,则坡度值tan α=. 9.(2017全国Ⅲ,理17)△ABC的内角A,B,C的对边分别为a,b,c.已知sin A+cos A=0,a=2,b=2. (1)求c; (2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.

10.已知岛A南偏西38°方向,距岛A 3 n mile的B处有一艘缉私艇.岛A处的一艘走私船正以10 n mile/h的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5 h能截住该走私船? 二、综合提升组 11.△ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=,则C= () A.B.C.D. 12.在△ABC中,D为BC边上的一点,AD=BD=5,DC=4,∠BAD=∠DAC,则AC=() A.9 B.8 C.7 D.6 13.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从点A测得点M的仰角∠ MAN=60°,点C的仰角∠CAB=45°以及∠MAC=75°;从点C测得∠MCA=60°.已知山高BC=100 m,则山高MN= m. 14.(2017河南郑州一中质检一,理17)已知△ABC外接圆直径为,角A,B,C所对的边分别为 a,b,c,C=60°. (1)求的值; (2)若a+b=ab,求△ABC的面积. 三、创新应用组 15.(2018福建泉州期末,理10)已知点P是函数f(x)=A sin(ωx+φ)(φ>0)图象上的一个最高点,B,C是与P相邻的两个最低点.若cos∠BPC=,则f(x)的图象的对称中心可以是() A.(0,0) B.(1,0) C.(2,0) D.(3,0) 16.(2017宁夏银川九中二模,理17)已知函数f(x)=sin ωx-2sin2+m(ω>0)的最小正周期为 3π,当x∈[0,π]时,函数f(x)的最小值为0. (1)求函数f(x)的表达式; (2)在△ABC中,若f(C)=1,且2sin2B=cos B+cos(A-C),求sin A的值.

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

高考中《解三角形》题型归纳

1 《解三角形》题型归纳 【题型归纳】 题型一正弦定理、余弦定理的直接应用 例1ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin 2B A C +=. (1)求cos B (2)若6a c +=,ABC ?面积为2,求b . 【答案】(1)15 cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin 2B B =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15 cos 17B =. (2)由15cos 17B =得8sin 17B =,故1 4 sin 217ABC S ac B ac ?==. 又2ABC S ?=,则17 2ac =. 由余弦定理及6a c +=得22222cos ()2(1cos ) b a c ac B a c ac B =+-=+-+17 15 362(14217=-??+=. 所以2b =. 【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出 例2ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =.【答案】π3【解析】1 π 2sin cos sin cos sin cos sin()sin cos 23B B A C C A A C B B B =+=+=?=?= .

2【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。 【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。 例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23 π,则S △ABC =________.【答案】34 【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B =π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34 .【易错点】大边对大角,应注意角的取值范围 【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。题型二利用正弦定理、余弦定理判定三角形的形状 例1在ABC ?中,角,,A B C 的对边分别为,,a b c ,且,,A B C 成等差数列 (1)若2b c ==,求ABC ?的面积 (2)若sin ,sin ,sin A B C 成等比数列,试判断ABC ?的形状 【答案】(1)32(2)等边三角形 【解析】(1)由A ,B ,C 成等差数列,有2B =A +C (1) 因为A ,B ,C 为△ABC 的内角,所以A +B +C =π.(2) 得B =3π, b 2=a 2+ c 2-2accosB (3)所以3 cos 44)32(22πa a -+=解得4=a 或2-=a (舍去)所以323 sin 2421sin 21=??==?πB ac s ABC (2)由a ,b ,c 成等比数列,有b 2=ac (4) 由余弦定理及(3),可得b 2=a 2+c 2-2accosB =a 2+c 2-ac 再由(4),得a 2+c 2-ac =ac ,即(a -c )2=0。因此a =c 从而A =C (5) 由(2)(3)(5),得A =B = C =3 π

2019高考总复习优化设计1轮理科数学人教B课时规范练23 解三角形(附答案)

课时规范练23解三角形 基础巩固组 1.△ABC的内角A,B,C的对边分别为a,b,c.已知a=,b=2,A=60°,则c=() A. B.1 C. D.2 2.在△ABC中,已知a cos A=b cos B,则△ABC的形状是() A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形 3.已知△ABC的三个内角A,B,C依次成等差数列,BC边上的中线AD=,AB=2,则 S△ABC=() A.3 B.2 C.3 D.6 4.在△ABC中,B=,BC边上的高等于BC,则cos A=() A. B. C.- D.- 5.在△ABC中,A,B,C所对的边分别为a,b,c,若b cos A+a cos B=c2,a=b=2,则△ABC的周长为() A.7.5

B.7 C.6 D.5?导学号21500534? 6.已知△ABC的三个内角A,B,C的对边分别为a,b,c,且满足-=sin A-sin B,则 C=. 7.在△ABC中,角A,B,C的对边分别为a,b,c,且2c·cos B=2a+b,若△ABC的面积为S=c,则ab 的最小值为. 8.如图所示,长为3.5 m的木棒AB斜靠在石堤旁,木棒的一端A在离堤足C处1.4 m的地面上,另一端B在离堤足C处2.8 m的石堤上,石堤的倾斜角为α,则坡度值tan α=. 9.(2017全国Ⅲ,理17)△ABC的内角A,B,C的对边分别为a,b,c.已知sin A+cos A=0,a=2,b=2. (1)求c; (2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.

?导学号21500535?10.已知岛A南偏西38°方向,距岛A 3 n mile的B处有一艘缉私艇.岛A处的一艘走私船正以10 n mile/h的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5 h 能截住该走私船? 参考数据 综合提升组 11.△ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=则C= () A.B.C.D. 12.在△ABC中,D为BC边上的一点,AD=BD=5,DC=4,∠BAD=∠DAC,则AC=() A.9 B.8 C.7 D.6 13.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从点A测得点M的仰角∠MAN=60°,点C的仰角∠CAB=45°以及∠MAC=75°;从点C测得∠MCA=60°.已知山高 BC=100 m,则山高MN= m.

解三角形常见题型归纳

解三角形常见题型归纳 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。 题型之一:求解斜三角形中的基本元素 指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题. 1. 在ABC ?中,AB=3,AC=2,BC=10,则AB AC ?=u u u r u u u r ( ) A .23- B .32- C .32 D .2 3 【答案】D 2.(1)在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形; (2)在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。 3.(1)在?ABC 中,已知=a c 060=B ,求b 及A ; (2)在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A .33sin 34+??? ? ? + πB B .36sin 34+??? ? ? +πB C .33sin 6+??? ? ? + πB D .36sin 6+??? ? ? +πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知6 6 cos ,364== B AB ,A C 边上的中线B D =5,求sin A 的值. 分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A . 解:设E 为BC 的中点,连接DE ,则DE //AB ,且3 6221== AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 22 2 2 ?-+=, x x 6636223852??++ =,解得1=x ,3 7 -=x (舍去) 故BC =2,从而3 28 cos 2222= ?-+=B BC AB BC AB AC ,即3212=AC 又630sin =B ,

《解三角形》常见题型总结

《解三角形》常见题型总结 1、1正弦定理和余弦定理 1、1、1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形例1 在ABC中,已知 A:B:C=1:2:3,求a :b :c、 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。解: 【解题策略】 要牢记正弦定理极其变形形式,要做到灵活应用。例2在ABC 中,已知c=+,C=30,求a+b的取值范围。 【点拨】 此题可先运用正弦定理将a+b表示为某个角的三角函数,然后再求解。解:∵C=30,c=+,∴由正弦定理得:∴ a=2(+)sinA,b=2(+)sinB=2(+)sin(150-A)、 ∴a+b=2(+)[sinA+sin(150-A)]=2(+)2sin75cos(75-A)= cos(75-A)① 当75-A=0,即A=75时,a+b取得最大值=8+4;② ∵A=180-(C+B)=150-B,∴A<150,∴0<A<150,∴-75<75-A<75, ∴cos75<cos(75-A)≤1,∴> cos75==+、综合①②可得a+b的

取值范围为(+,8+4>考察点2:利用正弦定理判断三角形形状例3在△ABC中,tanB=tanA,判断三角形ABC的形状。 【点拨】 通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC的形状。解:由正弦定理变式a=2RsinA,b=2RsinB得:,即,,、∴为等腰三角形或直角三角形。 【解题策略】 “在△ABC中,由得∠A=∠B”是常犯的错误,应认真体会上述解答过程中“∠A=∠B或∠A+∠B=”的导出过程。例4在△ABC 中,如果,并且B为锐角,试判断此三角形的形状。 【点拨】 通过正弦定理把边的形式转化为角的形式,利用两角差的正弦公式来判断△ABC的形状。解:、又∵B为锐角,∴B= 45、由由正弦定理,得,∵代入上式得:考察点3:利用正弦定理证明三角恒等式例5在△ABC中,求证、 【点拨】 观察等式的特点,有边有角要把边角统一,为此利用正弦定理将转化为、证明:由正弦定理的变式得:同理 【解题策略】 在三角形中,解决含边角关系的问题时,常运用正弦定理进行边角互化,然后利用三角知识去解决,要注意体会其中的转化

文本预览
相关文档 最新文档