当前位置:文档之家› 第1章结构动力学概述

第1章结构动力学概述

结构动力学习题解答(一二章)

第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

结构动力学心得汇总

结构动力学学习总结

通过对本课程的学习,感受颇深。我谈一下自己对这门课的理解: 一.结构动力学的基本概念和研究内容 随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。这门课的主要内容包括运动方程的建立、单自

由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。 二.动力分析及荷载计算 1.动力计算的特点 动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与

静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。 荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。 在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。而

结构动力学读书笔记

《结构动力学》读书报告 学院 专业 学号 指导老师 2013 年 5月 28日

摘要:本书在介绍基本概念和基础理论的同时,也介绍了结构动力学领域的若干前沿研究课题。既注重读者对基本知识的掌握,也注重读者对结构振动领域研究发展方向的掌握。主要容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构动力学的前沿研究课题。侧重介绍单自由度体系和多自由度体系,重点突出,同时也着重介绍了在抗震中的应用。 1 概述 1.1结构动力学的发展及其研究容: 结构动力学,作为一门课程也可称作振动力学,广泛地应用于工程领域的各个学科,诸如航天工程,航空工程,机械工程,能源工程,动力工程,交通工程,土木工程,工程力学等等。作为固体力学的一门主要分支学科,结构动力学起源于经典牛顿力学,就是牛顿质点力学。质点力学的基本问题是用牛顿第二定律来建立公式的。牛顿质点力学,拉格朗日力学和哈密尔顿力学是结构动力学基本理论体系组成的三大支柱。 经典动力学的理论体系早在19世纪中叶就已建立,。但和弹性力学类似,理论体系虽早已建立,但由于数学求解上的异常困难,能够用来解析求解的实际问题实在是少之又少,能够通过手算完成的也不过仅仅限于几个自由度的结构动力体系。因此,在很长一段时间,动力学的求解思想在工程实际中并未得到很好的应用,人们依然习惯于在静力学的畴用静力学的方法来解决工程实际问题。 随着汽车,飞机等新时代交通工具的出现,后工业革命时代各种大型机械的创造发明,以及越来越多的摩天大楼的拔地而起,工程界日新月异的发展和变化对工程师们提出了越来越高的要求,传统的只考虑静力荷载的设计理念和设计方法显然已经跟不上时代的要求了。也正是从这个时候起,结构动力学作为一门学科,也开始受到工程界越来越高的重视,从而带动了结构动力学的快速发展。 结构动力学这门学科在过去几十年来所经历的深刻变革,其主要原因也正是由于电子计算机的问世使得大型结构动力体系数值解的得到成为可能。由于电子计算机的超快速度的计算能力,使得在过去凭借手工根本无法求解的问题得到了解决。目前,由于广泛地应用了快速傅立叶变换(FFT),促使结构动力学分析发生了更加深刻地变化,而且使得结构动力学分析与结构动力试验之间的相互关系也开始得以沟通。总之,计算机革命带来了结构动力学求解方法的本质改变。 作为一门课程,结构动力学的基本体系和容主要包括以下几个部分:单自由度系统结构动力学,;多自由度系统结构动力学,;连续系统结构动力学。此外,如果系统上所施加的动力荷载是确定性的,该系统就称为确定性结构动力系统;而如果系统上所施加的动力荷载是非确定性的,该系统就称为概率性结构动力系统。 1.2主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模

学习建筑力学心得word精品

学习建筑力学心得 《建筑力学》由理论力学、材料力学、结构力学三部分组成,它是土木工程专业一门重 要的专业基础课。《建筑力学》课程中的基本规律、原理和方法,是人们通过观察生活和生产实践 中的各种现象,进行多次科学实验,经过分析,综合和归纳所总结出来的。从很久以前到日益发展的现代社会,力学总是和人类的发展与进步息息相关。人类在远古时代就开始制作各种和力学相关的物品,例如弓箭、房屋、船以及乐器等等,这些都是简单的结果。随着现代社会的进步,人们对于结构设计的规律以及结构的强度和刚度逐渐有了更深的认识并且积累了经验,这表现在古代建筑的辉煌成就中,如埃及的金字塔、中国的万里长城、北京的故宫等等。虽然在这些结构中隐含力学的知识,但其归根并没有形成一门学科,随着现代社会的进步和发展,人们逐渐从这些结构和实践中总结出经验,形成了现代的力学一建筑力学。 现代社会所有的有关建筑的和力学室密不可分的,没有可靠的力学与结构分析 就没有安全而又实用的建筑物。特别是建筑力学对现代建筑的意义更为重要,每一 座好的建筑在开始建造前都要通过大量的实验验证和安全评估,否则将产生 诸多不良的影响,甚至损失难以估计。首先要考虑建筑结构的合理性,如何在实际 情况下选取合适节省材料的结构方式完成工程很重要。最重要的是要考虑到安全因 素,从整体的静力分析到有线单元的衍架与混凝土结构再到外部环境因素,例如风 载荷、地震、建筑物的本身质量等等以及有特殊设计要求的特殊场地,这 些都是和建筑力学密不可分的。 建筑力学是需要我们认真对待的,他几乎应用到所有角落。建筑是随着人类文 明进一步发展的,再好的。理论都需要可靠的实践来证明,同理好的理论和方法也 尤为重要,例如现代在计算机领域的应用,我们可以通过模拟软件来模拟模块的受 力及有线单元的使用等,很方便的促进了力学的分析和复杂问题的计算,所以他们 是相符发展和影响的。总之,力学和建筑是分不开的,作为一个建筑力学的学习 者,特别是对我这样对建筑工程感兴趣的学生来说,掌握最基本的分析方法和培养 良好的科学习惯尤为重要,并为以后的学习和工作打下坚实的基础,当一个工程在 我们手中像长城一样伫立不随着人类社会的进步和发展,人类逐渐 从建筑建构和实践中总结经验,发展成现代的力学理论与方法。这些理论和方法几 乎被应用到了所用领域。建筑的发展和力学是不可分的,可以说没有可靠的力学与 结构分析就没有安全而又实用的优秀建筑。尤其是对于现代建筑的意义更为重要, 每一座好的建筑建造前都要通过很多次的实验验证。如何用最少的材料建 造最安全适用的房屋是有一套过程的,通过对建筑模型的力学分析,如它的抗弯能 力,弹性性能等。尤其在一些大型桥梁建筑中使用的钢筋结构和拉杆等,在长期的负荷作用下如何保持结构的受力均衡和稳定,在做工程建造前必须有着严密的计算分析及准备方案。例如,在建设青藏铁路时,为了保证铁路地基的长年冷冻状态,在铁路两旁的地基中插入了数千根散热棒,否则地基会由于长期的工作解冻,坍塌裂缝,造成铁轨受力不均,造成不可预计的损失,这些都是要在实际工程中考虑和解决的问题,只有正确地利用力学才能把一座座优美坚固的建筑呈现在地上。 总结,建筑力学是一门技术基础课程,它为土木工程的结构设计及施工现场受 力问题的解决提供基本的力学知识和计算方法,我会努力学好建筑力学这门课程, 通过理论与实践相结合来不断的提高自己的能力,为祖国建设做出更大的贡献。

结构力学个人总结

结构力学个人总结 本页是精品最新发布的《结构力学个人总结》的详细文章,。篇一:结构力学心得体会 结构力学心得体会 本学期结构力学的课程已经接近尾声。主要是三部分内容,即渐近法、矩阵位移法和平面刚架静力分析的程序设计。通过为期八周的理论课学习和六次的上机课程设计,我收获颇丰。 而对结构力学半年的学习,也让我对这门学科有了很大的认识。结构力学是力学的分支,它主要研究工程结构受力和传力的规律以及如何进行结构优化的学科。工程力学是机械类工种的一门重要的技术基础课,许多工程实践都离不开工程力学,工程力学又和其它一些后绪课程及实习课有紧密的联系。所以,工程力学是掌握专业知识和技能不可缺少的一门重要课程。 首先,渐近法的核心是力矩分配法。计算超静定刚架,不论采用力法或位移法,都要组成和验算典型方程,当未知量较多时,解算联立方程比较复杂,力矩分配法就是为了计算简洁而得到的捷径,它是位移法演变而来的一种结构计算方法。其物理概念生动形象,每轮计算又是按同一步骤重复进行,进而易于掌握,适合手算,并可不经过计算节点位移而直接求得杆端弯矩,在结构设计中被广泛应用,是我们应该掌握的基本技能。本章要

求我们能够熟练得运用力矩分配法对钢架结构进行力矩分配和传递,然后计算出杆端最后的弯矩,画出钢架弯矩图。 其次,与上一学期所学的力法和位移法那些传统的结构力学基本方法相比,本学期所学的矩阵位移法是通过与计算机相结合,解决力法和位移法不能解决的结构分析题。其核心是杆系结构的矩阵分析,主要包括两部分内容,即单元分析和整体分析。矩阵位移法的程序简单并且通用性强,所以应用最广,范文 TOP100也是我们本学期学习的重点和难点。本章要求我们掌握单位的刚度方程并且明白单位矩阵中每一个元素的物理意义,可以熟练的进行坐标转换,最为重要的是能够利用矩阵位移法进行计算。 最后,是平面钢架静力分析的程序设计。其核心是如何把矩阵分析的过程变成计算机的计算程序,实现计算机的自动计算。我们所学的是一种新的程序设计方法—PAD软件设计方法,它的程序设计包括四步:1、把计算过程模块化,给出总体程序结构的PAD设计;2、主程序的PAD设计;3、子程序的PAD设计;4、根据主程序和子程序的PAD设计,用程序语言编写计算程序。要求我们具备结构力学、算法语言,即VB、矩阵代数等方面的基础知识。在上机利用VB 进行程序设计解答实际问题的过程中,我们遇到了各种各样的难题,每一道题得出最后的结果都不会那么容易轻松。第一,需要重视细节,在抄写程序代码时,需要同组人的分工合作,然后再把每一部分的代码合成一个整体然后运行,这

结构力学培训心得体会(精)

结构力学培训心得体会 浅谈结构变形图在定性结构力学教学中的应用 许凯 (武汉科技大学城市建设学院) 2008年7月25日至27日,我参加了《结构力学骨干教师高级研修班》培训。三天的培训使我受益良多,感谢两位主讲老师带给我们的新观点、新方法,这些新的理念引发了我对今后结构力学教学工作的诸多思考。 结构力学是结构工程师的看家本领,正因为如此,结构力学教学中能力和素质的培养应为教学工作的主导,应将能力培养贯穿教学活动的始终和各个环节,袁老师认为结构力学中有三个方面的能力要重点训练培养,它们是:经典方法分析能力,计算机分析能力和定性分析能力。也就是“一个基础、两座大厦”。这个比喻非常的形象,点出了结构力学教学的重点以及结构力学今后的发展方向。 “定性结构力学”培养的是学生定性的分析和判断能力。定性分析是结构力学以及其它所有力学进行分析和计算的概念性基础。工程中的概念设计、估算判断、计算模型建立、计算结果分析等都要用到定性分析。因此,对于没有条件开设这门课的高校,应该把该课程的内容融入到经典结构力学的教学中去,对此,我在教学工作中也做过一些尝试,今后考虑如何系统化,并以提高学生的综合素质与能力为着眼点。 一、由变形图确定弯矩图 正确绘制梁与刚架在荷载作用下的变形图,有助于确定结构内力图的大致形状,校核原结构的弯矩图是否正确,在定性结构力学中,具有十分重要的意义。 例如,对于各种形式的拱(见图1,a、b、c),如果让学生死记弯矩图的形状,一是不容易记住,二是不能理解其力学本质。通过绘制变形图(图中虚线部分,将杆件受拉一侧标记为+),很容易地得到弯矩图的大致形状。至于变形图的绘制,其实并不复杂,只要注意满足约束条件,注意荷载方向与变形趋势之间的关系,以及注意结点的特性等基本要素,再辅以适当的练习,就可以掌握其方法,并在结构的定性分析中灵活应用了。 更深一层地,可以用变形图对结构做进一步的分析和判断,例:用变形图判断混凝土拱结构的开裂部位。根据变形图(见图1,c),判断构件可能出现裂缝的部位(见图1,d)。

结构动力学3-3w总结

T p —荷载的周期 7/63 单自由度体系对周期荷载的反应 任意周期荷载作用下结构总的稳态反应为: 用复数Fourier 级数将周期荷载展开, 先计算单位复荷载e i ωj t 作用下,体系稳态反应的复幅值,设: 总的稳态反应为: 复频反应函数,也称为频响函数,传递函数

单位脉冲:作用时间很短,冲量等于1的荷载。 单位脉冲反应函数:单位脉冲作用下体系动力反应时程。 积分 时刻的一个单位脉冲作用在单自由体系上,使结构的质点获得一个单位冲量,在脉冲结束后,质点获得一个初速度: 由于脉冲作用时间很短,ε→0,质点的位移为零:

13/63 —Duhamel 积分无阻尼体系的单位脉冲反应函数为: 有阻尼体系的单位脉冲反应函数为: 、单位脉冲反应函数 单位脉冲及单位脉冲反应函数 15/63 在任意时间t 结构的反应,等的和: Duhamel 积分: 任意荷载作用下单自由度体系的反应等于作用于结构的外荷载与单位脉冲反应函数的卷积。 3.8.1时域分析方法—Duhamel 积分 无阻尼体系动力反应的Duhamel 积分公式: 阻尼体系动力反应的Duhamel 积分公式:

17/63杜哈曼积分法给出了计算线性SDOF体系在任意荷载作用下动力反应的一般解,适用于线弹性体系。 因为使用了叠加原理,因此杜哈曼积分法限于弹性范 速度和加速度的Fourier变换为:

21/63单自由度体系时域运动方程: 对时域运动方程两边同时进行Fourier 正变换,得单自由度体系频域运动方程: —Fourier 变换法频域解为: )—复频反应函数,i 是用来表示函数是一复数。再利用Fourier 逆变换,即得到体系的位移解: 作Fourier 变换, 得到荷载的Fourier 谱P (ω)和复频反应函数到结构反应的频域解—Fourier 谱U (逆变换,由频域解U (ω)得到时域解u (t ): 在用频域法分析中涉及到两次Fourier 变换,均为无穷域积分,特别是Fourier 逆变换,被积函数是复数,有时涉及复杂的围道积分。

理论力学学习心得

篇一:理论力学学习体会 理论力学学习体会 —理论力学所培养的能力 习每一门科目都会给我们带来一种能力的培养,学习数学是去学习思维,学习历史是去学习智慧......那么学习理论力学呢? 很多 人觉得理论力学很枯燥,学起来的时候感觉彻底颠覆了自己的思维,像高中学习的物理什么的 都变成错的了,有时候解下一道题时又感觉上一道的理论是错的,最后都不知道到底该用哪种 方法去理解了。其实,这只是在初学的时候所有的感觉。 理论 力学的学习本身就是一种思维的学习,不过又不仅仅是这样,其中的实际问题的探讨又能帮助 我们提高解决实际问题的能力,看待事物的灵活性等等。 中,一题多解的例子更多,可以用动力学普遍定理求解,也可以用达朗贝尔原理求解,或用动 力学普遍方程求解.我们在学习过程中,相同题型尽量用不同方法求解,做到各种方法融会贯 通.久而久之,就会使我们的思维变得灵活,遇到问题勤于思考、善于思考,广开思路,通过 自己的探索,找出最佳方案. 利用 知识之间的内在联系增强创新意识。 抓住 概念与定理之间的逻辑关系培养逻辑思维能力。 的绝对运动,先将其看作由相对运动、牵连运动组合而成,然后研究三种运动之间的速度关 系、加速度关系,再利用这些关系求解绝对运动的速度、加速度.在学习这些内容时,我们 要善于思考,然后注意分析的过程和解决的办法.一旦理解了这些解决问题的思路,就可以 触类旁通,并灵活应用. 借助 多种形式培养表达能力。受力分析时,需要准确、清晰地画出受力图;运动分析时,需要准 确、清晰地画出速度图、加速度图;计算求解时,需要列出各种方程式。通过这些,可以培养 我们的图像以及数学语言的表达能力。

第10章 结构动力学

FBFr 第十章 10-5 试确定图示各体系的动力自由度,忽略弹性杆自身的质量。 (a) (b) EI 1=∞ EI m y ? 分布质量的刚度为无穷大,由广义坐标法可知,体系仅有两个振动自由度y ,?。 (c) (d) 在集中质量处施加刚性链杆以限制质量运动体系。有四个自由度。 10-8 图示结构横梁具有无限刚性和均布质量m ,B 处有一弹性支座(刚度系数为k ),C 处有一阻尼器(阻尼系数为c ),梁上受三角形分布动力荷载作用,试用不同的方法建立体系的运动方程。 解:1)刚度法 该体系仅有一个自由度。 可设A 截面转角a 为坐标顺时针为正,此时作用于分布质量m 上的惯性力呈三角形分布。其 端部集度为.. ml a 。 取A 点隔离体,A 结点力矩为: (3) 121233 I M m l a l l mal =???= 由动力荷载引起的力矩为: ()()2121 233 t t q l l q l ??= 由弹性恢复力所引起的弯矩为:.21 33 la k l c al ? ?+ 根据A 结点力矩平衡条件0I p s M M M ++=可得: () 3 (322) 1393 t q l ka m a l l c a l ++= 整理得:() . .. 33t q ka c a m a l l l ++= 2)力法 . c α 解:取AC 杆转角为坐标,设在平衡位置附近发生虚位移α。根据几何关系,虚 功方程为:() (20111) 0333 l t q l l k l l l c m x xdx ααααααα-?-?-?=? 则同样有:() . .. 33t q ka c a m a l l l + +=。 10-9 图示结构AD 和DF 杆具有无限刚性和均布质量m ,A 处转动弹簧铰的刚度系数为k θ,C 、E 处弹簧的刚度系数为k ,B 处阻尼器的阻尼系数为 c ,试建立体系自由振动时的运动方程。

结构动力学课程总结

结构动力学课程学习总结 本学期我们开了《结构动力学》课程,作为结构工程专业的一名学生,《结构动力学》是我们的一门重要的基础课,所以同学们都认真的学习相关知识。《结构动力学》是研究结构体系在各种形式动荷载作用下动力学行为的一门技术学科。它是一门技术性很强的专业基础课程,涉及数学建模、演绎、计算方法、测试技术和数值模拟等多个研究领域,同时具有鲜明的工程与应用背景。学习该门学科的根本目的是为改善工程结构系统在动力环境中的安全和可靠性提供坚实的理论基础。通过该课程的学习,可以掌握动力学的基本规律,有助于在今后工程建设中减少振动危害。 对一般的内容,老师通常是让学生个人讲述所学内容,课前布置他们预习,授课时采用讨论式,先由一名学生主讲,老师纠正补充,加深讲解,同时回答其他同学提出的问题。对较难或较重要的内容,由教师直接讲解,最后大家共同讨论教材后面的思考题,以加深对相关知识点的理解。 通过本课程的学习,我们了解到:结构的动力计算与静力计算有很大的区别。静力计算是研究静荷载作用下的平衡问题。这时结构的质量不随时间快速运动,因而无惯性力。动力计算研究的是动荷载作用下的运动问题,这时结构的质量随时间快速运动,惯性力的作用成为必须考虑的重要问题。根据达朗伯原理,动力计算问题可以转化为静力平衡问题来处理。但是,这是一种形式上的平衡,是一种动平衡,是在引进惯性力的条件下的平衡。也就是说,在动力计算中,虽然形式上仍是是在列平衡方程,但是这里要注意两个问题:所考虑的力系中要包括惯性力这个新的力、考虑的是瞬间的平衡,荷载、内力等都是时间的函数。 我们首先学习了单自由度系统自由振动和受迫振动的概念,所以在学习多自由度系统和弹性体系的振动分析时,则重点学习后者的振动特点以及与前者的联系和区别,这样既节省了时间,又抓住了重点。由于多自由度系统振动分析的公式推导是以矩阵形式表达为基础的,我们开始学习时感到有点不适应,但是随着课程的进展,加上学过矩阵理论这门课后,我们自觉地体会到用矩阵形式表达非常有利于数值计算时的编程,从中也感受到数学知识的魅力和现代技术的优越性,这样就大大增强了我们学习的兴趣。

结构动力学习题解答一二章

第一章 单自由度系统 1、1 总结求单自由度系统固有频率的方法与步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法与能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析与动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 与势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 与势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1、2 叙述用衰减法求单自由度系统阻尼比的方法与步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法与共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期与相邻波峰与波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

结构动力学 读书报告

《结构动力学》读书报告

结构动力学读书报告 学习完本门课程和结合自身所学专业,我对本门课程内容的理解和在各方面的应用总结如下: 1.(1)结构动力学及其研究内容: 结构动力学是研究结构系统在动力荷载作用下的振动特性的一门科学技术,它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。本书的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。 (2)主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模型,在确定载荷后,导出模型的运动方程,然后选用合适的方法求解。 (3)数学模型 将结构离散化的方法主要有以下三种:①集聚质量法:把结构的分布质量集聚于一系列离散的质点或块,而把结构本身看作是仅具有弹性性能的无质量系统。由于仅是这些质点或块才产生惯性力,故离散系统的运动方程只以这些质点的位移或块的位移和转动作为自由

度。对于大部分质量集中在若干离散点上的结构,这种方法特别有效。 ②广义位移法:假定结构在振动时的位形(偏离平衡位置的位移形态)可用一系列事先规定的容许位移函数fi(它们必须满足支承处的约束条件以及结构内部位移的连续性条件)之和来表示,例如,对于一维结构,它的位形u(x)可以近似地表为: 结构动力学 (1) 式中的qj称为广义坐标,它表示相应位移函数的幅值。这样,离散系统的运动方程就以广义坐标作为自由度。对于质量分布比较均匀,形状规则且边界条件易于处理的结构,这种方法很有效。 ③有限元法:可以看作是分区的瑞利-里兹法,其要点是先把结构划分成适当数量的区域(称为单元),然后对每一单元施行瑞利-里兹法。通常取单元边界上(有时也包括单元内部)若干个几何特征点(例如三角形的顶点、边中点等)处的广义位移qj作为广义坐标,并对每个广义坐标取相应的插值函数作为单元内部的位移函数(或称形状函数)。在这样的数学模型中,要求形状函数的组合在相邻单元的公共边界上满足位移连续条件。一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的方法,已有不少专用的或通用的程序可供结构动力学分析之用。 (4)运动方程 可用三种等价但形式不同的方法建立,即:①利用达朗伯原理引

李廉锟《结构力学》(第5版)(下册)课后习题-第14章 结构的极限荷载【圣才出品】

第14章 结构的极限荷载 复习思考题 1.什么叫极限状态和极限荷载?什么叫极限弯矩、塑性铰和破坏机构? 答:(1)极限状态和极限荷载的含义: ①极限状态是指整个结构或结构的一部分超过某一状态就不能满足设计规定的某一功能要求时所对应的特定状态; ②极限荷载是指结构在极限状态时所能承受的荷载。 (2)极限弯矩、塑性铰和破坏机构的含义: ①极限弯矩是指某一截面所能承受的弯矩的最大数值; ②塑性铰是指弯矩不能再增大,但弯曲变形则可任意增长的截面; ③破坏机构是指出现若干塑性铰而成为几何可变或瞬变体系的结构。 2.静定结构出现一个塑性铰时是否一定成为破坏机构?n次超静定结构是否必须出现n+1个塑性铰才能成为破坏机构? 答:(1)静定结构出现一个塑性铰时一定成为破坏机构。 因为根据几何组成分析,当静定结构出现一个塑性铰时,结构由几何不变变成几何可变或几何瞬变体系,此时该结构一定成为了破坏机构。 (2)n次超静定结构不必出现n+1个塑性铰才能成为破坏机构。 因为n次超静定结构出现n个塑性铰时,如果塑性铰的位置不合适,也可能使原结构变成几何瞬变的体系,此时的结构也成为了破坏机构。

3.结构处于极限状态时应满足哪些条件? 答:结构处于极限状态时应满足如下三个条件: (1)机构条件 机构条件是指在极限状态中,结构必须出现足够数目的塑性铰而成为机构(几何可变或瞬变体系),可沿荷载作正功的方向发生单向运动。 (2)内力局限条件 内力局限条件是指在极限状态中,任一截面的弯矩绝对值都不超过其极限弯矩。 (3)平衡条件 平衡条件是指在极限状态中,结构的整体或任一局部仍维持平衡。 4.什么叫可破坏荷载和可接受荷载?它们与极限荷载的关系如何? 答:(1)可破坏荷载和可接受荷载的含义: 可破坏荷载是指满足机构条件和平衡条件的荷载(不一定满足内力局限条件); 可接受荷载是指满足内力局限条件和平衡条件的荷载(不一定满足机构条件)。 (2)与极限荷载的关系 极限荷载是所有可破坏荷载中的最小者,是所有可接受荷载中的最大者。 习题 14-1 已知材料的屈服极限σs=240MPa。试求下列截面的极限弯矩值:(a)矩形截面b=50mm,h=100mm;(b)20a工字钢;(c)图示T形截面。

结构力学知识点总结

1.关于∞点和∞线的下列四点结论: (1) 每个方向有一个∞点(即该方向各平行线的交点)。 (2) 不同方向上有不同的∞点。 (3) 各∞点都在同一直线上,此直线称为∞线。 (4) 各有限远点都不在∞线上。 2.多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。 3.W>0, 缺少足够约束,体系几何可变。W=0, 具备成为几何不变体系所要求 的最少约束数目。W<0, 体系具有多余约束。 4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。 两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。 两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。 三个刚片用不在同一直线上的三个单铰两两相连,组成无多余约束的几何不变体系。 5.二元体规律: 在一个体系上增加或拆除二元体,不改变原体系的几何构造性质。 6.形成瞬铰(虚铰)的两链杆必须连接相同的两刚片。 7.w=s-n ,W=0,但布置不当几何可变。自由度W >0 时,体系一定是可变的。 但W ≤0仅是体系几何不变的必要条件。S=0,体系几何不变。 8..轴力FN --拉力为正; 剪力FQ--绕隔离体顺时针方向转动者为正; 弯矩M--使梁的下侧纤维受拉者为正。 弯矩图--习惯绘在杆件受拉的一侧,不需标正负号; 轴力和剪力图--可绘在杆件的任一侧,但需标明正负号。 9.剪力图上某点处的切线斜率等于该点处荷载集度q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。 10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。 () ()Q dM x dF x dx =22() ()()Q dF x d M x q y dx dx ==-FN+d FN F N FQ+dF Q F Q M M+d M d x d x ,, B A B A B A x NB NA x x x QB QA y x x B A Q x F F q dx F F q dx M M F dx =-=-=+? ? ?

结构力学知识点考点归纳与总结

结构力学知识点的归纳与总结 第一章 一、简化的原则 1. 结构体系的简化——分解成几个平面结构 2. 杆件的简化——其纵向轴线代替。 3. 杆件间连接的简化——结点通常简化为铰结点或刚结点 4. 结构与基础间连接的简化 结构与基础的连接区简化为支座。按受力特征,通常简化为: (1) 滚轴支座:只约束了竖向位移,允许水平移动和转动。提供竖向反力。在计算简图中用支杆表示。 (2) 铰支座:约束竖向和水平位移,只允许转动。提供两个反力。在计算简图中用两根相交的支杆表示。 (3) 定向支座:只允许沿一个方向平行滑动。提供反力矩和一个反力。在计算简图中用两根平行支杆表示。 (4) 固定支座:约束了所有位移。提供两个反力也一个反力矩。 5. 材料性质的简化——对组成各构件的材料一般都假设为连续的、均匀的、各向同性的、完全弹性或弹塑性的 6. 荷载的简化——集中荷载和分布荷载 §1-4 荷载的分类 一、按作用时间的久暂 荷载可分为恒载和活载 二、按荷载的作用范围 荷载可分为集中荷载和分布荷载 三、按荷载作用的性质 荷载可分为静力荷载和动力荷载 四、按荷载位置的变化 荷载可分为固定荷载和移动荷载 第二章几何构造分析 几何不变体系:体系的位置和形状是不能改变的讨论的前提:不考虑材料的应变 2.1.2 运动自由度S S:体系运动时可以独立改变的坐标的数目。 W:W= (各部件自由度总和 a )-(全部约束数总和) W=3m-(3g+2h+b) 或w=2j-b-r.注意:j与h的区别 约束:限制体系运动的装置

2.1.4 多余约束和非多余约束 不能减少体系自由度的约束叫多余约束。 能够减少体系自由度的约束叫非多余约束。 注意:多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。 2.3.1 二元体法则 约束对象:结点 C 与刚片 约束条件:不共线的两链杆; 瞬变体系 §2-4 构造分析方法与例题 1. 先从地基开始逐步组装 2.4.1 基本分析方法(1) 一. 先找第一个不变单元,逐步组装 1. 先从地基开始逐步组装 2. 先从内部开始,组成几个大刚片后,总组装 二. 去除二元体 2.4.3 约束等效代换 1. 曲(折)链杆等效为直链杆 2. 联结两刚片的两链杆等效代换为瞬铰

弹性力学学习心得

弹性力学学习心得 大学时期就学习过弹性力学这门学科,当时的课本是徐芝纶教授的《简明弹性力学》,书的内容很丰富,但是由于课时有限加上我们自身能力的限制,本科期间只学习了前四章内容,学的比较粗略,理解的也不是很多,研一的这学期又有了一次学习的机会,通过杨老师耐心细致的讲解,我觉得弹性力学是一门十分有用并且基础的学科,值得我们去研究学习。 弹性力学与材料力学、结构力学的研究对象和研究方法上存在着一些差异,但是他们之间的界限却又不是那么明显。以弹性力学的平面问题为例,由弹性力学中平面问题的三套基本方程(平衡方程、几何方程和物理方程)和两种边界条件(应力边界、位移边界和混合)联立,就得到了求解两类平面问题(平面应力和平面应变)的一些基本方程。但是要由这些基本方程求得解析解,又是一个复杂而困难的问题。此时,引入结构力学中的力法和位移法,可以使得某些比较复杂的本来是无法求解的问题,得到解答。其中,位移法是以位移分量为基本未知函数,从基本方程和边界条件中消去应力分量和形变分量,导出只含位移分量的方程和相应的边界条件,求出位移分量后,再求出形变分量和应力分量的方法。由于位移法能更方便地处理方程中的边界条件,因此,课本中多用位移法来进行求解。在这个章节的学习中,要先复习、回忆结构力学中关于力法、位移法的知识概念,再总结弹性力学按位移求解平面应力问题的步骤和方法。 弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。 弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 通过对弹性力学的二次学习,加上杨老师详尽而又有条理的讲授,我相信将对之后塑性力学和有限元法甚至以后的学习都会有很大帮助。

ANSYS 高清晰 精品资料:第14章 瞬态结构动力分析实例

第十四章 瞬态结构动力分析实例 瞬态动力学分析(亦称时间-历程分析)是用于确定承受任意的随时间变化载荷的结构的动力学响应的一种方法。可以用瞬态结构动力学分析确定结构在静载荷,瞬态载荷,和简谐载荷的随意组合作用下随时间变化的位移,应变,应力以及力。瞬态结构动力分析中,载荷和时间的相关性使得惯性力和阻尼作用比较重要。如果惯性力和阻尼作用对于分析的问题不是很重要,就可以用静力学分析代替瞬态结构动力分析。 14.1 问题描述 本实例要用缩减法进行瞬态结构动力学分析以确定对有限上升时间的恒定力的动力学响应。问题的实际结构是一根钢梁支撑着集中质量并承受一个动态载荷。钢梁长为L ,支撑着一个集中质量M 。这根梁承受着一个上升时间为,最大值为F τt 1的动态载荷F(t)。梁的质量可以忽略,确定产生最大位移响应时的时间及响应。同时要确定梁中的最大弯曲应力max t max y bend σ。 求解过程中用不到梁的特性,其截面积可以算1个单位值。取加载结束时间为0.1秒,以使质量体达到最大弯曲。在质量体的侧向设定一个主自由度。第一个载荷步用于静力学求解。根据本实例的结构关系和载荷分布可以在此模型中使用对称性。在进行后处理时,选定在最大响应时间(0.092秒)处做扩展计算。已知数据如下: 材料特性:杨氏模量EX =2E5 Mpa ,质量M =0.0215Tn ,质量阻尼ALPHAD =8, 几何尺寸:L =450mm I =800.6mm 4 h =18mm 载荷为:F 1=20N t r = 0.075sec

图14.1 钢梁支撑集中质量的几何模型 14.2 建立模型 在ANSYS6.1中,首先我们通过完成如下工作来建立本实例的有限元模型,需要完成的工作有:指定分析标题,定义材料性能,定义单元类型,定义单元实常数,建立有限元模型等。由于本实例有限元模型比较简单,无需先建立几何模型再对其进行有限元网格划分。同第11章的实例一样可以通过生成节点和单元的方法,直接建立有限元计算模型。下面将详细讲解分析过程。 14.2.1指定分析标题并设置分析范畴 本实例是如图14.1所示钢梁支撑集中质量的模型进行瞬态结构动力学分析来确定对有限上升时间的恒定力的动力学响应,仍然属于结构分析范畴。为了在后面进行菜单方式操作时的方便,需要在开始分析时就指定本实例分析范畴为“Structural”。为了数据的存档和以后分析的方便必须养成给分析的问题加标题的习惯。本实例的标题可以命名为:“Transient Response To a Constant Force With a Finite Rise Time”,具体的操作过程如下:1.选取菜单路径Utility Menu | File | Change Jobname,将弹出Change Jobname (修改文件名)对话框,如图14.2所示: 图14.2 修改文件名对话框 2.在Enter new jobname (输入新文件名)文本框中输入文字“CH14”,为本分析实例的数据库文件名。单击对话框中的按钮,完成文件名的修改。 3.选取菜单路径Utility Menu | File | Change Title,将弹出Change Title (修改标题)对话框,如图14.3所示: 图14.3 修改标题对话框 4在Enter new title (输入新标题)文本框中输入文字“Transient Response To a Constant Force With a Finite Rise Time”,为本分析实例的标题名。单击对话框中的按钮,完成对标题名的指定。

弹性力学学习心得

弹性力学学习心得 孙敬龙S201201024 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编著的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从1822~1828年间,在A.L?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利——里兹法,为直接求

相关主题
文本预览
相关文档 最新文档