当前位置:文档之家› PLC电机正反转实验欧姆龙自动化

PLC电机正反转实验欧姆龙自动化

PLC电机正反转实验欧姆龙自动化
PLC电机正反转实验欧姆龙自动化

实验三:电机正、反转控制

一、实验目的:

1.熟悉编程软件及编程方法。

2.掌握用PLC代替继电器接触器来控制电机的方法。

二、实验学时:4学时

三、实验内容:

1.利用电机控制模块实现异步电机Y-三角型启动控制。

编程要求:根据电气控制部分的电路图用PLC的梯形图来进行替代并加以实现:按下启动按钮后,再按正转按钮,电机正转(KM1接通),并运行在Y形接法(低速运行,继电器KM4接通),5s后KM4断开,电机运行在三角形接法(全速运行,KM3接通)。按下停车按钮时,电机停转。

按下启动按钮后,再按反转按钮,电机反转(KM2接通),并运行在Y形接法(低速运行,继电器KM4接通),5s后KM4断开,电机运行在三角形接法(全速运行,KM3接通)。按下停车按钮时,电机停转。

2.输入量:S1启动键、S2停止键、S3正转键、S4反转键,1M接+24V;输出量:KM1输出指示灯、KM2输出指示灯、KM3输出指示灯、KMF2反转指示灯、KMZ2正转指示灯,1L接GND,2L接GND。

3.实验报告要求:写出I/O分配表、梯形图程序、语句表清单;仔细观察实验现象,认真记录实验中发现的问题、错误、故障和解决方法。

梯形图

语句表

正反转控制实物接线图

三相异步电动机正反转控制实物接线图导学案科目:电工技术班级:13高职机电课时:2 备课人:宋庆波备课时间:学生姓名: 学习目标: 1、知识目标:理解三相异步电动机正反转控制电路的工作过程,能绘制实物接线图。 2、能力目标:了解三相异步电动机正反转控制电路的类型,能按照控制要求自行设计或补画电动机正反转控制电路实物接线图,并会实物接线。 3、情感目标:通过复习及练习,培养学生对电气控制电路的学习兴趣。 重点: 难点: 知识复习: 补画三相异步电动机接触器联锁正反转控制电路原理图。 自主学习: 一、依据以上原理图将以下三相异步电动机接触器联锁正反转控制电路实物接线图补画完整。

二、某同学进行三相异步电动机双重联锁正反转控制电路的实训操作。 (1)试将图示的原理图补画完整。 (2)根据原理图,是将图示的控制电路实物接线图补画完整。 作业: 1、(1)画出单向异步电动机单向连续运转的电气原理图及实物接线图,要求:起 动按钮SB1,停止按钮SB2。 (2)说明按下SB1,电动机起动运转,按下SB2电动机不能停转的主要原因。 2.关于安装接线图绘制原则及安装工艺说法正确的是() A、所有电气设备和电气元件都按其所在的实际绘画位置绘制在图纸上。 B、控制电路的外部连接应使用接线端子板,也可不用端子板 C、一个电气元件接线端子上的连接导线只能一根 D、每节接线端子板上的连接导线不得多于两根 3.在电动机的正反转控制线路中,为了防止主触头熔焊而发生短路事故,应采用() A、接触器联锁 B、接触器自锁 C、按钮联锁 D、按钮自锁 4.具有过载保护的接触器联锁控制线路中,实现短路保护的电器是(),实现过载保护的电器是(),实现失、欠压保护的电器是() A、热继电器 B、接触器 C、熔断器 D、电源开关

单相电机的倒顺开关正反转接线图及原理(一看便能搞懂)

单相电机的倒顺开关接线及原理 有不少电工对单相电机的接线搞不清。我先对单相电机的正反转原理讲一下。单机电机里面有二组线圈,一组是运转线圈(主线圈),一组是启动线圈(副线圈),大多的电机的启动线圈并不是只启动后就不用了,而是一直工作在电路中的。启动线圈电阻比运转线圈电阻大些,量下就知了。启动的线圈串了电容器的。也就是串了电容器的启动线圈与运转线圈并联,再接到220V电压上,这就是电机的接法。当这个串了电容器的启动线圈与运转线圈并联时,并联的二对接线头的头尾决定了正反转的。比起三相电动机的顺逆转控制,单相电动机要困难得多,一是因为单相电动机有启动电容、运行电容、离心开关等辅助装置,结构复杂;二是因为单相电动机运行绕组和启动绕组不一样,不能互为代用,增加了接线的难度,弄错就可能烧毁电动机。 有接线盒的单相电动机内部接线图

上图,是双电容单相电动机接线盒上的接线图,图上清晰的反映了电动机主绕组、副绕组和电容的接线位置,你只需要按图接进电源线,用连接片连接Z2和U2,UI和VI,电动机顺转,用连接片连接Z2和U1,U2和VI,电动机逆转。 单相电动机各个元件也好鉴别,电容都是装在外面,用肉眼就可以看清楚接线位置(如上图)启动电容接在V2—Z1位置,运行电容接在V1—Z1间,从里面引出的线也好鉴别,接在(如上图)UI—U2位置的是运行绕组,接在Z1—Z2位置的是启动绕组、接在V1—V2位置的是离心开关。用万用表也容易区分6根线,阻值最大的是启动绕组,阻值比较小的运行绕组,阻值为零的是离心开关。如果运行绕组和启动绕组阻值一样大,说明这两个绕组是完全相同的,可以互为代用。单相电动机的绕组两端和电容两端不分极性,任意接都可以,但启动绕组和运行绕组不能接反,启动电容和运行电容不能接反,否则容易烧启动绕组 以下是自己为了消化吸收而画的接线图,在此献给广大电工朋友,希望能给大家带来一些帮助。本人学识粗浅,特建立 QQ群:79694587 以便大家相互学习。

电动机正反转实验报告

实验一三相异步电动机的正反转控制线路 一、实验目的 1、掌握三相异步电动机正反转的原理和方法。 2、掌握手动控制正反转控制、接触器联锁正反转、按钮联锁正反转控制线路的不同接法。 二、实验设备 三相鼠笼异步电动机、继电接触控制挂箱等 三、实验方法 1、接触器联锁正反转控制线路 (1) 按下“关”按钮切断交流电源,按下图接线。经指导老师检查无误后,按下“开”按钮通电操作。 (2) 合上电源开关Q1,接通220V三相交流电源。 (3) 按下SB1,观察并记录电动机M的转向、接触器自锁和联锁触点的吸断情况。 (4) 按下SB3,观察并记录M运转状态、接触器各触点的吸断情况。 (5) 再按下SB2,观察并记录M的转向、接触器自锁和联锁触点的吸断情况。 Q1 23 220V

图1 接触器联锁正反转控制线路 3、按钮联锁正反转控制线路 (1)按下“关”按钮切断交流电源。按图2接线。经检查无误后,按下“开”按钮通电操作。 (2) 合上电源开关Q 1,接通220V 三相交流电源。 (3) 按下SB 1,观察并记录电动机M 的转向、各触点的吸断情况。 (4) 按下SB 3,观察并记录电动机M 的转向、各触点的吸断情况。 (5) 按下SB 2,观察并记录电动机M 的转向、各触点的吸断情况。 Q 1 220V

图2 按钮联锁正反转控制线路 四、分析题 1、接触器和按钮的联锁触点在继电接触控制中起到什么作用? 实验二交流电机变频调速控制系统 一﹑实验目的 1.掌握交流变频调速系统的组成及基本原理; 2.掌握变频器常用控制参数的设定方法; 3. 掌握由变频器控制交流电机多段速度及正反向运转的方法。 二﹑实验设备 1.变频器;2. 交流电机。 三、实验方法 (一)注意事项 参考变频器的端子接线图,完成变频器和交流电机的接线。主要使用端子为R﹑S ﹑T;U﹑V﹑W;PLC﹑FWD﹑REV﹑BX﹑RST﹑X1﹑X2﹑X3﹑X4﹑CM。 变频器电源输入端R﹑S﹑T和电源输出端U﹑V﹑W均AC380V高电压﹑大电流信号,任何操作都必须在关掉总电源以后才能进行。

三相异步电动机正反转控制实验

三相异步电动机正反转控制实验 一、实验目的: 1.学习与掌握PLC的实际操作与使用方法; 2.学习与掌握利用PLC控制三相异步电动机正反转的方法。 二、实验内容及步骤 : 本实验采用PLC对三相异步电动机进行正反转控制 ,其主电路与控制电路接线图分别为图2-1与图2-2 。图中:正向按钮接PLC的输入口X0,反向按钮接PLC的输入口X1,停止按钮接PLC的输入口X2,KM5为正向接触器,KM6反向接触器。继电器KA5、KA6分别接于PLC的输出口Y33、Y34。 其基本工作原理为:合上QF1、QF5, PLC运行。当按下正向按钮,控制程序使Y33有效,继电器KA5线圈得电,其常开触点闭合,接触器KM5的线圈得电,主触头闭合,电动机正转;当按下反向按钮,控制程序使Y34有效,继电器KA6线圈得电,其常开触点闭合,接触器KM6的线圈得电,主触头闭合,电动机反转。 实验步骤 : 1.在断电的情况下,学生按图2-1与图2-2接线(为安全起见,控制电路的PLC外围继电器 KA5、KA6以及接触器KM5、KM6输出线路已接好) ; 2.在老师检查合格后,接通断路器QF1、QF5 ; 3.运行PC机上的工具软件FX-WIN,输入PLC梯形图 ; 4.对梯形图进行编辑﹑指令代码转换等操作并将程序传至PLC; 5. 运行PLC,操作控制面板上的相应开关及按钮,实现电动机的正反转控制。在PC机上 对运行状况进行监控,同时观察继电器KA5、KA6与接触器KM5 、KM6的动作及变化情况,调试并修改程序直至正确 ; 6。记录运行结果。 图2-1 主控电路

图2-2 控制电路接线图 三.实验说明及注意事项 1.本实验中,继电器KA5、KA6的线圈控制电压为24V DC,其触点5A 220V AC(或5A 30V DC);接触器KM5、KM6的线圈控制电压为220V AC,其主触点25A 380V AC。 2.三相异步电动机的正、反转控制就是通过正、反向接触器KM5、KM6改变定子绕组的相序来实现的。其中一个很重要的问题就就是必须保证任何时候、任何条件下正反向接触器KM5、KM6都不能同时接通,否则会造成电源相间瞬时短路。为此,在梯形图中应采用正反转互锁,以保证系统工作安全可靠。 3.本实验中,主控电路的电压为380V DC,请注意安全! 四.实验用仪器工具 PC 机 1台 PLC 1台 编程电缆线1根 三相异步电动机 1台 断路器(QF1、QF5) 2个 接触器(KM5、KM6) 2个 继电器(KA5、KA6) 2个 按钮 3个 实验导线若干 五.实验前的准备 1.预习实验报告,复习教材的相关章节; 2.根据图2-1、图2-2画出梯形图,并写出指令代码。

实验一 电动机正反转实验

实验一电动机正反转实验 一、实验目的 1、通过练习实现与、或、非逻辑功能,熟悉PLC编程方法。 2、熟悉ZY17PLC12BC实验箱的使用方法。 二、实验器材 1、ZY17PLC12BC型可编程控制器实验箱 1台 2、PC机或FX-20P-E编程器 1台 3、编程电缆 1根 4、连接导线若干 三、实验原理 (1)LD、LDI指令用于将触点接到母线上。另外,与后述的ANB指令组合,在分支起点处也可使用。 (2)OUT指令是对输出继电器、辅助继电器、状态继电器、定时器,计数器的线圈的驱动指令、对于输入继电器不能使用。 (3)并行输出指令可多次使用。 2、触点串联(AND/ANI) 说明: (1)用AND、ANI、指令,可进行触点的串联连接。串联触点的个数没有限制,该指令可以多次重复使用。 (2)OUT指令后,通过触点对其他线圈使用OUT指令称之为纵接输出。这种纵接输出,如果顺序不错,可以多次重复,

3、触点并联(OR/ORI) (1)OR、ORI用作为1个触点的并联连接指令。如果连接2个以上的触点串联连接的电路块的并联连接时,要用后述的ORB指令。 (2)OR、ORI指令是从该指令的当前步开始对前面的LD、LDI指令并联连接。并联连接的次数无限制,但由于编程器和打印机的功能对此有限制,所以并联连接的次数实际上是有限制的。 (1)两个以上的触点串联连接的电路称之为串联电路块。串联电路块并联连接时,分支的开始用LD、LDI指令,分支的结束用ORB指令。 (2)ORB指令与后述的ANB等均为无操作元件号的指令。 (1)分支电路并联电路块与前面电路串联连接时,使用ANB指令。分支的起点用LD、LDI指令。并联电路块结束后,使用ANB指令与前面电路串联。 (2)若多个并联电路块顺次用ANB指令与前面电路串联连接,则ANB的使用次数没有限制, (3)虽然可以连续使用ANB指令,但这时与ORB指令同样要注意LD、LDI指令的使用次数限制(8次以下)。 6、程序结束(END) 7、控制要求 本实验利用PLC控制电机正反转。发光二极管KM1亮模拟电机正转,发光二极管KM2

电机正反转实验

电机正反转实验 一.实验目的 1.了解机床电气中三相电机的正反转控制和星三角启动控制。 2.掌握电动机的常规控制电路设计。 3.了解电动机电路的实际接线。 4.掌握GE FANUC 3I系统的电动机启动程序编写。 二.实验原理和电路 交流电动机有正转启动和反转启动,而且正反转可以切换,启动时,要求电动机先接成星型连接,过几秒钟再变成三角形连接运行。PLC控制电动机的I/O 地址如下表所示: PLC模拟控制电动机I/O地址表 输入输出 器件(触摸屏M)说明器件说明I1(M21)正转Q2 正转 I2(M22)反转Q3 星形 I3(M23)停止Q4 三角形 Q5 反转 电动机星三角启动电气接口图:

模块的现场接线 接线前请熟悉接线图,我们在这里简单介绍下输入输出模块的接线方法,在接下来的实验中不再赘述。详细请见第一章的模块介绍。 ●输入模块现场接线 IC694MDL645,数字量输入模块,提供一组共用一个公共端的16个输入点,如图所示。该模块即可以接成共阴回路又可以接成共阳回路,这样在硬件接线时就非常灵巧方便。但在本系统中,我们统一规定本模块接成共阳回路,即1号端子由系统提供负电源,外部输入共阳。 IC694MDL645数字量输入模块现场接线 ●输出模块现场接线 IC694MDL754,数字输出模块,提供两组(每组16个)共32个输出点。每组

有一个共用的电源输出端。这种输出模块具有正逻辑特性;它向负载提供的源电流来自用户共用端或者到正电源总线。输出装置连接在负电源总线和输出点之间。这种模块的输出特性兼容很广的负载,例如:电动机、接触器、继电器,BCD 显示和指示灯。用户必须提供现场操作装置的电源。每个输出端用标有序号的发光二极管显示其工作状态(ON/OFF)。这个模块上没有熔断器。接线必须注意。 即:17端接正电源,18端接负电源及外部负载的共阴端。 IC694MDL754数字量输出模块现场接线 三:实验步骤: 1.编写PLC程序,可参照参考程序,并检查,保证其正确。 2.按照电器接口图接线。 3.下载程序。 4.置PLC于运行状态,按下启动键,观察电机运行。 5.实验结束后,关电源,整理实验器材。 四:实验器材 1.GE FANUC 3I系统一套 2.PYS3电机正反转模块一块 3.网线一根 4.KNT连接导线若干

15_三相异步电机的正反转控制线路_实验报告

1.掌握单台电动机正反转控制方法; 2.进一步熟练掌握板前明配线的接线工艺; 3.加强训练学生排除电动机基本控制线路故障的能力。 实验工具:万用表、尖嘴钳、偏口钳、螺丝刀、剥线钳、试电笔等。 实验器材:试验安装板一块,低压电器元件若干,导线若干。 实验主要内容实验要求 1(1)老师简要讲解正反转控制线路的工作原 理。回顾读图识图中“屏蔽无用信息”的思维 习惯。 (2)老师强调控制线路的布线原则和低压电器 的安装工艺。 (1)学生在实验前预习教材171页“正反转 控制”的内容。 (2)学生认真听讲并做好笔记。 2三相交流电动机正反转控制线路接线接线时,应严格遵循板前明线布线的工艺要 求和原则。 3自检与通电试车(1)排除故障前先停电,并在电气原理图上用虚线标出故障电路中最短的故障线段。(2)故障分析、故障排除的思路及方法应正确无误。 4老师作实验总结 5学生填写实验报告回答思考题并写出实验报告 1.在实验教师的指导下,分析电气控制线路原理图。 2.用万用表检查各元器件的质量。 3.读懂电气元件布置图,并依此安装和固定电器元件。 4.读懂电气安装接线图,并依此布线。 (1)主电路接线要注意接触器主辅触点的分辨和选用以及热继电器的连接; (2)控制线路接线时要注意按钮常开和常闭触点的分辨、选择和接线。 5.通电检查并排除电路故障 三相交流电动机正反转控制线路接线 ① 在未通电情况下,用万用表电阻档初步检查控制线路是否正确。 ② 接通电源,操作相关按钮,验证电路的工作情况。 1.接线后要认真逐线核对线号,重点检查控制电路中按钮和接触器的触点选择。 2.通电试车必须经指导老师的同意,并在指导老师监护下进行。 3.通电调试时,不许用手触及电气元件的导电部分,以免触电及意外损伤。

接触器正反转的实物接线方法

接触器正反转的实物接线方法 我们知道三相交流电机如果想换个转向,则只要把其中两相对换就可以,那么你说的接触器正反转也是这个原理.仔细观察你会发现,KM1吸合与KM2吸合对比,正好是其中A相与C相对换,从而实现正反转之间的转换. QS:总开关 KM1:正转接触器 KM2:反转接触器 FR:热继电器 M3~:三相异步电机 PE:电机外壳接地 FU:控制线路熔断器 SB1:停止按钮 SB2:反转启动按钮 SB3:正转启动按钮 合上空开,按下SB2,KM2线圈得电,KM2主触点接通,电机反转,同时KM2常开辅助触点接通,这时放松SB2,但由于KM2常开辅助触点接通,所以KM2还是吸合的.这叫自锁. 按下SB1:由于此时KM2线圈失电,KM2主触点断开,电机停止,同时KM2常开辅助触点也断开,这时放松SB1,但由于KM2常开辅助触点已断开,所以KM2不会从新吸合. 按下SB3(正转)和电机反转的原理是一样的. 这里SB2常闭触点作用是:当按下SB2时,如果再同时按SB3,但KM1还是不会得电,这叫按钮互锁 KM2常闭触点作用是:当KM2吸合时,KM1不可能得电.这叫接触器互锁. 所以这里有两个互锁.这叫双重联锁电路.因为正反转电路中绝不允许两个接触器同时吸合,否则会引起主电路短路.(重点) FR热继电器作用.电机启动后,当主电路中电流太大时(电机过载),FR中的常闭触点会断开,从而把控制线路断开.原理和SB1是一样的.起保护作用.(图1)显示的是电动机正反转控制接线图,而且是采用按钮加接触器辅助触电的双重互锁,带自保持的控制方式,控制回路电压为线电压。从原理上看是没有问题的,能够实现基本功能。但是我觉得热继电器的常闭接点一般都接在接触器线圈与电源“2”之间,这样做的目的是当热继电器动作以后其常闭接点断开,此时整个控制回路除了SB1的一端(1)以及热继电器常闭接点的一端(2)带电以外,其他元件都不带电,特别是接触器的线圈是不带电的,既有效的减少了人员因为检查动作原因而触电的危险又能使线圈彻底断电。因为通常热继电器动作都是由于主回路电流长时间过大,使得继电器内双金属片温度达到动作值后保护动作而切断主回路,达到保护电动机以及接触器的目的。

电机正反转接线实验报告

电机正反转接线实验报告 电机正反转接线实验报告 电机正反转接线实验报告 实验目的 1、掌握三相异步电动机正反转的原理和原理。 2、掌握手动控制正反转控制、接触器联锁正反转、按钮联锁正反转控制线路的不同接法。 二、实验设备 三相鼠笼异步电动机、继电接触控制挂箱等三、实验方法 1.为了使电动机能够止跌正转和反转,可使用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将产生电源的短路事故,为了防止这种事故,在电阻器中应采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反两方向高速运行的控制电路。 2.为了使电动机能够能正转和反转,可使用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为了防止这种事故,在 ABCFR1KM1KM2Q1L1220VL2L3FU1FU2FU3FU4KM2KM1KM1KM1KM电路中应采取可靠的互锁,上图为采用按钮和接触器双重采行互锁的电动机正、反两方向运行的控制电路。 三、互锁环节:具有禁止功能禁止在线路中起安全保护作用 1、接触器互锁:KM1线圈回路串入KM2的常闭辅助触点,KM2线圈回路串入KM1的常闭触点。当正转接触器KM1线圈通电动作后,KM1的辅助工具常闭触点断开了KM2线圈回路,若使KM1得电吸合,必须

先使KM2断电释放,其辅助常闭触头复位,这就防止了KM1、KM2同时 吸合造成相间短路,这线路环节叫做互锁环节。 四、电动机正向(或反向)启动运转后,不必先按停止按钮或使 电动机停止,可以直接按反向(或正向)启动按钮,而使电动机变为 反方向运行。五、电动机的过载保护由热继电器FR完成。三.注意事 项 1、检查主回路路的接线是否正确,为了保证两个接触器动作时能 够可靠这时调换电动机的相序,接线时应使接触器的上口接线保持致,在接触器的若丽鱼调相。 2、检查接线无误后,通电试验,通电试验时为防止意外,应先将 电动机的接线断裂。 扩展阅读:电机正探底回升接线图5 电工正反转接线图 为了使电动机需要正转和反转,可装配两只接触器KM1、KM2换接 电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造 成电源的短路事故,为了防止这种事故,在电路中应阿提斯鲁夫尔谷 采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反 两方向运行的控制电路。 线路分析如下:、正向启动: 1、合上空气开关QF接通三相电源 2、按下正向启动按钮SB3,KM1通电吸合并自锁,主触头闭合接 通电动机,电动机这时的相序是L1、L2、L3,即正向运行。 二、反向启动: 1、合上空气开关QF接通三相电源

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告

课程名称: 电气原理与应用 指导老师: _____________ 成绩: _____________________ 实验名称:三相异步电动机点动控制和自锁及正反转互锁控制 实验类型: ______ 同组学生 姓名: ~~ 七、讨论、心得 一、 实验目的 1通过对三相异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图 变换成安装接线图的知识; 2 ?通过实验进一步加深理解点动控制和自锁控制的特点以及在机床控制中的应用。 3?掌握三相异步电动机正反转的原理和方法,加深对电气控制系统各种保护、自锁、互 锁等环节的理解; 4?掌握接触器联锁正反转、按钮联锁正反转控制线路的不同接法,并熟悉在操作过程中 有哪些不同之处; 5?通过对三相鼠笼式异步电动机延时正反转控制线路的安装接线,掌握由电气原理图接 成实际操作电路的方法。 6.学会分析、排除继电--接触控制线路故障的方法。 二、 实验原理 1继电接触控制在各类生产机械中获得广泛的应用,交流电动机继电接触控制电路的主 要设备是交流接触器,其主要构造为: (1) 电磁系统一铁心、吸引线圈和短路环; (2) 触头系统一主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动 合(常 开)、动断(常闭)两类; (3) 消弧系统一在切断大电流的触头上装有灭弧罩以迅速切断电弧; (4) 接线端子,反作用弹簧等。 2?在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。要求接触器线圈得电 后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并 联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。使两个电器不能 同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三 相电源短路事故,必须增设互锁控制环节。为操作的方便,也为防止因接触器主触头长期 大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线 路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控 制环节 3. 控制按钮通常用以短时通、断小电流的控制回路,以实现近、远距离控制电动机等执 行部件的起、停或正、反转控制。按钮是专供人工操作使用。对于复合按钮,其触点的动 作规律是:当按下时,其动断触头先断,动合触头后合;当松手时,则动合触头先断,动 断触头后合。 4. 在电动机运行过程中,应对可能出现的故障进行保护。采用熔断器作短路保护,当电 动机或电器发生短路时,及时熔断熔体,达到保护线路、保护电源的目的。熔体熔断时间 与流过的电流关系称为熔断器的保护特性,这是选择熔体的主要依据。 采用热继电器实现过载保护,使电动机免受长期过载之危害。其主要的技术指标是整 定电流值, 即电流超过此值的 20%时,其动断触头应能在一定时间内断开, 切断控制回路, 动作后只能由人工进行复位。 沖戸乂唆实验报告 专业: 姓名: 学号: 日期: 地点: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)

电机正反转控制电路及实际接线图

电机正反转控制电路及 实际接线图 Revised as of 23 November 2020

三相异步电动机正反转控制电路图原理及plc接线与编程 在图1是三相异步正反转控制的电路和控制,图2与3是功能与它相同的控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的. 在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。使KM1的线圈通电,开始正转运行。按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。 在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。

可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的短路事故。如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相短路事故。为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。 图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合。其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用。 有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合。这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PLC的一个输入点。 有的热继电器有复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点恢复原状。如果这种热断电器的常闭触点仍然接在PLC 的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故。因此有自动复位功能的热继电器的常闭触点不能接在PLC的输出回路,必须将它的触点接在PLC的输入端(可接常开触点或常闭触点),用梯形图来实现点击的过载保护。如果用式电机过载保护来代替热继电器,也应注意它的复位. 电动机正反转实物接线图

浙师大 机电传动实验报告 实验2 三相异步电动机的正反转

试验二 三相异步电动机的正反转控制 一、实验目的: 1、对接触器、热继电器、开关、按扭的外观和功能进行认识,可以通过简单的电路来测试其功能,借助万用表或其它指示工具来加深直观认识; 2、学会异步电动机正反转控制线路的接线方法; 3、按照电动机正反转控制电路接线,组成实际控制电路,并通电试运行,通电时要注意安全,以防触电。 二、实验仪器和设备: 1、DT31继电器-接触器1套 2、D21三相异步电动机1台 3、机电传动试验平台1套(含电流表电压表) 4、接线若干 三、实验原理:

图1 三相异步电动机正反转控制线路 1、继电接触器控制大量应用于对电动机的启动、停止、正反转、调速、制动等控制。从而使生产机械按规定的要求动作;同时,也能对电动机和生产机械进行保护。 2、图1是三相异步电动机正反转控制线路。 生产机械往往要求运动部件可以正反两个方向运行,这就要求电机可以正反转控制。 任意将电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。 正反转控制电路如图1所示,采用两个接触器,即正转用的接触器KM1

和反转用的接触器KM2。KM1和KM2这两个动断辅助触点在线路中所起的作用称为互锁作用,这两个动断触点就叫互锁触点。 3、操作流程: 正转:按下常开按钮SB2后,接触器KM1线圈得电,主触点KM1闭合,电动机M起动正转;同时KM1的自锁触点闭合,互锁触点断开。 反转:先按停止按钮SB1,接触器KM1线圈断电释放,KM1触点复位,电动机M断电;然后按反转按钮SB3,接触器KM2线圈获电,KM2主触点闭合,电动机反转,同时KM2自锁触点闭合,互锁触点断开。 实验步骤注意,要改变电机方向,必须先按停止按钮SB1,再按反转按钮SB3才能使得电动机反转。 四、实验内容和步骤: 1、分别用继电器、接触器、按钮开关、热继电器、时间继电器构成独立功能的电路观察,这些元件的工作方式和外部要求; 2、按照电动机正反转控制电路图连线; 3、完成接线后,对现接线图检查有无错误,通电试运行; 4、观察电路是否按照设计意图运行; 5、线路断电并拆线,恢复现场。 五、实验总结: 在空载情况下,接通电源,调节三相电源逐渐升压至额定电压,按下正向起动按钮SB3,使电机成正向启动运行,经过一定时间后,按下按钮SB1停机,然后按动反向启动按钮SB2。观察电机的旋转方向是否发生变化。注意:在试验过程中,试观察电机的完全静止和残余速度较大的情况下切换旋转方向,其瞬间电流值的差异。 完全静止时:切换方向,电流值由0立刻上升到电流稳定值。 残余速度较大时:切换方向,电流值一瞬间上升超过电流稳定值,之后回到电流稳定值。 六、个人总结: 三相异步电动机的正反转控制线路,接线较上一个点动实验要复杂一些。主触点有两组,得注意反转触点连线是任意反接其中两条,不可接错。接错容易短路,试验台会出现报警警告。控制电路接线也有一点需要注意,就是分清楚常开与常闭辅助触点,这个也经常容易弄错,导致实验不成功。 总体来说,正反转控制电路是非常经典,实用性比较高的电路。但是这个电路有个缺点,就是操作不怎么方便,每次正反转转换,都需要先按停止按钮,再反向运转。多了一步操作,便捷性和工作效率上都会

PLC课程设计(电动机正反转控制系统)

摘要 可编程控制器(PLC)是以微处理器为核心,将自动控制技术、计算机技术和通信技术融为一体而发展起来的崭新的工业自动控制装置。目前PLC已基本替代了传统的继电器控制而广泛应用于工业控制的各个领域,PLC已跃居工业自动化三大支柱的首位。 生产机械往往要求运动部件可以实现正反两个方向的起动,这就要求拖动电动机能作正、反向旋转。由电机原理可知,改变电动机三相电源的相序,就能改变电动机的转向。

目录 第一章PLC概述 (1) 1.1 PLC的产生 (1) 1.2 PLC的定义 (1) 1.3 PLC的特点及应用 (2) 1.4 PLC的基本结构 (5) 第二章控制系统设计 (7) 2.1 设计思路 (7) 2.2 PLC的定义 (8) 2.3 PLC的特点及应用 (9) 结论 (10) 参考文献 (11)

第一章PLC概述 1.1 PLC的产生 1969年,美国数字设备公司(DEC)研制出了世界上第一台可编程序控制器,并应用于通用汽车公司的生产线上。当时叫可编程逻辑控制器PLC (Programmable Logic Controller),目的是用来取代继电器,以执行逻辑判断、计时、计数等顺序控制功能。紧接着,美国MODICON公司也开发出同名的控制器,1971年,日本从美国引进了这项新技术,很快研制成了日本第一台可编程控制器。1973年,西欧国家也研制出他们的第一台可编程控制器。 随着半导体技术,尤其是微处理器和微型计算机技术的发展,到70年代中期以后,特别是进入80年代以来,PLC已广泛地使用16位甚至32位微处理器作为中央处理器,输入输出模块和外围电路也都采用了中、大规模甚至超大规模的集成电路,使PLC在概念、设计、性能价格比以及应用方面都有了新的突破。这时的PLC已不仅仅是逻辑判断功能,还同时具有数据处理、PID调节和数据通信功能,称之为可编程序控制器(Programmable Controller)更为合适,简称为PC,但为了与个人计算机(Persona1 Computer)的简称PC相区别,一般仍将它简称为PLC (Programmable Logic Controller)。 1.2 PLC的定义 “可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用了可编程序的存储器,用来在其内部存储和执行逻辑

电机正反转控制电路及实际接线图(个人学习用)

三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器. 在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。使KM1的线圈通电,电机开始正转运行。按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。 在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正转,这是如果想改为反转运行,可

以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。 在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。 可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。 图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合。其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用。 有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合。这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PLC的一个输入点。 有的热继电器有自动复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点自动恢复原状。如果这种热断电器的常闭触点仍然接在PLC的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故。因此有自动复位功能的热继电器的常闭触点不能接在PLC的输出回路,必须将它的触点接在PLC的输入端(可接常开触点或常闭触点),用梯形图来实现点击的过载保护。如果用电子式电机过载保护来代替热继电器,也应注意它的复位. 电动机正反转实物接线图

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告

实验报告 课程名称: 电气原理与应用 指导老师: 成绩:__________________ 实验名称:三相异步电动机点动控制和自锁及正反转互锁控制 实验类型:____同 组学生姓名:______ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.通过对三相异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气 原理图变换成安装接线图的知识; 2.通过实验进一步加深理解点动控制和自锁控制的特点以及在机床控制中的应 用。 3.掌握三相异步电动机正反转的原理和方法,加深对电气控制系统各种保护、自 锁、互锁等环节的理解; 4.掌握接触器联锁正反转、按钮联锁正反转控制线路的不同接法,并熟悉在操作 过程中有哪些不同之处; 5.通过对三相鼠笼式异步电动机延时正反转控制线路的安装接线,掌握由电气原 理图接成实际操作电路的方法。 6. 学会分析、排除继电--接触控制线路故障的方法。 二、实验原理 1.继电接触控制在各类生产机械中获得广泛的应用,交流电动机继电接触控制电 专业: 姓名: 学号: 日期: 地点:

路的主要设备是交流接触器,其主要构造为: (1) 电磁系统─铁心、吸引线圈和短路环; (2) 触头系统─主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类; (3) 消弧系统─在切断大电流的触头上装有灭弧罩以迅速切断电弧; (4) 接线端子,反作用弹簧等。 2.在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控制环节。 3. 控制按钮通常用以短时通、断小电流的控制回路,以实现近、远距离控制电动机等执行部件的起、停或正、反转控制。按钮是专供人工操作使用。对于复合按钮,其触点的动作规律是:当按下时,其动断触头先断,动合触头后合;当松手时,则动合触头先断,动断触头后合。 4. 在电动机运行过程中,应对可能出现的故障进行保护。采用熔断器作短路保护,当电动机或电器发生短路时,及时熔断熔体,达到保护线路、保护电源的目的。熔体熔断时间与流过的电流关系称为熔断器的保护特性,这是选择熔体的主要依据。

PLC控制电机正反转 教学案例

PLC控制电机正反转 类别:职教专业编号:()教材简析: 职业教育的目的就是培养应用人才和具有一定文化水平和专业知识技能的工作者,职业教育强调理论和实践训练并重,《可编程序控制器(英文缩细PLC)及其应用》(第二版)(以后简称《PLC》)教材侧重理论,学生单独学习较为吃力。而在《电力拖动》这门课程中的三相异步电动机正反转控制线路学生已非常熟悉,也是电拖这门课程的重点。将这二者联系起来学习将会收到意想不到的效果。 学情分析:中专学生比较活跃,但是理论基础较差,已具有PLC的基础知识,熟悉三相异步电动机正反转控制线路的工作原理与接线方法。 教学目标: 1、知识目标: (1)掌握继电器控制三相异步电动机正反转控制线路的工作原理 (2)熟练掌握PLC编程基本方法和编程技巧及基本指令的应用,并利用PLC 完成调试。 (3)熟练掌握分配PLC的输入点和输出点,并画出梯形图,转换成语句表,控制电动机工作。 2、能力目标 (1)通过任务驱动和引导教学培养学生分析问题和解决问题的能力。 (2)通过运用PLC完成电动机正反转控制电路的实训,培养学生动手动脑,团结协作的能力。 3、情感目标 让学生将逐步养成严谨求实,合作创新的科学态度为继续学习和发展奠定基础。

教学重点、难点: 1、重点:(1)三相异步电动机正反转控制线路的工作原理。 (2)PLC编程基本方法和编程技巧及基本指令的应用。 (3)分配PLC的输入点和输出点,并画出梯形图,转换成语句表,控制电动机工作。 2、难点:(1)PLC具体的编程方法。 (2)分配设计完成任务的控制程序“梯形图—语句表” 教学方法: 在这节课里主要采用的是任务驱动教学法和行为引导教学法进行教学,以任务为主线、教师为主导、学生为主体,整个教学围绕任务的解决而展开,教师提出引导性问题,给定任务要求;学生小组协作进行决策分析,制定出计划,并实施计划,完成任务。创设真实氛围的工作环境,将教室与实训室合二为一,开展一体化教学,形成仿真的工作场所,使教学过程变为生产过程,学习任务变为工作任务,使学生通过学习亲身体验工作,培养学生自主思考的能力。 设计理念: PLC教材偏重于理论,学生实训完继电器控制的三相异步电动机正反转控制线路之后,并且已经掌握了基本编程指令的基础上,通过理论与实践相结合掌握PLC在电动机的正反转电路中的应用。三相异步电动机的正反转可以通过继电器控制,也可以通过PLC控制,通过本节的学习,学生即回顾了继电器控制的方法,又将PLC的基本指令应用于实践当中,还为学生以后的编程提供一种有效的方法,因此学好本节内容在整个学习过程中就显得至关重要。由于学生知识水平层次差异,根据教材制定的实施性教学计划,保证每个学生课有所得,本节课我设计少讲多练,让学生在操作中懂理论,在练习中长技能。

电机正反转控制电路及实际接线图个人学习用

三相异步电动机正反转控制电路图原理及plc接线与编程 在图1是三相异步正反转控制的电路和控制,图2与3是功能与它相同的控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的. 在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。使KM1的线圈通电,开始正转运行。按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。 在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。 可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的短路事故。如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相短路事故。为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。 图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合。其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用。 有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合。这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PLC的一个输入点。 有的热继电器有复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点恢复原状。如果这种热断电器的常闭触点仍然接在PLC的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故。因此有自动复位功能的热继电器的常闭触点不能接在PLC的输出回路,必须将它的触点接在PLC的输入端(可接常开触点或常闭触点),用梯形图来实现点击的过载保护。如果用式电机过载保护来代替热继电器,也应注意它的复位. 电动机正反转实物接线图

相关主题
文本预览
相关文档 最新文档