当前位置:文档之家› 实变函数复习要点

实变函数复习要点

实变函数复习要点
实变函数复习要点

2011实变函数复习要点

第一章 集合

(一)考核知识点

1. 集合的定义、简单性质及集合的并、交、补和极限运算。

2. 对等和基数及其性质。

3. 可数集合的概念及其性质。

4. 不可数集合的概念及例子。 (二)考核要求 1. 集合概念

识记:集合的概念、表示方法、子集、真子集和包含关系。 2. 集合的运算

(1)识记:集合的并、交、补概念。 De Morgan 公式

ΓααΓ

αα∈∈=

c

c

A A )( Γ

ααΓ

αα∈∈=

c

c

A A )

(

(2)综合应用:集合的并、交、补运算。 例 利用集合的并、交、补运算证明集合相等。 例 N n x x A n

n

n ∈-≤<-

-=},11:{11设 ]0,1[1

-=?∞=n n A ,)1,2(1

-=?∞=n n A

3. 对等与基数

(1)识记:集合的对等与基数的概念。

(2)综合应用:集合的对等的证明

例 利用定义直接构造两集合间的1-1对应。 4. 可数集合

(1)识记:可数集合的概念和可数集合的性质,可数集合类。 (2)综合应用:可数集合的性质。 5. 不可数集合

识记:不可数集合的概念、例子。 第二章 点集 (一)考核知识点

1. n 维欧氏空间邻域、集合的距离、有界点集和区间体积概念以及邻域的性质。

2. 聚点、内点、界点、开核、边界、导集和闭包及其性质。

3. 开集、闭集及其性质。

4. 直线上的开集的构造,构成区间,康托集。

(二)考核要求

1. 度量空间,n 维欧氏空间

识记:邻域的概念、有界点集概念。 2. 聚点、内点和界点

识记:聚点、内点、外点、界点、孤立点、接触点、开核、边界、导集和闭包。 如 聚点与内点的关系,界点与聚点、孤立点的关系

如聚点的等价定义:设E P '∈0

,存在E 中的互异的点列{}n P 使0

lim P P n n =∞

如0

P 为E 的接触点的充要条件为存在E 中点列{}n P , 使得0

lim P P n n =∞

3. 开集,闭集

(1)识记:开集、闭集的概念。

(2)综合应用:开集和闭集的充要条件以及开集和闭集的性质。 例如何证明一个集合为开集 例如何证明一个集合为闭集

如A 为闭集当且仅当A 中的任意收敛点列收敛于A 中的点 (即闭集为对极限运算封闭的点集)

4. 直线上的开集的构造

(1)识记:直线上的开集的构造及构成区间的概念。

例设)2,0(1=G , )4,3()2,1(2?=G 21G G G ?=,求G 的构成区间.

解:G 的构成区间为(0,2)、(3,4)

(2)简单应用:康托集

Cantor 集的基数为C

第三章 测度论 (一)考核知识点

1. 外测度的定义以及简单性质。

2. 可测集的卡氏条件(Caratheodory 条件)和可测集的性质。

3. 零测度集以及区间、开集和闭集的可测性;Borel 集及其可测性;G δ型集、F σ型集;可测集的构成。 (二)考核要求 1. 外测度

(1)综合应用:外测度的定义。

如设B 是有理数集,则0=*

B m Cantor 集的外测度为0

例 两个集合的基数和它们的外测度的关系 (2)综合应用:外测度的性质。 非负性: 0≥*

A m

单调性:B m A m B A *

*≤?,

则若 次可数可加性:n n n n A m A m *

1

1*

)(∑

=∞

=≤

?

2. 可测集

(1)识记:可测集的卡氏条件(Caratheodory 条件)。 (2)分析:可测集的性质。

可测集类关于差,余,有限交和可数交,有限并和可数并,以及极限运算封闭 3. 可测集类

(1)简单应用:零测度集以及区间、开集和闭集的可测性;Borel 集及其可测性;G δ型 集、F σ型集。

零集、区间、开集、闭集、G δ型集(可数个开集的交)、F σ 型集(可数个闭集的并)、Borel 型集(从开集出发通过取余,取交或并(有限个或可数个)运算得到)都是可测集。

例 零测度集:单点集、有理数集、康托集 例 零测度集与可数集的关系

例“开集类”,“波雷尔集类”,“可测集类”,“δG 型集类” 之间的关系。 (2)综合应用:可测集的构成。 可测集与开集、闭集只相差一小测度集

εε<-??>?)(,0)1E G m G E G E 且,使得开集可测,则

反之也成立,即证明设0,,G E ε>??开集使*

()m G E ε-<,则E 是可测集。

εε<-??>?)(,0)2F E m E F F E 且,使得闭集可测,则

反之也成立,即证明设0>ε,存在闭集E F ?,使得ε<-)(*

F E m ,则E 是可测集

可测集可由G δ型集去掉一零集,或F σ型集添上一零集得到。 1)若E 可测,则存在G δ型集 G , 使0)(=-?E G m G E 且 即设E 是L 可测的,G 是δG 集,则存在零测集N ,使 E = G- N. 2)若E 可测,则存在F σ型集F , 使0)(=-?F E m E F 且

即设E 是L 可测的,F 是σF 集,则存在零测集N ,使E = F + N.

第四章 可测函数 (一)考核知识点

1. 可测函数的定义及其等价定义、可测函数的性质和可测函数与简单函数的关系。

2. 叶果洛夫定理及逆定理。

3. 鲁津定理及逆定理。

4. 依测度收敛的定义、性质、Riesz 定理、勒贝格定理。 (二)考核要求 1. 可测函数及其性质

(1)简单应用: 可测函数的定义及其等价定义。 (3)综合应用:可测函数的性质。 零集上的任何函数都是可测函数 简单函数是可测函数

可测集E 上的连续函数f (x )必为可测函数

在一零测度集上改变函数的取值不影响函数的可测性

即: 设f (x )=g (x ) a.e.于E , f (x )在E 上可测,则g (x )在E 上也可测。 可测函数关于子集、并集的性质 可测函数类关于四则运算封闭

可测函数类关于确界运算和极限运算封闭。 2. 叶果洛夫定理及逆定理

识记:叶果洛夫定理。可测函数列的收敛 “基本上”是一致收敛

证明叶果洛夫定理的逆定理:设函数列()n f x (1,2,)n = 在有界集E 上“基本上”一致收敛于()f x ,则()..n f x a e 收敛于()f x 。 3. 可测函数的构造

可测函数和连续函数的关系 识记:鲁津定理

可测函数“基本上”是连续函数(鲁津定理)。

证明鲁津定理的逆定理:设()f x 是E 上..a e 有限的函数,若对任意0δ>,存在闭子集F E δ?,使()f x 在F δ上连续,且()m E F δδ-<,则()f x 是E 上的可测函数。 4. 依测度收敛

(1)识记:依测度收敛的定义、性质。 (2)综合应用:Riesz 定理、勒贝格定理。 处处收敛和依测度收敛的关系 一致收敛和依测度收敛的关系

E

f f n 于?E

u a f f n 于..→E

e a

f f n 于..→叶果洛夫定理mE<+∞

Lebesgue 定理

mE<+∞

叶果洛夫逆定理

子列

Riesz 定理

子列

第五章 积分论 (一)考核知识点

1. 勒贝格积分的定义、勒贝格积分与黎曼积分的关系。

2. 勒贝格积分的性质。

3. 勒贝格控制收敛定理 (二)考核要求 1.勒贝格积分的定义

(1)简单应用:勒贝格可积的充要条件。

设f (x )是可测集)(∞

(2)分析:L 积分与R 积分的关系。

若有界函数()x f 在闭区间[]b a ,上黎曼可积,则()x f 在[]b a ,上也是勒贝格可积的,且二者积分值相等。

()x f 在[]b a ,上黎曼可积的充要条件是()x f 在[]b a ,上的不连续点所成之集测度为零。 3. 勒贝格积分性质

评价:勒贝格积分性质 利用积分的性质计算L 积分

例 ()[][]??

?∈?∈=Q

x Q x x D \1,01,0,

0,

1,

()()[]

001]1,0[]1,0[1,0=+

=

?

?

?

-?Q

Q

dx x D L

5. 积分的极限定理

分析:勒贝格控制收敛定理。

利用勒贝格(Lebesgue)控制收敛定理计算R 积分

关于考核目标说明

识记(了解):指能够对有关名词、概念、知识、术语作出正确解释,并能记住和正确表述出来。

简单应用(会):在识记的基础上,能够进一步深入全面地把握基本概念、基本原理,使所学知识融汇贯通,能够正确运用。

综合应用(掌握):能够正确熟练地简单应用所学知识,处理相关一般性问题。

分析(熟练掌握):在理解掌握所学知识的基础上用所学知识分析解决实际问题。

评价(融会贯通):在熟练掌握所学知识,对实际问题分析解决的基础上,并进一步做出评价。

实变与泛函期末试题答案

06-07第二学期《实变函数与泛函分析》期末考试参考答案 1. 设()f x 是),(+∞-∞上的实值连续函数, 则对于任意常数a , })(|{a x f x E >=是一开集, 而})(|{a x f x E ≥=总是一闭集. (15分) 证明 (1) 先证})(|{a x f x E >=为开集. (8分) 证明一 设E x ∈0,则a x f >)(0,由)(x f 在),(+∞-∞上连续,知0>?δ,使得 ),(00δδ+-∈x x x 时,a x f >)(, 即 E x U ?),(0δ, 故0x 为E 的内点. 由0x 的任意性可知,})(|{a x f x E >=是一开集. 证明二 })(|{a x f x E >=可表为至多可数的开区间的并(由证明一前半部分), 由定理可知E 为开集. (2) 再证})(|{a x f x E ≥=是一闭集. (7分) 证明一 设0x E '∈, 则0x 是E 的一个聚点, 则E ?中互异点列},{n x 使得 )(0∞→→n x x n . ………………………..2分 由E x n ∈知a x f n ≥)(, 因为f 连续, 所以 a x f x f x f n n n n ≥==∞ →∞ →)(lim )lim ()(0, 即E x ∈0.……………………………………………………………………………………6分 由0x 的任意性可知,})(|{a x f x E ≥=是一闭集. …………………………………7分 证明二 对})(|{a x f x E ≥=, {|()}E x f x a E ??=?,……………………… 5分 知E E E E =?=Y ,E 为闭集. …………………………………………………… 7分 证明三 由(1)知,})(|{a x f x E >=为开集, 同理})(|{a x f x E <=也为开集, 所以})(|{a x f x CE ≥=闭集, 得证. 2. 证明Egorov 定理:设,{()}n mE f x <∞是E 上一列..e a 收敛于一个..e a 有限的函数)(x f 的可测函数, 则对0>?δ, 存在子集E E ?δ, 使)}({x f n 在δE 上一致收敛, 且 .)\(δδ,选0,i 使0 1 ,i ε<则当0i n n >时,对一切

实变函数期末考试卷A卷完整版

实变函数期末考试卷A 卷 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实变 函数 一、 判断题(每题2分,共20分) 1.若A 是B 的真子集,则必有B A <。 (×) 2.必有比a 小的基数。 (√) 3.一个点不是E 的聚点必不是E 的内点。 (√) 4.无限个开集的交必是开集。 (×) 5.若φ≠E ,则0*>E m 。 (×) 6.任何集n R E ?都有外测度。 (√) 7.两集合的基数相等,则它们的外测度相等。 (×) 8.可测集的所有子集都可测。 (×) 9.若)(x f 在可测集E 上可测,则)(x f 在E 的任意子集上也可测。(×) 10.)(x f 在E 上可积必积分存在。 (×) 1.设E 为点集,E P ?,则P 是E 的外点.( × ) 2.不可数个闭集的交集仍是闭集. ( × ) 3.设{}n E 是一列可测集,且1,1,2,,n n E E n +?=则 1( )lim ().n n n n m E m E ∞ →∞ ==(× ) 4.单调集列一定收敛. (√ ) 5.若()f x 在E 上可测,则存在F σ型集,()0F E m E F ?-=,()f x 在F 上连续.( × ) 二、填空题(每空2分,共20分) 1.设B 是1R 中无理数集,则=B c 。 2.设1,1,,3 1,21,1R n A ???????= ,则=0A φ ,='A }0{ 。 3.设 ,2,1,0),1 1,11(=++-=n n n A n ,则=?∞=n n A 0 )1,1(- ,=?∞=n n A 1 }0{ 。 4.有界变差函数的不连续点构成的点集是 至多可列 集。

学习复变函数与积分变换的心得

学习复变函数与积分变换的心得 我是一名自考生,通过网络学习这门课程,学习了不少以前书本上学不到的东西。它的应用及延伸远比概率统计广,复杂得多。我从中学到了很多,上课也感受到了这门课程的魅力及授课老师的精彩的讲课。我深深地被复变函数与积分变换这门课程给吸引住了。同时网络学习也带给我了一定的帮助。 关于这门课程,首先,它作为一门工科类各专业的重要基础理论课程,它与工程力学、电工技术、和自动控制等课程的联系十分密切,其理论方法应用广泛。同时,作为一门工程数学的课程,它主要是以工程背景为依托来展开讨论和研究的,其前提就是为了服务于实际工程。其次,复变函数与积分变换作为一门工程数学课程,概念晦涩难懂、计算繁琐和逻辑推理不易理解。它既具有传统数学的一些特点,又具有与实际工程相结合才能理解的特点。传统数学主要注重对于基本概念的理解和对理论的讲解,要求理论推导具有严密的逻辑性,而不太注重其实际应用。而工程数学在推导定理或概念的过程中就会出现一些不完全符合严密逻辑的推理,但在现实中又是实实在在存在的一些特殊情况。复变函数是在实变函数的基础上产生和发展起来的一个分支,复变函数与积分变换中的理论和方法不仅是数学的许多后续课程如数理方程泛函分析多复变函数调和分析等课程的基础,而且在其它自然科学和各种工程技术领域特别是信号处理以及流体力学电磁学热学等的研究方面有着广泛的应用,可以说复变函数与积分变换既是一门理论性较强的课程,又是解决实际问题的有力工具各高校普遍将复变函数与积分变换课程作为工科各专业的一门重要的必修科来开设,尤其作为电子、机电自动化等电力专业的学生而言,该课程更是一门必不可少的专业基础类必修课,它为电路分析信号与系统以及自动控制原理等后续专业课程的学习提供了必要的数学工具因此,学好这门课程非常必要然而,该课程一直是学生较难学的课程之一。 第一、学生普遍认为复变函数的应用性不强我们知道复变函数是建立在复数的基础上的,而复数中是一个虚数单位,从而大家对复数的真实性存在疑虑,所以很难想象它在现实生活和实践中的应用价值另外,在学习这门课程当中,复变函数这部分原理、规律多,内容枯燥、抽象,需要理解的概念和定义也多,学生普遍感觉到理论性偏强,有点抓不住重点;而积分变换这部分所涉及的背景较多,学生所面对的大多是一些抽象枯燥的变换公式这些会让学生们认为这是一门纯理论且没用的课程,也就没有兴趣可言。 第二、复变函数是实变函数在复数域的推广,它的许多概念性质和意义与实变函数有相同之处,同时又与实变函数有着诸多不同不少学生在学习当中往往只注意到相同点,而没有注意到它们的不同点,这让学生感觉可以直接把实变函数当中所学的知识和方法照搬过来即可,觉得这门课程与高等数学没什么区别,感觉是在重复学习,没多大意思。 第三、与后续专业课衔接不够紧密,复变函数与积分变换课程的讲授往往与后续专业课程的使用存在一定的时间差,在后续课程用到时,往往都要花一定得时间去复习,否则学生难于跟上,造成教学重复现象,课时利用率不高。所以网络学习给我们提供了一个后备平台。 们合理利用网络来学习其他课程。 第四、通过网络学习增强了我们对远程教育的了解,提高了我们对这门课程的认真度,同时鼓励同学

实变函数论课后答案第三章1

实变函数论课后答案第三章1 第三章第一节习题 1.证明:若E 有界,则m E *<∞. 证明:若n E R ?有界,则存在一个开区间 (){}120,,;n M n E R I x x x M x M ?=-<< . (0M >充分大)使M E I ?. 故()()()111 inf ;2n n n n m n n i m E I E I I M M M ∞∞ * ===??=?≤=--=<+∞????∑∏ . 2.证明任何可数点集的外测度都是零. 证:设{}12,,,n E a a a = 是n R 中的任一可数集.由于单点集的外测度为零, 故{}{}{}()12111 ,,,00n i i i i i m E m a a a m a m a ∞ ∞ ∞ * * * *===??==≤== ???∑∑ . 3.证明对于一维空间1R 中任何外测度大于零的有界集合E 及任意常数μ,只要 0m E μ*≤≤,就有1E E ?,使1m E μ*=. 证明:因为E 有界,设[],E a b ?(,a b 有限), 令()(),f x m E a x b *=?<< , 则()()()()[]()()0,,f a m E m f b m a b E m E ****=?=?=== . 考虑x x x +?与,不妨设a x x x b ≤≤+?≤, 则由[])[]())()[](),,,,,a x x E a x x x x E a x E x x x E +?=+?=+????? . 可知())()[](),,f x x m a x E m x x x E ** +?≤++??? ()[]()(),f x m x x x f x x *≤++?=+?.

实变函数期末考试卷A及参考答卷

2011—2012学年第1学期 数计学院09级数学与应用数学专业(1、2班) 《实变函数》期末考试卷(A)

试卷共8 页第 1 页

实变函数期末考试卷(A) 2009级本科1、2班用 考试时间2012年01月 04日 一 填空题(每小题3分,满分24分) 1 我们将定义在可测集q E ??上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数: 试卷 共 8 页 第 2 页

()()()(),0, 0,0.f x x E f f x x E f + ∈>?=? ∈≤? 当时当时 和()()()()0, 0, ,0. x E f f x f x x E f - ∈>?=?-∈≤? 当时当时 分别称为f 的正部和负部。请你写出()()(),,f x f x f x + -和()f x 之间的关系: ()f x = , ()f x = 。 2 上题()M E 中有些元素?被称为非负简单函数,指的是: 12k E E E E =U UL U 是有限个互不相交的可测集的并集,在i E 上()i x c ?≡ (非负常数)(1,2,,i k =L ).?在E 上的L 积分定义为: ()E x dx ?= ?, 这个积分值可能落在区间 中,但只有当 时才能说?是 L 可积的。 3 若()f M E ∈是非负函数,则它的L 积分定义为: ()E f x dx = ?, 这个积分值可能落在区间 中,但只有当 时才能说f 是 L 可积的。 4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f - , 即()E f x dx + ?和()E f x dx -?的值 ;但只有当 时 才能说f 是L 可积的,这时将它的积分定义为: ()E f x dx = ?。 5 从()M E 中取出一个非负函数列(){}n f x ,则法图引理的结论是不等式: ; 如果再添上条件和 就 得到列维定理的结论: 。 6 设f 和()1,2,n f n =L 都是()M E 中的可测函数,满足 ()()lim n n f x f x a e →∞ =g g 于E 或n f f ?两个条件之一。 或 的结论:

泛函分析学习心得

泛函分析学习心得 学习《实变函数论与泛函分析》这门课程已有将近一年的时间,在接触这门课程之前就已经听闻这门课程是所有数学专业课中最难学的一门,所以一开始是带着一种“害怕学不好”的心理来学.刚开始接触的时候是觉得很难学,知识点很难懂,刚开始上课时也听不懂,只顾着做笔记了.后来慢慢学下来,在课前预习、课后复习研究、上课认真听课后发现没有想象中的那么难,上课也能听懂了.因此得出了一个结论:只要用心努力去学,所有课程都不会很难,关键是自己学习的态度和努力的程度. 在学习《泛函分析》的前一个学期先学习了《实变函数论》,《实变函数论》这部分主要学习了集合及其运算、集合的势、n 维空间中的点集、外测度与可测集、Lebesgue 可测集的结构、可测函数、P L 空间等内容,这为这学期学习《泛函分析》打下了扎实的基础.我们在这个学期的期中之前学习的《泛函分析》的主要内容包括线性距离空间、距离空间的完备性、内积空间、距离空间中的点集、不动点定理、有界线性算子及其范数等.下面我谈谈对第一章的距离空间中部分内容的理解与学习: 第一章第一节学习了线性距离空间,课本首先给出了线性空间的定义及其相关内容,这与高等代数中线性空间是基本一样的,所以学起来比较容易.接着是距离空间的学习,如果将n 维欧氏空间n R 中的距离“抽象”出来,仅采用性质,就可得到一般空间中的距离概念: 1.距离空间(或度量空间)的定义: 设X 为一集合,ρ是X X ?到n R 的映射,使得使得X z y x ∈?,,,均满足以下三个条件: (1))(0,≥y x ρ,且)(0,=y x ρ当且仅当y x =(非负性) (2))()(x y y x ,,ρρ=(对称性) (3))()()(z y y x z x ,,,ρρρ+≤(三角不等式), 则称X 为距离空间(或度量空间),记作)(ρ,X ,)(y x ,ρ为y x ,两点间的距离. 学习了距离空间定义后,我们可以验证:欧式空间n R ,离散度量空间,连

(20080619)实变函数期末复习指导(文本)

(2008.06.19)实变函数期末复习指导(文本) 中央电大教育学院陈卫宏2008年07月01日 陈卫宏:大家好!这里是“实变函数”教学活动。 考试时间 实变函数期末考试时间:7月12日,8:30~10:00. 期末考试题型比例 单选题5(20分) 填空题5(20分) 证明题4(60分) 第1章考核要求 ⑴了解集合的表示,子集,理解集合的并、交、差、补等概念,特别是一列集合的并与交的概念; ⑵掌握集合的运算律,会求一列简单集合的并、交以及上极限和下极限; ⑶熟练掌握证明两个集合相等的方法(互为子集)并会具体应用; ⑷了解单射、满射、双射及对等的概念,知道基数相等与大小的定义,会用伯恩斯坦定理; ⑸理解可列集的定义及等价条件(可排成无穷序列的形式),了解可列集的运算性质,理解有理点集是可列集; ⑹了解常见的连续集和连续集的运算,知道基数无最大者。 第2章考核要求 ⑴了解距离、收敛、邻域、孤立点、边界点、内核、导集、闭包等概念,会求简单集合的内核、导集和闭包,理解聚点的定义及其等价条件; ⑵掌握波尔查诺——维尔斯特拉斯定理的条件和结论; ⑶了解开集、闭集、完备集的定义以及开集、闭集在并、交运算之下的性质,开集与闭集互为补集,掌握直线上开集的构造;

⑷了解波雷尔有限覆盖定理、距离可达定理和隔离性定理的条件和结论; ⑸理解康托集的构造及其性质。 第3章考核要求 ⑴理解勒贝格外测度的定义及其性质,知道可列集的测度为零,区间的测度等于其体积; ⑵理解可测集的(卡拉皆屋铎利)定义,了解可测集的充分必要条件以及可测集的运算性质; ⑶熟练掌握单调可测集列极限的测度; ⑷知道Gδ型集、Fσ型集以及波雷尔集的定义,了解常见的勒贝格可测集,掌握可测集同开集、闭集和可测集同Gδ型集、Fσ型集之间的关系。 第4章考核要求 ⑴知道点集上连续函数的定义和点集上连续函数列一致收敛的极限函数的连续性,了解函数列上、下极限的概念,理解“几乎处处”的概念; ⑵熟练掌握可测函数的定义及其等价条件,掌握可测函数的判定方法,理解可测函数关于四则运算和极限运算的封闭性、连续函数和简单函数皆可测以及可测函数可表示为简单函数列的极限; ⑶了解叶果洛夫定理,理解依测度收敛的定义,知道依测度收敛与几乎处处收敛二者互不包含,理解刻划依测度收敛和几乎处处收敛之间关系的勒贝格定理和黎斯定理,知道依测度收敛的极限函数是惟一的(把几乎处处相等的函数视为同一函数); ⑷理解刻划可测函数同连续函数之间关系的鲁金定理(两种形式)。 第5章考核要求 ⑴知道测度有限集合上有界函数勒贝格积分的定义,理解测度有限集合上有界函数勒贝格可积的充分必要条件是有界可测; ⑵了解测度有限集合上有界函数勒贝格积分的简单性质,理解闭区间上有界函数黎曼可积必勒贝格可积且二者积分相等; ⑶了解一般集合上非负函数勒贝格积分存在和勒贝格可积的定义,非负函数积分存在的充分必要条件是非负可测; ⑷理解一般集合上一般函数勒贝格积分存在和勒贝格可积的定义,熟练掌握一般可测集上一般函数勒贝格积分的性质; ⑸理解积分极限定理,特别是勒贝格控制收敛定理及其应用;

实变函数与泛函分析要点

实变函数与泛函分析概要 第一章集合基本要求: 1、理解集合的包含、子集、相等的概念和包含的性质。 2、掌握集合的并集、交集、差集、余集的概念及其运算性质。 3、会求已知集合的并、交、差、余集。 4、了解对等的概念及性质。 5、掌握可数集合的概念和性质。 6、会判断己知集合是否是可数集。 7、理解基数、不可数集合、连续基数的概念。 8、了解半序集和Zorn引理。 第二章点集基本要求: 1、理解n维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。 2、掌握内点、聚点的概念、理解外点、界点、孤立点的概念。掌握聚点的性质。 3、掌握开核、导集、闭区间的概念及其性质。 4、会求己知集合的开集和导集。 5、掌握开核、闭集、完备集的概念及其性质,掌握一批例子。 6、会判断一个集合是非是开(闭)集,完备集。 7、了解Peano曲线概念。 主要知识点:一、基本结论: 1、聚点性质§2 中T1聚点原则: P0是E的聚点? P0的任一邻域内,至少含有一个属于E而异于P0的点?存在E中互异的点列{Pn},使Pn→P0 (n→∞) 2、开集、导集、闭集的性质§2 中T2、T3 T2:设A?B,则A ?B ,· A? · B, - A? - B。 T3:(A∪B)′=A′∪B′. 3、开(闭)集性质(§3中T1、2、3、 4、5) T1:对任何E?R?,?是开集,E′和― E都是闭集。(?称为开核,― E称为闭包的理由也 在于此) T2:(开集与闭集的对偶性)设E是开集,则CE是闭集;设E是闭集,则CE是开集。T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。 T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。 T5:(Heine-Borel有限覆盖定理)设F是一个有界闭集,?是一开集族{Ui}i?I 它覆盖了F(即Fс ∪ i?IUi),则?中一定存在有限多个开集U1,U2…Um,它们

实变函数期末复习指导

实变函数期末复习指导(文本) 实变函数题型比例 单选题:5题,每题4分,共20分。 填空题:5题,每题4分,共20分。 计算与证明题:4题,每题15分,共60分。 第1章主要内容 本章所讨论的集合的基本知识是集合论的基础,包括集合的运算和集合的基数两部分. 主要内容有: 一、集合的包含关系和并、交、差、补等概念,以及集合的运算律. 关于概念的学习,应该注意概念中的条件是充分必要的,比如,B A ?当且仅当A x ∈时必有B x ∈.有时也利用它的等价形式:B A ?当且仅当B x ∈时必有A x ∈.在证明两个集合包含关系时,这两种证明方式可视具体问题而选择其一. 还要注意对一列集合并与交的概念的理解和掌握.n n A x ∞ =∈1 当且仅当x 属于这一列集 合中的“某一个”(即存在某个n A ,使n A x ∈),而n n A x ∞ =∈1 当且仅当x 属于这一列集合中 的“每一个”(即对每个n A ,都有n A x ∈).要熟练地进行集合间的各种运算,这是学习本章必备的基本技能. 读者要多做些这方面的练习. 二、映射是数学中一个基本概念,要弄清单射、满射和双射之间的区别与联系. 对集合基数部分的学习,应注意论证两个集合对等技能的训练,其方法主要有下面三种:一是依对等的定义直接构造两集间的双射;二是利用对等的传递性,如欲证C A ~,已知B A ~,此时只须证C B ~;三是应用有关定理,特别是伯恩斯坦定理,它是判断两个集合对等的常用的有效方法. 三、可列集是无限集中最重要的一类集合,它是无限集中基数最小者. 要掌握可列集的定义和运算性质,有理数集是可列的并且在直线上处处稠密,这是有理数集在应用中的两条重要性质. 四、连续集及其运算性质.要掌握长见的连续集的例子,知道基数无最大者. 第2章主要内容 本章讨论的点集理论,不仅是以后学习测度理论和新积分理论的基础,也为一般的抽象空间的研究提供了具体的模型.

(完整版)实变函数证明题大全(期末复习)

1、设',()..E R f x E a e ?是上有限的可测函数,证明:存在定义在'R 上的一列连续函数 {}n g ,使得lim ()()..n n g x f x a e →∞ =于E 。 证明:因为()f x 在E 上可测,由鲁津定理是,对任何正整数n ,存在E 的可测子集n E , 使得1 ()n m E E n -< , 同时存在定义在1R 上的连续函数()n g x ,使得当n x E ∈时,有()()n g x f x =所以对任意的0η>,成立[||]n n E f g E E η-≥?-由此可得 1[||]()n n mE f g n m E E n -≥≤-< ,因此lim [||]0n n mE f g n →∞-≥=即()()n g x f x ?, 由黎斯定理存在{}n g 的子列{}k n g ,使得lim ()()k n k g x f x →∞ =,..a e 于E 2、设()(,)f x -∞∞是上的连续函数,()g x 为[,]a b 上的可测函数,则(())f g x 是可测函数。 证明:记12(,),[,]E E a b =-∞+∞=,由于()f x 在1E 上连续,故对任意实数1,[]c E f c >是 直线上的开集,设11 [](,)n n n E f c α β∞ =>=U ,其中(,)n n αβ是其构成区间(可能是有限 个 , n α可 能为 -∞ n β可有为 +∞ )因此 22221 1 [()][]([][])n n n n n n E f g c E g E g E g αβαβ∞ ∞ ==>=<<=><都可测。故[()]E f g c >可测。 3、设()f x 是(,)-∞+∞上的实值连续函数,则对于任意常数a ,{|()}E x f x a =>是一开集,而{|()}E x f x a =≥总是一闭集。 证明:若00,()x E f x a ∈>则,因为()f x 是连续的,所以存在0δ>,使任意(,)x ∈-∞∞, 0||()x x f x a δ-<>就有, 即任意00U(,),,U(,),x x x E x E E δδ∈∈?就有所以是 开集若,n x E ∈且0(),()n n x x n f x a →→∞≥则,由于()f x 连续,0()lim ()n n f x f x a →∞ =≥, 即0x E ∈,因此E 是闭集。 4、(1)设2121 (0,),(0,),1,2,,n n A A n n n -==L 求出集列{}n A 的上限集和下限集 证明:lim (0,)n n A →∞ =∞设(0,)x ∈∞,则存在N ,使x N <,因此n N >时,0x n <<,即

实变函数与泛函分析基础第三版

书籍目录: 第一篇实变函数 第一章集合 1 集合的表示 2 集合的运算 3 对等与基数 4 可数集合 5 不可数集合 第一章习题 第二章点集 1 度量空间,n维欧氏空间 2 聚点,内点,界点 3 开集,闭集,完备集 4 直线上的开集、闭集及完备集的构造 5 康托尔三分集 第二章习题 第三章测度论 1 外测度 2 可测集 3 可测集类 4 不可测集 .第三章习题 第四章可测函数 1 可测函数及其性质 2 叶果洛夫(EropoB)定理 3 可测函数的构造 4 依测度收敛 第四章习题 第五章积分论 1 黎曼积分的局限性,勒贝格积分简介 2 非负简单函数的勒贝格积分 3 非负可测函数的勒贝格积分 4 一般可测函数的勒贝格积分 5 黎曼积分和勒贝格积分 6 勒贝格积分的几何意义·富比尼(Fubini)定理第五章习题 第六章微分与不定积分 1 维它利(Vitali)定理 2 单调函数的可微性 3 有界变差函数 4 不定积分 5 勒贝格积分的分部积分和变量替换 6 斯蒂尔切斯(Stieltjes)积分 7 L-S测度与积分

第六章习题 第二篇泛函分析 第七章度量空间和赋范线性空间 1 度量空间的进一步例子 2 度量空间中的极限,稠密集,可分空间 3 连续映射” 4 柯西(CaHcLy)点列和完备度量空间 5 度量空间的完备化 6 压缩映射原理及其应用 7 线性空间 8 赋范线性空间和巴拿赫(Banach)空间第七章习题 第八章有界线性算子和连续线性泛函 1 有界线性算子和连续线性泛函 2 有界线性算子空间和共轭空间 3 广义函数 第八章习题 第九章内积空间和希尔伯特(Hilbert)空间 1 内积空间的基本概念 2 投影定理 3 希尔伯特空间中的规范正交系 4 希尔伯特空间上的连续线性泛函 5 自伴算子、酉算子和正常算子 第九章习题 第十章巴拿赫空间中的基本定理 l 泛函延拓定理 2 C[a,b)的共轭空间 3 共轭算子 4 纲定理和一致有界性定理 5 强收敛、弱收敛和一致收敛 6 逆算子定理 7 闭图像定理 第十章习题 第十一章线性算子的谱 1 谱的概念 2 有界线性算子谱的基本性质 3 紧集和全连续算子 4 自伴全连续算子的谱论 5 具对称核的积分方程 第十一章习题 附录一内测度,L测度的另一定义 附录二半序集和佐恩引理 附录三实变函数增补例题

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

实变函数论文

实变函数论文(设计) 题目:各角度讨论逼近思想在实变 课程中的应用 学院:数学与计算机科学学院 班级:数学与应用数学五班 姓名:王凯 指导教师:崔亚琼 完成日期: 2015 年1月 3 日

各角度谈论逼近思想在实变课程中的应用 一、逼近思想在函数中的形成 从18世纪到19世纪初期,在L.欧拉、P.-S.拉普拉斯、J.-B.-J.傅里叶、J.-V.彭赛列等数学家的研究工作中已涉及一些个别的具体函数的最佳逼近问题。这些问题是从诸如绘图学、测地学、机械设计等方面的实际需要中提出的。 在当时没有可能形成深刻的概念和统一的方法。切比雪夫提出了最佳逼近概念,研究了逼近函数类是n次多项式时最佳逼近元的性质,建立了能够据以判断多项式为最佳逼近元定理的特征。他和他的学生们研究了与零的偏差最小的多项式的问题,得到了许多重要结果。已知【α,b】区间上的连续函数?(x),假,(n≥0),叫做?(x)的n阶最佳一致逼近值,也简称为最佳逼近值,简记为E n(?)。能使极小值实现的多项叫做?(x)的n阶最佳逼近多项式。切比雪夫证明了,在区间【-1,1】上函数x n+1的n阶最佳逼近多项式必满足关系式。多项就是著名的切比雪夫多项式。切比雪夫还证明了,…+是?(x)在【α,b】上的n阶最佳逼近多项式的充分必要条件是:在【α,b】上存在着n+2个点:α≤x1

学习“实变函数与泛函分析”的感想与问题

学习“实变函数与泛函分析”的感想与问题 数学系06级3班高能 060203037 摘要 通过介绍实变函数与泛函分析的重要地位及它的数学之美,表明了为什么学习实变函数;近一学期的学习,对集合论、测度论有了浅薄的认识,它很抽象却逻辑严密,到现在为止,我依然处于启蒙阶段,对学习方法、知识机构联系还是不清楚。最后提出有待解决的问题及部分解决方法。 关键词:实变函数数学美集合学习方法 “实变函数与泛函分析”是现代数学分析的基础,是数学专业的主干课程之一,被称为“新三高”之首,其重要性非常清楚,但其内容抽象程度较高,是一些在抽象思维和逻辑推理方面接受训练较少的学生公认的一门难学的课程。国内著名的数学教育学专家、华东师范大学张奠宙教授指出:“每一门数学学科都有其特有的数学思想,赖以进行研究(或学习)的向导,以便掌握其精神实质,只有把数学思想掌握了,计算才能发生作用,计算才能发生作用,形式演绎体系才有灵魂。”我们应该在学习过程中注入数学思想,发挥数学思想方法的作用,培养应用意识与能力。 我们学习的实变函数是以Lebesgue积分为中心,以集合论为基础。Lebesgue(勒贝格)积分被誉为“20世纪数学的一大贡献”。勒贝格积分的创立对于积分学来说,是一个巨大的突破,是一个革命。如果说,微积分(数学分析)是经典分析数学的基础的话,那么实变函数则是现代分析数学的基础。实变函数是微积分学的进一步发展,它的基础是点集论。点集论是专门研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。 我们学习研究数学,就应该追求数学美。不可否认,美的感觉与人的主观因素有关,但是数学美却是完善的数学对象的一种客观表现。对于数学美的追求,也常常启动数学家的心扉,促使他们通过类比、联想等方法,构造出新的数学理论,发现新的数学定理,寻找新的数学方法来,追求数学美,甚至可从纯粹美学的研究角度去解决数学的研究方向或对数学理论的意义做出判断。大学初步学习实变函数就应该了解它的统一性、奇异性、抽象性和单调性。 我已经自学了比较长的一段时间的实变函数论。有了一定的感觉在里面。作为数学中比较难学的一门,实变函数论所散发出来的魅力是难以阻挡的。可以说实变函数是逻辑学,概念抽象,而且十分的基础,富有逻辑。实变函数的许多的概念对我们初学者来说都是很陌生的。比如基数和测度。而测度更是作为四大现代数学结构之一,理解起来颇有难度。数学,与所有的理论一样,那就是有良好的理论体系的基本框架。关于集合所谓无穷并和交、极限点、集合和函数列的上下极限和极限函数都是极限的知识运用范畴。几乎处处、“基本上”这样的概念其实也是极限的扩充。我们有的时候都几乎被这诸多的无穷搞混了头。我学习实变函数总结一句就是概念抽象难懂!正是这样我也在不知不觉中对抽象思维有了更进一步的加深,比如说对无限概念的理解。无限旅馆住宿问题就把这个概念抽象化为具体,更接近实际更容易理解。我认为无论多抽象的数学问题都在实际生活中有它具体的体现,这就要我们善于发现琢磨。 要说学习实变函数的遇到的问题,那是比牛毛还多!到现在我依然没有入门,听课

第三版实变函数论课后答案

1. 证明:()B A A B -=U 的充要条件就是A B ?、 证明:若()B A A B -=U ,则()A B A A B ?-?U ,故A B ?成立、 反之,若A B ?,则()()B A A B A B B -?-?U U ,又x B ?∈,若x A ∈,则 ()x B A A ∈-U ,若x A ?,则()x B A B A A ∈-?-U 、总有()x B A A ∈-U 、故 ()B B A A ?-U ,从而有()B A A B -=U 。 证毕 2. 证明c A B A B -=I 、 证明:x A B ?∈-,从而,x A x B ∈?,故,c x A x B ∈∈,从而x A B ?∈-, 所以c A B A B -?I 、 另一方面,c x A B ?∈I ,必有,c x A x B ∈∈,故,x A x B ∈?,从而x A B ∈-, 所以 c A B A B ?-I 、 综合上两个包含式得c A B A B -=I 、 证毕 3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式与定理9、 证明:定理4中的(3):若A B λλ?(λ∈∧),则A B λλλλ∈∧ ∈∧ ?I I 、 证:若x A λλ∈∧ ∈I ,则对任意的λ∈∧,有x A λ∈,所以A B λλ?(? λ∈∧)成立 知x A B λλ∈?,故x B λλ∈∧ ∈I ,这说明A B λλλλ∈∧∈∧ ?I I 、 定理4中的(4):()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ =U U U U U 、 证:若()x A B λλλ∈∧ ∈U U ,则有' λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧ ∈?U U U U 、 反过来,若()()x A B λλλλ∈∧ ∈∧ ∈U U U 则x A λλ∈∧ ∈U 或者x B λλ∈∧ ∈U 、 不妨设x A λλ∈∧ ∈U ,则有' λ∈∧使'''()x A A B A B λλλλλλ∈∧ ∈??U U U 、 故()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ ?U U U U U 、 综上所述有()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ =U U U U U 、 定理6中第二式()c c A A λλλλ∈∧∈∧ =I U 、 证:() c x A λλ∈∧ ?∈I ,则x A λλ∈∧ ?I ,故存在' λ∈∧ ,'x A λ?所以 'c c x A A λλλ∈∧ ??U 从而有()c c A A λλλλ∈∧∈∧ ?I U 、 反过来,若c x A λλ∈∧ ∈U ,则' λ?∈∧使'c x A λ?,故'x A λ?, x A λλ∈∧ ∴?I ,从而()c x A λλ∈∧ ∈I ()c c A A λλλλ∈∧ ∈∧ ∴?I U 、 证毕 定理9:若集合序列12,,,,n A A A K K 单调上升,即1n n A A +?(相应地1n n A A +?)对一切n 都成立,则 1 lim n n n A ∞ →∞ ==U (相应地)1 lim n n n A ∞ →∞ ==I 、 证明:若1n n A A +?对n N ?∈成立,则i m i m A A ∞ ==I 、故从定理8知

实变函数期末考试题库

《实变函数》期末考试试题汇编 目录 《实变函数》期末考试模拟试题(一) (2) 《实变函数》期末考试模拟试题(二) (7) 《实变函数》期末考试模拟试题(三) (13) 《实变函数》期末考试模拟试题(四) (18) 《实变函数》期末考试模拟试题(五) (27) 《实变函数》期末考试模拟试题(六) (30) 《实变函数》期末考试模拟试题(七) (32) 《实变函数》期末考试模拟试题(八) (36) 《实变函数》期末考试模拟试题(九) (41) 《实变函数》期末考试模拟试题(十) (47) 《实变函数》期末考试题(一) (57) 《实变函数》期末考试题(二) (63)

《实变函数》期末考试模拟试题(一) (含解答) 一、选择题(单选题) 1、下列集合关系成立的是( A ) (A )(\)A B B A B ?=? (B )(\)A B B A ?= (C )(\)B A A A ?? (D )(\)B A A ? 2、若n E R ?是开集,则( B ) (A )E E '? (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C ) (A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP = 4、设E 是1R 中的可测集,()x ?是E 上的简单函数,则( D ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 5、设E 是n R 中的可测集,()f x 为E 上的可测函数,若()d 0E f x x =?,则( A ) (A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠ 二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D ) (A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE > 2、若1E R ?至少有一个内点,则( B 、D ) (A )* m E 可以等于零 (B )*0m E > (C )E 可能是可数集 (D )E 是不可数集 3、设[,]E a b ?是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数 4、设()f x 在可测集E 上L 可积,则( B 、D )

实变函数学习心得

实变函数学习心得 实变函数课在我国高等学校数学系的教学计划中属于专业基础课,是一门承上启下的课。下面是为大家准备的实变函数学习心得体会,希望大家喜欢! 实变函数学习心得体会范文篇1 学习实变函数这们课已经一个学期了,对于我们数学专业的学生,大学最难的一门课就是实变函数论与实变函数这门课了。我们用的教材难度比较大,所以根据我自己学习这门课的心得与方法,有以下几点: 1、复习并巩固数学分析等基础课程。学习实变函数这门课程要求我们以数学分析为学习基础,因此,想学好这门课必须有相对比较扎实的数学分析基础。 2、课前预习。实变函数是一门比较难的课程,龙老师上课也讲得比较快、比较抽象,因此,适当的预习是必要的,了解老师即将讲什么内容,相应地复习与之相关内容。如果能够做到这些,那么你的学习就会变得比较主动、深入,会取得比较好的效果。 3、上课认真听讲,认真做笔记。龙老师是一位博学的老师,上课内容涵盖许多知识。因此,上课应注意老师的讲解方法和思路,其分析问题和解决问题的过程,记好课堂笔记,实变函数这门课比较难,所以建议听课是一个全身心投入听、记、思相结合的过程。 4、课后复习,做作业,做练习。我们作为大三的学生,我们要学

会抓住零碎的时间复习实变函数课堂的学习内容,巩固学习。复习不是简单的重复,应当用自己的表达方式再现所学的知识,例如对某些定理证明的复习,不是再读一遍书或课堂笔记,而是离开书本和笔记,回忆有关内容,理解并掌握其证明思路。做作业、做练习时,大家要重视基本概念和基本原理的理解和掌握,不要一头扎进题海中去。 所以,我们学习实变函数总的来说要把握课前、课时与课后的任务,学习内容要多下功夫掌握基本概念和原理及其证明思路,尽可能地掌握作业题目,在记忆的基础上理解,在完成练习中深化理解,在比较中构筑知识结构的框架,是提高学习实变函数课程效率的重要途径。 实变函数学习心得体会范文篇2 古语有云:微机原理闹危机,汇编语言不会编,随机过程随机过,量子力学量力学,实变函数学十遍。其它的不好说,这实变函数确实要多看几遍的。虽然我曾旁听过这门课,但是对于其中的种种总感觉模模糊糊,不甚明了。前几日在网上down了一个完整的教学视频,便想着把这门课重新来过,遂借着这片地方留下一些印记,好督促自己万不可半途而废。 1、集合列的极限有上下极限之分,只有当上下极限相等时,才称集合列存在极限。对于上极限可以这样定义: {x|x属于无穷多个An}.无穷多是用文字语言来进行形象的描述,那么转换成数学的语言应该是怎样的呢?类比数学分析中的聚点原理,我们可以假设若x属于某个Am,那么一定可以找到mm,使得x也属于m,如若不然,x就属于有限个集合,而不是无穷多个了。上述

相关主题
文本预览
相关文档 最新文档