当前位置:文档之家› 太阳影子定位技术 2015高教社杯 数学建模 获奖论文

太阳影子定位技术 2015高教社杯 数学建模 获奖论文

太阳影子定位技术 2015高教社杯 数学建模 获奖论文
太阳影子定位技术 2015高教社杯 数学建模 获奖论文

太阳影子定位技术

摘要

本文以太阳影子定位技术为背景,结合直杆影子轨迹的变化规律建立数学模型。并运用视频数据分析的方法,确定拍摄地点及日期等地理信息条件。

第一问给出了北京时间、拍摄日期,以及拍摄地点的经纬度。我们可以结合太阳赤纬、时角、直杆的经纬度与太阳高度角之间的关系建立模型,求出符合时间条件要求的太阳高度角,再根据已知的杆的高度和三角公式求出影长关于时间的变化曲线。

第二、三问在第一问的基础上增加难度,使部分变量未知。通过文献查阅和方程推导,得出阴影运动轨迹形状是双曲线的一支,并且具体形状和当地的纬度以及赤纬有关,本文根据这点进行模型假设与建立。附件中给出的坐标并不一定是标准地理坐标,通过对其进行坐标变换,引入了实际坐标系与标准地理坐标系的偏角。

在拟合多项高次变量组成的隐函数方程的过程中,为增加精确度,运用最小二乘法进行拟合求解未知参量时,可以利用直杆阴影顶点轨迹的形状,建立参量和变量之间的关系,简化需拟合的隐函数方程。

这样就可以根据太阳影子顶点横纵坐标以及对应的时刻,把偏角、纬度、经度、日期作为未知参数进行拟合,得出要求的地理位置和相应的日期。如通过对附件1数据的拟合求解可得到一组地理坐标(东经104.425度,北纬15.6578度),对附件2数据的拟合求解可得一个可能的日期6月21日,坐标(东经116度,北纬26度),由附件3得到的可能的日期地点为:6月21日,(东经164.55度,北纬71.26度)。

为了便于定位,根据一般工程的实际需求,对美国天文学家纽康(New Comb)提出的太阳公式作了综合、简化,舍去了一些高阶微小量。结合测量学的理论,用数学模型进行非线性拟合求得直杆所处的经纬度。

第四问给出一段视频,实际是对前三问模型的实际应用。本问对一些已有的论文以及专利进行借鉴,创新与简化。首先对视频中的图像进行取帧,在灰度处理中因为技术限制,改为运用Matlab二值化处理。并根据简单测量画出运行轨迹。

运用主元分析法求得阴影尖端坐标与杆底坐标的关系。确定影子的运动轨迹。之后借鉴已有成熟理论将2D图像去畸变,恢复仿射的度量属性,通过对3D 图形转变2D过程的逆向推导,将坐标恢复为符合现实要求的坐标。之后回归前几问建立的的日晷数学模型进行求解,得到一个可能的地理坐标为(东经104.9度,北纬25.33度)。并在最后进行误差修正。

关键词:日晷投影原理、杆影端点轨迹、非线性最小二乘法、主元分析法、

二值化处理、Floodfill图论算法

一、问题重述

如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。

2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。将模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。

3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。将模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。

4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。请建立确定视频拍摄地点的数学模型,并应用模型给出若干个可能的拍摄地点。

如果拍摄日期未知,能否根据视频确定出拍摄地点与日期?

二、问题分析

2.1问题一的分析

本问以直杆影子长度为研究对象,寻找影响影子长度与各个参数的关系及其变化规律。为了使影长的计算科学严谨,我们应了解太阳与地球之间相互的运动轨迹,由此计算出太阳对地球上某一定点的相对位置。这主要由当地的地理纬度、季节(月、日)和时间三个因素决定,可以用地理纬度(φ)、太阳赤纬角(δ)、太阳高度角(h)、及时角t等参数进行定量表达。

2.2问题二的分析

由于附件中给出的直杆阴影顶点的坐标系的x轴和y轴并不一定垂直或重合,有可能坐标轴向与南北方向存在一定的偏角(θ)。本问根据太阳影子顶点横纵坐标的21组数据,对x和y的坐标进行旋转坐标变换,得到阴影顶点在新坐标系下的坐标,该新坐标系以正东方向为x’轴正向,正北方向为y’轴正向,直杆底端为坐标原点,由原坐标系旋转θ得到。这样就可以由x’和y’求出相应时刻的太阳方位角(A),再结合太阳高度角(h)的计算公式,经过一系列化简,可以得到经纬度之间的关系。将经纬度作为参数,利用Matlab进行非线性拟合,选取合适的初值,即可得直杆所处地点的经纬度。

2.3问题三的分析

该问题的求解可利用问题二建立起来的模型,将由日期确定的太阳赤纬作为未知参数,在Matlab中对时间和直杆影子长度进行非线性拟合,选取合适的初

值得到经纬坐标和日期的值。

2.4问题四的分析

本问考察基于视频数据分析方法进行太阳影子定位。从图像或视频中估算经纬度是目前计算机视觉领域的研究热点问题,估算经纬度不仅自身具有重要理论意义,而且它对计算机视觉问题也有积极的启示意义。

第四问提供的视频,其中体现了标志物的影子在一段时间内的移动轨迹。在这种条件下求经纬度,实际上就是基于视频中太阳影子轨迹来估计经纬度的实际应用。

首先我们把视频取帧处理得到影子的轨迹点,在拟合出地平线后,运用计算机作图的相关知识对坐标进行纠正后,把图片上的2D坐标恢复为实际中真实的3D坐标,最后把问题回归日晷模型算出经纬度,并对因为地方时标准时引起的误差进行修正。

三、模型假设

1.将太阳光近似地看成平行光投射到地球;

2.忽略太阳光受地球大气层折射和漫反射的影响;

3.地球和太阳在运行中不规则变化和周期性变化产生的误差忽略不计;

4.假设直杆所在的地面为水平的;

5.忽略地球形状对试验结果的影响;

6.假设每天的时间为24小时整;

7.假设所求日期均均为2015年日期。

四、符号说明

符号符号说明

φ物体的地理纬度

ω物体的地理经度

δ太阳对应日期的赤纬角

h 太阳高度角

A 太阳方位角

T 时角

H直杆长度

五、模型建立及求解

5.1问题一模型的建立及求解

5.1.1模型的建立

影响影长的因素:

h cot H L =

其中h 为太阳光线与水平地面的夹角,即太阳高度角;

通过查阅目前国内的大部分天文学文献,可得太阳高度角的计算公式[1],即:

T h cos δcos φcos δsin φsin sin ??+?=

其中T 为时角,可用()1215-?=t T 计算,t 为24小时制的当地时间;

δ为赤纬角,其较精确公式为[2]

θ0.0201cos3θ0.3656cos20.758cos θ-θ0.1712sin3-θ0.1149sin2θsin 2567.233723.0δ++++= 式中θ称日角,即

2422.365π2θn =

这里n 又分两部分组成,即n=N-N 0;

式中N 为积日,即日期在年内的顺序号;

N 0的计算公式如下:

()()[]41985-1985

2422.06764.790年份年份INT N --?+= 其中INT(X)为取不大于X 的最大整数。

5.1.2模型的求解

根据问题一的题目已知,10月22日是2015年的第295天,即N=295。

对于日照计算来说,地球和太阳在运行中不规则变化和周期性变化产生误差的数值相当小,可以忽略不计。所以此赤纬角δ计算公式的结果较为精确,可以满足计算影长变化曲线精度要求。

由此可建立影长和北京时间的数学函数,并作出图形。Matlab 程序见附录一,影子长度变化曲线见图1。

(3) (1) (2)

(4)

(5)

图1 直杆的太阳影子长度的变化曲线

5.2问题二模型的建立及求解 5.2.1模型的建立 (1)坐标变换

第二问的附件虽然在直杆所在的地平面处建立了正交分解的x-y 轴,但并没有指明坐标轴和地理正北方向的夹角。据此分析,可设θ为地平面坐标系的x 轴正向与正东方向的夹角。对x 和y 进行下式给出的变换,可得直杆顶点在新坐标系下的投影坐标。 变换如下:

?

?

?-=+=θθθ

θsin cos 'y sin cos 'x x y y x (2)杆影端点移动轨迹

关于杆影端点移动轨迹的周年变化规律如图2所示,该图描绘了一年内不同日期的轨迹。夏至日和冬至日是太阳直射点移动方向发生转换的日期,春分日和秋分日是直射点的南北半球位置转换的日期。因此,选择的这几个日期具有较强的代表性。在图中,AA ′、CC ′、EE ′依次表示冬至日、两分日、夏至日的轨迹,BB ′、DD ′表示介于二分二至日的轨迹(如立冬和立夏),该图清晰的反映除

(6)

两分日之外,其余日期的轨迹图都是双曲线中的一条。

图2 杆影端点移动轨迹的周年变化规律

而对于具体的某一天中直杆阴影顶点的运动轨迹的描绘,则可以借助Analemmatic日晷的模型来描绘。在这种日晷的模型中,日晷采用了垂直的指时针,它的时间线是赤道日晷的时间线在地平面的投影水平方向指示东西轴,垂直方向指向南北轴,投影日晷的位置沿着短轴移动,如图3所示。因此具有时间一致对应关系的阴影轨迹如果投影到水平平面上将得到一个二次曲线,二次曲线的对称轴位于南北方向指示轴上。轨迹的形状与当地的纬度以及太阳直射点的纬度即太阳赤纬有关,而太阳赤纬又与日期相关,故轨迹的形状与当地的纬度和日期相关联。

图3 日晷模型及影子变化规律变化规律

(3)太阳方位角和太阳高度角

有了(1)得到的新坐标,就可以用'

'

y x 来表示太阳方位角的正切值。由天文学的相关知识[3],可以得到以下等式:

φcos cos δsin -φsin sin cos ??=

h h A

A 为太阳方位角,并且

''tan y x A =

又因太阳高度角公式为

T h cos δcos φcos δsin φsin sin ??+?=

以及

°180°1512°15°120πω?

???

?

??-+-=t T 联立化简可得到如下等式:

b t a T

x y y x -=

-+cos sin cos sin cos sin cos δθθθθ

其中

δ

?cos sin =a

?

δcos sin =b

5.2.2模型的求解

根据表格附件一做出杆影的轨迹图如下

(7)

(8)

(9)

(10)

(11)

(12)

(13)

图4 附件一杆影顶点轨迹图

对上述结果进一步化简可得:

T T Y Y csc cos tan cot sin tan tan 1?δ?θ

θ

-=+-

其中

y x Y =

上式建立了阴影顶点坐标与时间(t )、经度(ω)、纬度(φ)以及所用坐标系与地理坐标系之间偏角(θ)之间的关系模型。由于附件已给出直杆阴影顶点在每一时刻的实际坐标,可以将其它待求的量作为未知参量,基于非线性最小二乘法在Matlab 中对Y 和t 进行拟合,结合地理资料选取合适的初值求得直杆可能的地点。我们得到了(104.4249°E ,15.65784°N )、(33.0454°E ,16.7577°N )等地点。

5.3问题三模型的建立与求解 5.3.1模型的建立

基于问题二的模型,我们很自然地得出问题三的模型:

(14)

(15)

T t Y Y csc cos tan cot sin tan tan 1?δ?θ

θ

-=+- 其中δ为太阳赤纬,是与日期有关的量,问题三相对于问题二的变化是日期作为参量是未知数。结合问题一中赤纬的计算公式,可用日期N 表示出δ。这样就得到了含纬度φ、经度ω、日期N 、偏角θ四个未知参量的隐函数方程,也就是问题三的模型。

5.3.2模型的求解

类似于问题二的求解,先画出附件二、三中杆影端点轨迹的变化规律如下图:

图5 附件二杆影端点轨迹图

图6 附件三杆影端点轨迹图

(16)

关于时间的已知参量在第三问中变为未知参量,因此可以在Matlab 中调用非线性拟合函数拟合隐函数方程来求解纬度φ、经度ω、日期N 、偏角θ四个未知参量。

对于附件二日期和地理坐标的求解,通过选取合适的不同初值,我们得到了以下不同的地点和日期,如下所示:

(1)6月1日,(21°N,101°E ) (2)6月21日,(30°N,122°E ) (3)6月21日,(26°N,116°E ) 其中括号内为该地点的经纬度。

对于附件三,我们也求解出了一系列点,如下所示: (1)6月21日,(71.26°N ,164.55°E ) (2)6月21日,(52.85°N ,140.11°E )

5.4问题四模型的建立与求解 5.4.1模型的建立

问题四实质与问题三的原理相同,都是给定时刻和该时刻下现实坐标系中的横纵坐标,求解日期与地理坐标;不同点在于本题的坐标并不是直接给出的,需要借助视频处理技术从中提取出杆影端点的坐标。因此,基于对问题二、三的分析可以建立问题四的模型,即:

T t Y Y csc cos tan cot sin tan tan 1?δ?θ

θ

-=+-

模型与问题三相同。

5.4.2模型的求解

(1)从视频中提取杆影端点坐标

观看时长为40分钟的视频录像,根据直杆的高度为2m ,并结合图中杆长和影长的比例关系,即可求得实际的杆影的长度随时间的变化情况。

(17)

但众所周知,广角镜头所产生的图片或视频都存在较为明显的透视畸变,即被摄体离镜头越远,在屏面的成像越小。为了避免透视畸变对实际影长测量带来的影响,引入主元分析法解决杆影尖点的确定问题。

本题模型引用一种半自动输入阴影轨迹检测的方法,首先以1分钟为单元对所给视频做取帧处理,形成一组{}k I I I V ,,,21 =图片并构建背景图片B :

()[]()()

y x I y x B i k i ,max ,,1∈=

在B 中,每一个像素点(x,y )是V 中最亮的像素点,且是基于灰度级的。设置背景绝对差值,阴影点就可以显示出来。然后在阴影区域运用floodfill 图论算法进行阴影点计算,最后的突出阴影点用主成分技术(PCA ),我们同时运用MATLAB 对图像进行二值化处理获得效果如图8所示。

图8 二值化图求相对坐标

以直杆底端为原点建立正交的x-y 坐标系,单位为像素点。结合主元分析法(PCA )合理得到准确的阴影运动轨迹。

(2)相机模型,消隐点的确定以及对图像的纠正处理

世界坐标中阴影点的位置取决于投影物所在纬度位置以及太阳光朝向与投影平面之间的几何关系。第四问进行的纬度估计技术是基于计算机视图的研究算法,采用几何分析算法来进行视频地理位置的估算。

(18)

由于存在透视畸变,照片中的景物会和实际景物有很大的差别。我们生活中有许多透视变化的例子:照片中的景物轮廓形状改变,但透视变化下只有直线被保留。所以,本问的数学模型我们在欧式几何中加入一些无穷远的理想点形成透视空间,定义一个平面透视几何变换作为任何平面中点以保持直线性的映射。

在进行地理经纬度定位中,视频和相机校准是十分重要的一步,要进行平面但因性变换。在透视相机的作用下,有些几何属性是保持的,例如共线性,即一条直线透视变换后仍为一条直线,然而一般的透视情况下平行直线将6不再保持平行。透视几何模型决定了透视效果同时也提供了相应计算的数学表达式。

在计算机视觉中,视觉几何是用来研究在各种变化下仍然保持不变的属性。从这个角度来分析,2D 的透视几何就是来研究在2D 平面下经过各种变换之后仍然保持不变的属性特征。这种2D 平面变换对于点或者直线来说是不可逆的。另外,透视变换的逆变换也是一种透视变换,所以这种变换同时存在两种变换:共平面变换和透视变换,也叫做平面单应性。为了理解这种变换,可以假设用一个三维向量来表示一个二维空间的点x ,那么Hx 就是这个点经过平面线性变换后得到的齐次坐标。这种变换法则认为任何透视效果都会引起齐次坐标的线性变换,并且逆变换也是这种线性透视。

一个平面透视变换是一个采用三维向量的线性变换,可以用一个3×3的矩阵表示:

????

?

????????????=????? ??'''3213332

31

23222113121132

1

x x x h h h h h h h h h x x x

一个透视变换能把每一个照片投影成为一个透视等价的照片,并且保留所有的不变属性。由此可见,经过相机中心的直线定义了一个平面与另一个平面的变换关系。实际上,如果两个坐标系统都是欧式空间系统,那么这种由中心透视变换决定的映射就会比任意的透射变换要产生更多的限制,而这就叫做透视变换而不是完全的投影变换。

2D 平面的等度量变换能够保留欧氏距离不变,一个等度量变换可以表示成:

????

? ??????????

?

?-=????? ??''110

0cos sin sin cos 1y x t t y x y x θθεθθ

ε 相比之下,给定一个投影变换面积的等级大小变换随着位置的不同而发生变

(19)

(20)

化。例如在透视变化下,相同平面中一个较远的正方形会比较近的正方形具有更小的透视结果。并且经过投影变换的直线的朝向不仅依赖于原始直线的朝向而且依赖于它的位置。

在本文实现平面单应性计算的过程中,需要一个重要的步骤:对投影变换进行分解。一个投影变化可以被分解成一系列的变化,其中每一个矩阵都比前一个具有更高级的变换。

??

?

???=??????????????????==v v t A

v v I

K t sR H H H H T T

T P A S 010010 其中A 是一个非奇异矩阵,K 是一个上三角矩阵并且它的行列式为1。这种分解只有在v 不等于的时候才成立,并且当s 被确定才会有唯一的分解结果。分解出来的三个矩阵代表了相应类型变换的实质变化。考虑到从透视照片中进行校准,H P 将直线恢复到无穷远;H A 影响了仿射属性,但是没有将直线恢复到无穷远;最后HS 代表一般相似变换,并且不会影响仿射或者透视属性。

从照片中进行透视纠正的目的是消除透视照片中的投影畸变,以便得到相似属性,即角度和长度比值等可以直接从照片平面中测量。投影畸变可以通过照片平面中的四组对应点来消除,并且能够明确的计算出参考点与相应的像点之间的映射。而这实际上过度具体化了几何关系,这是因为一个投影变换与相似变换比较起来只有四个自由度,所以仅仅需要指定四个自由度而非八个就可以确定度量属性了。在投影几何中,这四个自由度给出了几何物体的物理形状:消隐线提供了两个自由度,两个虚圆点也提供了两个自由度。因此,当消隐点直线的像被确定了,那么透视畸变就可以被消除了,同时如果虚圆点被确定了,仿射畸变也会被消除。因此,唯一的畸变就是相似变换了。

在投影变换下,一个理想点被映射到一个有限的点,因此消隐线被映射到一 条有限的直线。但是,如果这种变换是仿射的,那么消隐线不会被映射为有限的 直线而是仍然保持在无穷远的位置。这种变换的逆变换也是成立的,即如果仿射 变换是保持无穷远直线的最一般的线性变换。但是消隐线上的点对于仿射变换不 是点对点的保持。也就是说消隐点经过仿射变换后得到的点虽然位于消隐线上, 但是却不是原来的点。一旦照片平面中无穷远处的直线被确定了,那么就有可能 实现原始平面上的仿射测量。例如,原始平面上的平行直线可以被识别为平行,

(20)

如果这些直线相交于无穷远直线的话。这是因为欧式平面中的平行线相交于无穷远的直线,在经过仿射变换后这些直线仍然相交于无穷远直线的像,因为透视变换下的相交是保持的。类似的,一旦无穷远的直线被确定了,一条直线上的长度比值就可以通过三个点确定的交比来确定。但是,稍微弯曲的直线却是更适合这种计算上的算法,这是因为仅仅需要简单地将消隐线变换到它的原始位置。实现了这种变换的投影矩阵可以应用到任何点中来实现仿射纠正,也就是经过了这种变换,仿射测量可以直接从校正后的照片中获得。

根据以上分析编写程序,对图像处理得到视频对应的三维空间内的数据,并用Matlab拟合,结果如图10。

图10 视频中杆影端点轨迹变化的俯视图

这样,我们就从视频中提取出了一组点如下,由于篇幅原因,在此只罗列其中的某几个点,详细数据在附录六中。

时间/h 8.92 8.93 8.95 8.97 8.98 9.01 9.02 9.03 x值804 795 786 780 780 772 766 760 y值-15 -15 -15 -15 -13 -13 -12 -12

(3)编程求解

求解过程与问题三的求解过程类似,赋初值后得到一个可能的拍摄地点为(25.33°N,104.90°E)详细的程序代码见附录六。

5.5问题五

此问题与问题三相同,可将日期作为未知参量,通过拟合得到日期,详细过程类似于问题三。

六、误差分析及敏感度分析

将通过数学模型求解的数值与使用经纬仪和有水准器的支架所实际观测到

1,对50m内的物高的测量精度的直杆影长相比较。本模型方法的误差约为80

可达厘米级要求。

由于拟合的函数过于复杂,参量与变量之间并不能用显性的关系表示出来,这就给对模型进行的灵敏性分析造成困难,因此,我们通过定性的分析来说明某一参量的变化对其它量造成的影响。

在范围和步长给定的情况下,下图为遍历所有可能的初始点得到的拟合出的参数的分布情况。从图中可以看出,拟合得到的点大概率地分布于某一特定区域,这说明建立的模型较为合理。

图11 不同初值下的所求参数的分布

七、模型的评价及改进

6.1视频数据分析的优点

本文提供的太阳影子定位的数学模型,对于光照研究以及航空摄影、精密水准测量的最佳时间段的选择有一定的意义。此数学模型还可以推广到生活中高层建筑群的合理布局和农林间种的最佳距离及林带走向的优化设计中。

第四问建立的视频经纬度分析模型也有广泛的应用。即使粗略的经纬度估计也能够提供有用的线索,预测当地气温、平均降雨量等大量背景信息。

6.2模型求解的不足

由于求解参数采用的是曲线拟合的方法,其对初值的依赖性较大,初值设置的不合理就有可能造成结果误差较大,导致精确性较差。

八、参考文献

[1] 陈晓勇,郑科科.对建筑日照计算中太阳赤纬角公式的探讨,浙江建筑,第28卷,2011.

[2]《建筑设计资料集》编委会.建筑设计资料集[M].2版.北京:中国建筑工业出版社,1994:179-185.

[3] 林根石,利用太阳视坐标的计算进行物高测量与定位,南京林业大学学报,第15卷,1991.

[4]吴济廉,影端轨迹周年变化的实践与分析—以北温带地区为例.地理教学,2013年第10期.

[5]吴济廉.关于杆影端点移动轨迹的讨论与求证.中学地理,2011年第3期.

[6]天津大学.基于视频中太阳影子轨迹的经纬度估计方法:中国,200910067817.2012-04-11.

九、附录

附录一:

Year=2015;

N=295; %N为积日

t0=9:0.1:15;

T=(t0-12-0.24)*15*pi/180; %T为时角

fai=39.9072*pi/180; %fai为物体的地理纬度

H=3;

N0=79.6764+0.2422*(Year-1985)-fix((Year-1985)/4);

t=N-N0;

c=2*pi*t/365.2422; %c为日角

delta=0.3723+23.2567*sin(c)+0.1149*sin(2*c)-0.1712*sin(3*c)-0.758*cos (c)+0.3656*cos(2*c)+0.0201*cos(3*c);

delta0=delta*pi/180;

sinh=sin(fai)* sin(delta0)+cos(fai)*cos(delta0)*cos(T);

L=H./tan(asin (sinh));

plot(t0,L);

title('影长变化曲线')

xlabel('北京时间t')

ylabel('影长')

附录二:

%本函数求解赤纬角

function delta = chiwei(N,Year)

N0=79.6764+0.2422*(Year-1985)-fix((Year-1985)/4);%求解积日

a=N-N0;

c=2*pi*a/365.2422;

delta=0.3723+23.2567*sin(c)+0.1149*sin(2*c)-0.1712*sin(3*c)-0.758*cos (c)+0.3656*cos(2*c)+0.0201*cos(3*c); %求解赤纬角end

附录三:附件一求解程序:

clear;

%clc

a=10.6306*pi/180;

F=@(p,x)(1-x(:,2).*tan(p(1)))./(x(:,2)+tan(p(1)))-sin(p(2)*pi/180).*c ot((p(3)/15-x(:,1)-20)*15*pi/180)+tan(chiwei(108,2015)*pi/180)*cos(p( 2)*pi/180)./sin((p(3)/15+x(:,1)-20)*15*pi/180);

x=[14.7 0.590931018

14.75 0.574430632

14.8 0.558676089

14.85 0.54357375

14.9 0.529179452

14.95 0.515360856

15 0.502088689

15.05 0.489335414

15.1 0.477038947

15.15 0.465249116

15.2 0.453839723

15.25 0.44282993

15.3 0.43217409

15.35 0.421888742

15.4 0.411932122

15.45 0.402268325

15.5 0.392890457

15.55 0.383791415

15.6 0.37492069

15.65 0.366318372

15.7 0.357917966];

p0=[8 36 115]%赋初值

warning off

p=nlinfit(x,zeros(size(x,1),1),F,p0);

disp(num2str(p));

plot(x(:,1),x(:,2),'ro');hold on;

ezplot(@(x,y)F(p,[x,y]),[0,1,-1e-3,1e-3]);

title('拟合曲线');

legend('样本点')

附录四:附件二求解程序:

clear;

clc

F=@(p,x)(1-x(:,2).*tan(p(1)))./(x(:,2)+tan(p(1)))-sin(p(2)*pi/180).*c ot((p(3)/15+x(:,1)-20)*15*pi/180)+tan(chiwei(p(4),2015)*pi/180)*cos(p (2)*pi/180)./sin((p(3)/15+x(:,1)-20)*15*pi/180);

x=[12.68 -7.139884393

12.73 -6.392063492

12.78 -5.768066406

12.83 -5.241034952

12.88 -4.78820034

12.93 -4.398403194

13.98 -4.054278176

13.03 -3.751250893

13.08 -3.481972789

13.13 -3.24025974

13.18 -3.021752641

13.23 -2.823494335

13.28 -2.642488532

13.33 -2.477203647

13.38 -2.324973319

13.43 -2.18369453

13.48 -2.053236691

13.53 -1.93186227

13.58 -1.817946302

13.63 -1.711635364

13.68 -1.611730598];

p0=[5 40 116 250]

%赋初值

warning off

p=nlinfit(x,zeros(size(x,1),1),F,p0)

plot(p(3),p(2),'.');

hold on

disp(num2str(p));

plot(x(:,1),x(:,2),'ro');hold on;

ezplot(@(x,y)F(p,[x,y]),[0,1,-1e-3,1e-3]);

title('拟合曲线');

legend('样本点')

附录五:附件三求解程序:

clc

F=@(p,x)(1-x(:,2).*tan(p(1)))./(x(:,2)+tan(p(1)))-sin(p(2)*pi/180).*c ot((p(3)/15+x(:,1)-20)*15*pi/180)+tan(chiwei(p(4),2015)*pi/180)*cos(p (2)*pi/180)./sin((p(3)/15+x(:,1)-20)*15*pi/180);

x=[13.15 0.348830935

13.2 0.36673774

13.25 0.384784309

13.3 0.402946848

13.35 0.421281347

13.4 0.439757034

13.45 0.458363592

13.5 0.477171509

13.55 0.496102636

13.6 0.515226038

13.65 0.534506336

13.7 0.553967337

13.75 0.573602362

13.8 0.593422655

13.85 0.613453571

13.9 0.633651297

13.95 0.654077122

14 0.674705039

14.05 0.695558062

14.1 0.716619924

14.15 0.737931245];

p0=[5 26 115 222];

%赋初值

warning off

p=nlinfit(x,zeros(size(x,1),1),F,p0);

disp(num2str(p));

plot(x(:,1),x(:,2),'ro');hold on;

ezplot(@(x,y)F(p,[x,y]),[0,1,-1e-3,1e-3]);

title('拟合曲线');

legend('样本点')

附录六:问题四求解程序:

clc

F=@(p,x)(1-x(:,2).*tan(p(1)))./(x(:,2)+tan(p(1)))-sin(p(2)*pi/180).*c

ot((p(3)/15+x(:,1)-20)*15*pi/180)+tan(chiwei(p(4),2015)*pi/180)*cos(p (2)*pi/180)./sin((p(3)/15+x(:,1)-20)*15*pi/180);

x=[8.9 8.916666667 8.933333333 8.95 8.966666667 8.983333333 9

9.016666667 9.033333333 9.05 9.066666667 9.083333333 9.1 9.116666667 9.133333333 9.15 9.166666667 9.2 9.216666667 9.233333333 9.283333 9.333333 9.42 9.5 9.57

-1.552118549 -1.552141775 -1.551930641 -1.551714674

-1.554131203 -1.554131203 -1.555253537 -1.555131812

-1.555008165 -1.55760448 -1.557499238 -1.558764822

-1.558700143 -1.558634764 -1.559897576 -1.561154752

-1.562509224 -1.563803434 -1.562321953 -1.551024892

-1.566486009 -1.567859478 -1.569264934 1.567646731

1.565965447];

x=x';

p0=[5 40 120 222];

%赋值

warning off

p=nlinfit(x,zeros(size(x,1),1),F,p0);

disp(num2str(p));

plot(x(:,1),x(:,2),'ro');hold on;

ezplot(@(x,y)F(p,[x,y]),[0,1,-1e-3,1e-3]);

title('拟合曲线');

legend('样本点')

附录七:

%表格附件一杆影端点轨迹图

x=[1.0365

1.0699

1.1038

1.1383

1.1732

1.2087

1.2448

1.2815

1.3189

1.3568

1.3955

1.4349

1.4751

1.516

1.5577

1.6003

2015建模A题太阳影子定位

A题太阳影子定位 一,摘要 (宋体小四号,简明扼要的详细叙述,字数不可以超过一页,不要译成英文) 本文针对太阳影子定位技术,通过太阳与地球相对运动的规律,建立杆长、影长、经纬度、时间、日期的关系,建立模型。综合分析了不同地点,不同的时间,不同的季节时影子长度的形成规律及变化趋势,运用了软件进行分析,得出不同地区影子变化的模型。最后将具体情况运用到建立的模型中,对实际问题进行可行性分析,根据条件的改变完善对模型的应用和实用性检验。 第一问中,我们通过两种太阳高度角的表示方法建立等式关系,根据控制变量法,分析出影子长度分别与经、纬度、杆长、时间、日期的关系。然后,根据时差计算关系,当北京时间在9:00-15:00时,天安门广场的时间,并应用建立的模型。 第二问中,首先根据影子坐标求出影子的长度,拟合北京时间与影子长度的函数,找出影子长度的最低的点,从而根据时间求出当地经度,由于误差的存在,我们将经度、杆长、纬度给定一定范围,根据第一问公式进行搜索,从而确定可能的地点。 关键字:(宋体小四号)真太阳时平太阳时赤纬角太阳高度角熵值法 二,问题提出 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技 术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。 1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用 你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39 度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。 2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆 所处的地点。将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。 3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直 杆所处的地点和日期。将你们的模型分别应用于附件2和附件3的影子顶点坐标数据, 给出若干个可能的地点与日期。 4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直 杆的高度为2米。请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个 可能的拍摄地点。 如果拍摄日期未知,你能否根据视频确定出拍摄地点与日期? 三,问题分析

太阳影子定位

太阳影子定位 摘要 太阳影子定位技术就是通过分析物体的太阳影子长度变化,来确定物体所在的时间和地理位置。本文通过分析有关太阳影子各因素之间的关系,采用几何关系和MATLAB编程等方法,对所给问题分别给出了数学模型及处理方案。 针对问题一,确立影长变化模型。首先以经度、纬度、日期、时间、杆长为参数分析影长的变化规律,通过中间变量太阳高度角、赤纬角、时角确立影长变化模型。其次利用影长变化模型,运用MATLAB进行编程,求解出天安门在9:00-15:00影长变化曲线类似一条凹抛物线,其中最短影长出现时刻为多少分,影长为多少m。

一、问题重述 1.1问题背景 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。 1.2问题提出 问题一:建立影子长度变化与各个参数关系的数学模型,并应用所建模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。 问题二:根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点,据此确定所给影子顶点坐标数据的若干个可能的地点。 问题三:在前一问的基础上进一步确定影子顶点坐标与日期的变化关系,建立模型并确定所给影子顶点坐标数据的若干个可能的地点与日期。 二、问题分析 这属于竿影日照数学问题,把竿顶影子端点坐标移动轨迹, 2.1问题一的分析 针对问题一首先为了建立影子长度变化的数学模型,应先确定影响影子长度变化的因素,拟选取直杆所在经度、纬度、日期、时刻及杆长为参数建立数学模型。由于题设中未直接给出关于影长与五个参数的数据,所以拟通过中间量描述影长与上述五个参数之间的关系。查阅相关资料得到可以太阳高度角、太阳赤纬角、太阳时角及太阳方位角四个中间参量作为转换分析中间变量,再根据四个中间变量得到影长与 5 个参数的函数关系式,即影长长度变化的数学模型。最后将天安门广场的 5 个参数带入影长变化模型,可得到杆影的变化曲线,分析影子长度关于各个参数的变化规律。 2.2问题二的分析 针对问题二以直杆的太阳影子顶点为坐标数据建立数学模型,并应用于附件 1 的影子顶点坐标数据求解直杆位置。可视为已知影长坐标、日期和时刻,求影长所在的地点的问题。首先应根据影长坐标计算实际太阳影长,本文拟将附件 1

太阳影子定位,2015数学建模国赛A题资料

对太阳影子定位算法探究 摘要 本文是对2013年全国大学生数学建模竞赛A题的解答.随着人们对数据挖掘的深入,如何确定视频的拍摄地点和拍摄日期已经成为视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法,进而可以促进视频分析定位技术发展。 对于问题一,我们根据地球自转公转的自然规律,建立影子长度变化的数学模型,并且分析影子长度关于各个参数的变化规律。基于对问题的分析以及理论的学习研究,画出模拟概念图,然后计算相关量(如太阳高度角、赤纬角等)的表达式,并按照相关地理知识建立起模型,得到杆子影长与时间函数表达式,再将题目所给的数据代入求解方程,并用MATLAB作出曲线图,最后检验模型的准确性。 对于问题二,我们以问题一所求出的表达式和资料作为基础,继而利用球面天文学求算太阳视坐标的简化算法建立一模型直接求解出经度,纬度的估算值。再代进数据并用利用多项式拟合出更长的时间序列曲线,用函数的特征值(最低点)加上时角,时区计算相关知识,再推算出经度值。最后利用第一问模型,经度,加上曲线获得的几组影长数据联立求解出大致纬度,最后估算杆子所在的地区。 对于问题三,结合问题一问题二所建立的模型,将附件2,附件3的数据先画出散点图并以多项式拟合出两条相对完整的曲线,通过其曲线函数求得影长的最小值以及最小值所对应的时间求得经度,纬度,将经度和纬度代入赤纬角公式以及影长公式可求得相应的具体日期。 对于问题四,首先将视频数据利用MATLAB,并且编程处理视频得到每分钟一帧的图片,再把相关图片转化为灰度图矩阵,最后用语句转化为二值图(0为黑,1为白)。下一步把二值图集分析并且分析出杆子影长的变化规律,求出视频拍摄点经度,利用模型一求出纬度,即是位置。 关键字:影长位置 MATLAB编程多项式拟合最小二乘法二值图

2016年高教社杯全国大学生数学建模竞赛题目请先阅读全国大学生

2016年高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) A题系泊系统的设计 近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。钢桶上接第4节钢管,下接电焊锚链。钢桶竖直时,水声通讯设备的工作效果最佳。若钢桶倾斜,则影响设备的工作效果。钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。 图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例) 系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标

的吃水深度和游动区域及钢桶的倾斜角度尽可能小。 问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。 问题2在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。 问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。布放点的海水速度最大可达到1.5m/s、风速最大可达到36m/s。请给出考虑风力、水流力和水深情况下的系泊系统设计,分析不同情况下钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。 说明近海风荷载可通过近似公式F=0.625×Sv2(N)计算,其中S为物体在风向法平面的投影面积(m2),v为风速(m/s)。近海水流力可通过近似公式F=374×Sv2(N)计算,其中S为物体在水流速度法平面的投影面积(m2),v为水流速度(m/s)。

大学生数学建模太阳影子定位

基于实数离散逐级优化模型的太阳影子定位问题 摘要 本文研究了基于实数离散逐级优化模型的太阳影子定位问题 针对问题一,本文运用天文、地理知识和基本的几何关系,得到影长关于各个参数的函数关系子模型,并建立影长逐级代换模型。我们首先找出影响影子变化的因素,即时间、日期、地理位置、杆的高度;再根据定量分析的方法,得出影子变化与四种因素的变化规律;然后将不同地理位置均按120°E正午12点为0°时角计算当地时角,并通过构建太阳高度角与杆长的简单直角三角图形,利用MATLAB [1]软件计算得出北京时间9:00—15:00时间段内影子的变化曲线。根据曲线得出,该时间段内影长的变化范围在 3.674m—7.366m。每个整点影长如 标求出每个时刻所对应的方位角,将问题一和二中关系式联立,以1°为步长,通过编程遍历整个坐标系分别解出对应时刻不同地理位置所求出的方位角与理论方位角最接近的地理位置,每一点只对应一个时刻。再根据所给信息进行大致筛选,并通过求筛选出的任意一点同其他时刻理论方位角与实际方位角差的平方和最小时的点进行二次筛选。由于误差较大,我们需通过实数离散逐级求解模型,来分别以1分和1秒为步长对先前的二次筛选点进行小范围的遍历,遍历规则同上。最终求出最佳近似位置为: (39°29’30”N,120°29’30”E) 针对问题三,同样利用问题二中模型,增加了日期变量,此时所需遍历参数为经度、纬度、日期,用模型二的方法初步得到21个三维坐标,然后由此21个数据定出与它们方差最小的点的坐标,再进一步减小步幅,得到新的精度更高的21个坐标(精度达到分),重复以上步骤确定经纬精度达到1秒,日期精度达到1日,以此作为我们逐层优化得到的近似最优解,也就确定了坐标。最终求出最佳近似位置和日期分别为: 附录2:(35°29’29”N,31°29’29”E) ,日期为10月6日 附录3:(53°29’29”N,124°29’30”E),日期为2月4日针对问题四,首先对视频进行截图,取时间间隔1min,对图片进行增大对比度处理,建立空间距离矩阵,确定影子长度,位置的变化,进行相应的处理,确定坐标系,坐标点,第一小问就转化为了问题二模型进行求解了,第二小问缺少日期,符合模型三,利用模型三求解即可 关键词:逐级遍历优化、近似最优位置、控制变量法、问题归并

2014高教社杯全国大学生数学建模竞赛D题获奖论文

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): D 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. (隐去论文作者相关信息等) 2. 3. 指导教师或指导教师组负责人(打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

2016高教杯数学建模·b题分析

【百纳知识提供】B 题分析初稿,旨在交流, 注意:这只是看了3 篇文章,找到的思路,请大家多看文献,思路会很多!我们后续会整理更多的思路! 关键词: 1.评价指标体系,评价开放对周边道路通行的效果。 2.车辆通行的数学模型,研究小区开放对周边道路通行的影响。 3.小区开放产生的效果,可能会与小区结构及周边道路结构、车流量有关。 请选取或构建不同类型的小区,应用你们建立的模型,定量比较各类型小区开放前后对道路通行的影响。 4. 根据你们的研究结果,从交通通行的角度,向城市规划和交通管理部门 提出你们关于小区开放的合理化建议。 相关资料整理: 1.评价指标体系,评价开放对周边道路通行的效果。 用层次分析AHP 进行了研究。 我们要做的可能是强调类似哪些指标是针对开放对周边道路通行的效果,不 属于这类的指标可以删除。 2.车辆通行的数学模型,研究小区开放对周边道路通行的影响。 是不是建模就是选取小区附件的某些范围研究,这就是理论依据。 简单的车辆模型,可以化个节点,图,权重。分析流量 用其中的符号定义等,后面的应急什么别管,太复杂。利用这里模型分析第 一个问题中指标系统的指标。 3.小区开放产生的效果,可能会与小区结构及周边道路结构、车流量有关。 请选取或构建不同类型的小区,应用你们建立的模型,定量比较各类型小区开放前后对道路通行的影响。 小区结构: 我们要定量分析几类小区的开放效果,第4 问写建议时候,可能鸭血,那些小区就不要开放了,那些很有必要,等等。 利用前两个模型,对不同小区进行计算。要考虑小区结构及周边道路结构、车流量等的影响。就是调参数,算结果。 4. 根据你们的研究结果,从交通通行的角度,向城市规划和交通管理部门 提出你们关于小区开放的合理化建议。 写建议,写建议时候注意文章说了两种观点,除了开放小区可能引发的安保 等问题外,议论的焦点之一是:开放小区能否达到优化路网结构,提高道路通行能力,改善交通状况的目的,以及改善效果如何。一种观点认为封闭式小区破坏了城市路网结构,堵塞了城市“毛细血管”,容易造成交通阻塞。小区开放后,路网密度提高,道路面积增加,通行能力自然会有提升。也有人认为这与小区面积、位置、外部及内部道路状况等诸多因素有关,不能一概而论。还有人认为小区开放后,虽然可通行道路增多了,相应地,小区周边主路上进出小区的交叉路口的车辆也会增多,也可能会影响主路的通行速度。

数学建模太阳影子定位

西安邮电大学 (理学院) 数学建模报告 题目:太阳影子定位问题 班级:信息工程1403班 学号:03144079 姓名:侯思航 成绩: 2016年6月30日

一、摘要 本文针对太阳影子定位技术,通过太阳与地球相对运动的规律,建立杆长、影长、经纬度、时间、日期的关系,建立模型。综合分析了不同地点,不同的时间,不同的季节时影子长度的形成规律及变化趋势,运用了软件进行分析,得出不同地区影子变化的模型。最后将具体情况运用到建立的模型中,对实际问题进行可行性分析,根据条件的改变完善对模型的应用和实用性检验。第一问中,我们通过两种太阳高度角的表示方法建立等式关系,根据控制变量法,分析出影子长度分别与经、纬度、杆长、时间、日期的关系。然后,根据时差计算关系,当北京时间在9:00-15:00时,天安门广场的时间,并应用建立的模型。第二问中,首先根据影子坐标求出影子的长度,拟合北京时间与影子长度的函数,找出影子长度的最低的点,从而根据时间求出当地经度,由于误差的存在,我们将经度、杆长、纬度给定一定范围,根据第一问公式进行搜索,从而确定可能的地点。 关键字:(宋体小四号)真太阳时平太阳时赤纬角太阳高度角熵值法 二、问题提出 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。 1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。 2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。 3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。 4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。 三、问题分析 第一问:根据物体在太阳光照射下将产生影子的自然现象,研究物体影子的形成原理, 通过分析太阳光线照射物体的角度的日变化和年变化,引起物体影子的长度和朝向有规律地变化来建立数学模型。利用Matlab软件绘出影子长短随时间变化的图像。将问题中所给参数带入,解决问题。由于太阳光线照射物体的角度的日变化和年变化,引起物体影子的长度和朝向有规律地变化。 第二问:通过对附件所给的影子坐标的数据,求出影子的长度,然后通过第一问的相关公式,对影长和时间的关系进行拟合,得到一个二次方程,得出影长的最低值,从而可知正午时间,再算出经度。

2014年“高教杯”数学建模竞赛A题解答

承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的报名参赛队号为(8位数字组成的编号):25018007 所属学校(请填写完整的全名):红河学院 参赛队员(打印并签名) :1. 郭聪聪 2. 建晶晶 3. 丁柱花 指导教师或指导教师组负责人(打印并签名):张德飞 (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

太阳影子确定位置

太阳影子确定位置 太阳影子定位摘要太阳影子定位摘要太阳影子定位技术就是通过分析物体的太阳影子长度变化,来确定物体所在的时间和地理位置。 本文通过分析有关太阳影子各因素之间的关系,采用几何关系及MATLAB软件编程、数学建模等方法,对问题一、问题二、问题三分别给出了数学模型及处理方案。 对于问题一,根据题目所给的时间,日期,地理位置,杆长等条件,首先确定影响影子长度的各个因素,然后再根据几何知识确定它们之间的数学关系,建立相关的数学模型。 再运用MATLAB软件进行编程及绘出影长与时间点的变化曲线图。 对于问题二,根据题目可知,在时间点,日期,影子坐标已知的条件下,需要求出所测点的地理位置,即经纬度。 在问题一的基础上,我们根据问题一的相关结论,做出合理的假设。 用MATLAB软件拟合出所求点的影长与当地时间的关系曲线,确定各个影长所对应的当地时间。 根据附件1中所给点求出影长,找到对应的北京时间。 得到所求地与北京的时间差,即可用时间差和经度的关系求得当地的经度。 在问题二中,我们运用相关公式转换了坐标系,分析各个公式之间的相互转换,计算出题目所求地点的纬度。

从而,确定当地的位置。 对于问题三,给定时间与影子的坐标,确定日期及地理位置。 经度的确定与问题二中求得经度的方法一样,都是通过MATLAB 软件、时间差等方法求得的。 对于纬度的求解,则是运用相关因素之间的公式,转换变化得出日期与纬度之间的关系。 再用MATLAB软件进行穷举,得出所有的纬度,来确定的。 最后,对于论文的优缺点做出了评价,还给出了客观的改进建议。 关键词MATLAB 公式一.问题重述二.问题分析1.3问题三的分析三.模型建设1.假设题目中所给的数据全都真实可靠四.符号说明五.模型的建立与解决5.1 问题一:1.模型的准备2模型的建立3模型的求解5.2 问题二:1.模型的准备2.模型的建立(1)直角坐标系的转换原直角坐标系:根据附件1给出的一系列点的坐标,用Matlab软件编写程序,输入附件1中给定的点,得到偏转角度θ。 新直角坐标系:根据原直角坐标系得到的角度θ,以此角度θ为旋转角度,建立起新的坐标系。 公式1:公式1中,θ为旋转角度,x,y分别为原直角坐标系中的横、纵坐标,x1,y1分别是新直角坐标系的横、纵坐标。

2015年高教社杯全国大学生数学建模竞赛A题评阅要点

2015年高教社杯全国大学生数学建模竞赛A题评阅要点[说明]本题要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅 本题要求根据视频中物体的太阳影子,建立数学模型确定视频拍摄地点和日期,主要考察学生关于空间几何问题的建模能力以及非线性优化问题的求解能力,对求解精度具有一定要求。 评阅时应注意:“北京时间”与“北京当地时间”的不同,经度与时间的关系,关于春分、秋分、冬至、夏至的近似对称性等。大气折射会导致太阳高度角产生一定偏转,所以考虑大气折射情况的模型更佳。 对能够自行构造数据进行模型检验的论文,应给予较好的评价。 问题1 在已知拍摄时间及地点的条件下求影子长度的数学模型,并分析长度关于日期、时间、经纬度等参数的变化规律,有较多的参考文献给出这一问题的模型,如直接采用文献中的模型,应指明其出处。 问题2 在已知物体影子顶点真实坐标及拍摄日期与北京时间的条件下,根据问题1得到的影子长度变化模型,反解出维度及当地时间,根据当地时间和北京时间之间的关系确定经度,附件1的位置是(109.50E,18.30N)。 评阅应以模型和方法为主,结果仅作为参考。要尽可能使用所给数据的全部信息。 问题3 余问题2相比,问题3的拍摄日期未知,反演难度有所增加,同时使用长度和角度信息反演效果更好。附件2的位置是(79.750E,39.520N),日期是7月20日,附件3的位置是(110.250E,29.390N),日期是1月20日。 由于日期相近的影子长度和角度变化较小,导致参数反演问题的近似解较多,可以将日期,经纬度一定范围内的结果都认为是近似正确的。 评阅应以模型和方法为主,结果仅作为参考。 问题4 建立影子顶点大地坐标与视频坐标之间的关系,然后反演模型中的参数。由于反演参数的增加,以及视频数据提取时产生的误差,导致模型求解精度下降,确定拍摄地点的难度增加。 评阅时主要关注模型和方法是否合理正确,结果仅作为参考。 反演模型中的参数:?

A题 太阳影子定位

A题太阳影子定位 摘要

一.问题重述 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。 1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。 2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。 3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。 4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。 如果拍摄日期未知,你能否根据视频确定出拍摄地点与日期? 二.问题分析 本题第一问是研究太阳影子长度随各个参数的变化规律,影响太阳影子长度的因素主要有时间以及地点,也就是当地的经纬度和时间来影响太阳高度角来影响太阳影子长度。 太阳高度角:对于地球上的某个地点,太阳高度角是指太阳光的入射方向和地平面之间的夹角,专业上讲太阳高度角是指某地太阳光线与通过该地与地心相连的地表切线的夹角。根据太阳高度角的计算公式: sin h=sin φ sin δ+cos φ cosδ cos t 即求出太阳高度角就能算出太阳影子长度。 本题第二问是根据第一问的模型通过最小二乘法拟合来判断大致的经纬度,从而确定地点。

2015全国大学生数学建模竞赛D题答案

2015高教社杯全国大学生数学建模竞赛D题评阅要点 [说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。本题的难点在于通过学习国家相关政策文件,理解真实案例中一次项目规划中的各种约束条件,以此为基础建立成本核算体系,借助各类模型或算法,衡量并调整众筹筑屋规划方案,以实现不同目标的优化问题。 评阅时请关注如下方面:建模的准备工作(对题目的正确理解,文献查询,核算模型的依据),模型的建立、求解、求解方法的灵活性和分析方法,计算程序的可运行性,结果的表述,合理性分析及其模型的拓广。 问题1:众筹筑屋规划方案Ⅰ的核算流程 需熟悉众筹筑屋的新型房地产形势,包括结合实际需求,考虑容积率约束,考虑税务和预估纯收益,这其中包括土地增值税的计算、对取得土地使用权所支付的金额、开发成本、开发费用、与之有关的税金、其它扣除项目等核算,并对核算方式进行说明,应该有文献支持。原始方案(规划方案Ⅰ)的核算: 结合附件中的数据,使用已建立的核算模型对原始开发方案进行一次核算,给出建设规划方案Ⅰ的总购房款、增值税、纯利润、容积率、总套数等计算结果。 问题2:考虑参筹者平均购买意愿最大的建设规划方案 建立模型,给出合理的约束项和目标函数,并解释。注意考虑必要的套数上下限约束和目标函数的非线性。 选取合适的算法进行求解,并对结果给出合理的解释。 问题3:项目能成功执行的建设规划方案 对问题2中的方案进行核算,得出投资回报率低于25%的结论,对方案进行改进。建立或修改得到新模型,包含投资回报率需达到25%的约束,建立单目标非线性整数优化问题,注意目标函数与约束中均存在非线性,同时目标函数中存在分段的特性,寻求算法并求解,对于求解结果进行合理解释。

基于并列选择遗传算法的太阳影子定位方法

第35卷第1期2017年2月 陕西科技太摩摩裉 Journal of Shaanxi University of Science & Technology Vol.35 No.1 Feb.2017 关 文章编号:1000-5811 (2017)01-0193-05 基于并列选择遗传算法的太阳影子定位方法 于鹏\刘泽锋2,郭改慧\陆金巧\吕杨1 (1.陕西科技大学文理学院,陕西西安710021: 2.陕西科技大学机电工程学院,陕西西安710021) 摘要:根据“立竿见影”和竿影日照图的原理,提出了一种太阳影子定位方法.首先结合太阳 高度角、太阳赤綷角,以理论影长和实际影长的相关系数最大和其误差平方和最小为目标函数 建立了求太阳影子定位的多目标优化模型,并以测量地的经綷度作为设计变量,运用并行选择 的遗传算法进行求解,实现了对测量地的精准定位.最后通过实例分析,指出与传统的枚举算 法相比,本文采用的遗传算法的求解结果无论在精度还是在收敛速度上都优于传统的枚举算法. 关键词:太阳影子定位;多目标优化;并行选择;遗传算法 中图分类号:TP391 文献标志码:A Positioning method by the shadow of the sun based on parallel selected genetic lgorithm YU Peng1,LIU Ze-feng2,GUO Gai-hui1,LU Jin-qiao1,LV Yang1 (1. School of Arts and Sciences,Shaanxi University of Science Technology,Xi^an 710021, China;2. Col- lege of Mechanical and Electrical Engineering,Shaanxi University of Science Technology,X i’an 710021,China) Abstract:According to the natural phenomenon that produces a shadow of objects under di-rect sunlight and the formation principle of stick sunlight shadow chart,the positioning method by the shadow of the sun is https://www.doczj.com/doc/dd3947752.html,bined with relevant knowledge such as solar altitude and declination of sun.The multiple object optimization model,whose objective fun-ction is the maximum of correlation coefficient and the minimum of error sum of squares a-bout practical and theoretical shadow7s length,is built.Regarding longitude and latitude of measure area as design variables,the measure area is confirmedwith parallelism selection ge-netic algorithm.In the analysis of case,compared with enumeration method,there is the truth that,the result by genetic algorithm is more accurate and the solution speed is faster than enumeration method. Key words:positioning by the shadow of the sun;multiple object optimization;parallelism selection;genetic algorithm 收稿日期=2016-07-21 基金项目:国家自然科学基金项目(11401356) 作者简介:于鹏(1981 —),男,宁夏永宁人,讲师,硕士,研究方向:不确定推理

2015高教社杯全国大学生数学建模竞赛A题太阳影子定位资料

摘要 通过太阳影子定位技术可以确定视频的拍摄地点和时间,为拍摄出更好的视频,掌握太阳影子的变化规律就变得尤为重要。本文主要综合运用了地理学、几何学、统计学、数学分析和高等代数等知识,并利用MATLAB,SPSS 和mathematica 等计算机软件,通过建立数学模型来研究影子长度的变化特征,进一步确定视频的拍摄地点和时间。 针对问题一,首先我们通过分析影子长度的影响因素得到与影子长度的关系(见表达式六)整理计算之后,就得到了影子长度的数学模型。 1*tan (arcsin(cos cos cos sin sin ))l L ?θ?θ-=Ω+ 然后我们通过分析他们之间的关系,再利用MATLAB 编程,得到了影子长度关于各个参数的变化规律(见图3到图7)。其次根据我们建立的模型,利用MATLAB 编程画出了给定时间天安门广场3米高的直杆的太阳影子长度的变化曲线(见图8),然后在考虑折射率的情况下又画了一条变化曲线(见图9),最后进行了误差分析(见图10)。 针对问题二,我们采用了测试分析法(数据分析法和计算机仿真相结合),通过分析各个参量之间的关系,先以影长l 为目标做回归,用模型一的模型,通过SPSS 进行拟合得到多组数据,再用MATLAB 进行检验得到符合的两组经纬度。 (19.251,109.645),(24.579,98.1)N E N E 然后我们又以太阳方位角K 为目标做回归,得到模型(见表达式12),其计算方法与影长l 做回归目标时一样。我们分步做了两次拟合,先用MATLAB 拟合出经度,再做回归模型(见表达式14)最后得到经纬度(18.74 ,109.35)N E 和杆长 1.993L m =。综 上可知,肯定有一地点是在海南,还有一个地点可能在云南。 针对问题三,我们用问题二中的多项式回归,得到回归模型(见表达式17和20) 利用附件二得到的经纬度为(32.83N,110.25E)和杆长L 3.03m = ,得到天数307n =。利用附件三得到的经纬度为(39.19N,79.5E) 和杆长L 1.962m = ,得到天数=140n 针对问题四,首先运用MATLAB 软件,根据画面灰度,运用MATLAB 软件,把视频转化成二值图,求得影子端点的像素坐标,然后根据相似原理,把像素坐标转化成水平面上的坐标(消去了视角的影响),进而求得影子的长度。用以上方法求得的数据,运用多次拟合的方法,得到该地的经纬度为(34.32,108.72)N E ,日期未知时,得到的经纬度与其相似。 【关键字】 影子长度 多项式拟合 太阳方位角 画面灰度

太阳影子定位技术 高教社杯 数学建模 获奖论文讲课稿

太阳影子定位技术2015高教社杯数学建模获奖论文

太阳影子定位技术 摘要 本文以太阳影子定位技术为背景,结合直杆影子轨迹的变化规律建立数学模型。并运用视频数据分析的方法,确定拍摄地点及日期等地理信息条件。 第一问给出了北京时间、拍摄日期,以及拍摄地点的经纬度。我们可以结合太阳赤纬、时角、直杆的经纬度与太阳高度角之间的关系建立模型,求出符合时间条件要求的太阳高度角,再根据已知的杆的高度和三角公式求出影长关于时间的变化曲线。 第二、三问在第一问的基础上增加难度,使部分变量未知。通过文献查阅和方程推导,得出阴影运动轨迹形状是双曲线的一支,并且具体形状和当地的纬度以及赤纬有关,本文根据这点进行模型假设与建立。附件中给出的坐标并不一定是标准地理坐标,通过对其进行坐标变换,引入了实际坐标系与标准地理坐标系的偏角。 在拟合多项高次变量组成的隐函数方程的过程中,为增加精确度,运用最小二乘法进行拟合求解未知参量时,可以利用直杆阴影顶点轨迹的形状,建立参量和变量之间的关系,简化需拟合的隐函数方程。 这样就可以根据太阳影子顶点横纵坐标以及对应的时刻,把偏角、纬度、经度、日期作为未知参数进行拟合,得出要求的地理位置和相应的日期。如通过对附件1数据的拟合求解可得到一组地理坐标(东经104.425度,北纬15.6578度),对附件2数据的拟合求解可得一个可能的日期6月21日,坐标(东经116度,北纬26度),由附件3得到的可能的日期地点为:6月21日,(东经164.55度,北纬71.26度)。

为了便于定位,根据一般工程的实际需求,对美国天文学家纽康(New Comb)提出的太阳公式作了综合、简化,舍去了一些高阶微小量。结合测量学的理论,用数学模型进行非线性拟合求得直杆所处的经纬度。 第四问给出一段视频,实际是对前三问模型的实际应用。本问对一些已有的论文以及专利进行借鉴,创新与简化。首先对视频中的图像进行取帧,在灰度处理中因为技术限制,改为运用Matlab二值化处理。并根据简单测量画出运行轨迹。 运用主元分析法求得阴影尖端坐标与杆底坐标的关系。确定影子的运动轨迹。之后借鉴已有成熟理论将2D图像去畸变,恢复仿射的度量属性,通过对3D图形转变2D过程的逆向推导,将坐标恢复为符合现实要求的坐标。之后回归前几问建立的的日晷数学模型进行求解,得到一个可能的地理坐标为(东经104.9度,北纬25.33度)。并在最后进行误差修正。 关键词:日晷投影原理、杆影端点轨迹、非线性最小二乘法、主元分析法、二值化处理、Floodfill图论算法

根据影子判断地理位置

太阳影子定位模型建立 摘要 本文讨论求解了在直杆影子随时间变化过程中,在知道日期、杆位置、影子坐标、时间等参数条件中的某几个前提下,设计了确定型模型进行求解。 分析太阳方位与直杆影子关系,首先,将地球自转公转视为地球不动太阳动,利用立体几何知识得出太阳高度角与影子长度关系。问题一的关键在于太阳高度角与日期、竿位置、时间参数的关系。问题二中我们将立体平面化,把太阳与地球的运动关系转化为平面上的角度关系,使模型简明直接。在模型求解时,我们把各解看为离散型随机变量,对解进行权重处理,最后求得较精准的解。问题三,先结合前两题的模型预处理,再利用matlab据最小二乘法原理,来对目标函数进行曲线拟合求解。对问题四中视频进行分段截取照片处理,用photoshop软件测量影子长度与时间关系,再结合前几题模型与求解方法,可求得结果。问题被函数化,模型简明直接,提高了确定性。 关键词:太阳高度角,立体平面化,权重处理,matlab曲线拟合 问题重述 确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。 通过影子长度变化建立数学模型,分析影子长度关于各个参数的变化规律,并应用建立的模型画出某时间段某地某固定直杆的太阳影子长度的变化曲线。 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。并利用模型对附件1的影子顶点坐标数据进行求解,求出若干个可能的地点。

根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。将模型分别应用于附件的影子顶点坐标数据,求出若干个可能的地点与日期。 根据一根直杆在太阳下的影子变化的视频,直杆的高度为2米。建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。日期未知下再尝试求解。 问题分析 根据影子变化来确定时间地点和时间,我们把地球自转看成太阳绕地球转,可以转化为太阳方位与地球各地点和时间的关系问题。 对于问题一:可以把影子长度变化规律转化为光线与水平面夹角的变化规律。我们根据地球自转公转规律和立体几何知识建立模型,且该模型得能体现光线和地面的夹角与日期时间、地理位置的关系,最后通过matlab画出影子长度随时间的变化曲线。 对于问题二:问题二相比问题一缺少一个已知量,无法通过问题一中的模型来求解,我们把太阳与直杆影子的关系转化为了平面角度关系,进而简便有效地求出杆的位置。 对于问题三:已知量较前一问更少,故我们先结合问题一和二建立的模型,再应用matlab进行曲线拟合求得参数解。 对于问题四:通过提取视频特定帧,测量出杆的影子随时间变化的实际长度数据,与问题三类似,结合模型用matlab曲线拟合求解即可,或者取多组数据用lingo软件求解方程组。 模型假设 1.假设地球公转轨迹近似为圆。 2.忽略太阳光线进入大气层时的折射误差。 3.假设地面是水平的且直杆垂直地面。 4.忽略太阳直射点纬度一天内的变化。 5.假设所给数据准确可靠。 定义和符号说明 H:杆长

2017数学建模高教杯全套

2017年高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) A题CT系统参数标定及成像 CT(Computed Tomography)可以在不破坏样品的情况下,利用样品对射线能量的吸收特性对生物组织和工程材料的样品进行断层成像,由此获取样品内部的结构信息。一种典型的二维CT系统如图1所示,平行入射的X射线垂直于探测器平面,每个探测器单元看成一个接收点,且等距排列。X射线的发射器和探测器相对位置固定不变,整个发射-接收系统绕某固定的旋转中心逆时针旋转180次。对每一个X射线方向,在具有512个等距单元的探测器上测量经位置固定不动的二维待检测介质吸收衰减后的射线能量,并经过增益等处理后得到180组接收信息。 CT系统安装时往往存在误差,从而影响成像质量,因此需要对安装好的CT系统进行参数标定,即借助于已知结构的样品(称为模板)标定CT系统的参数,并据此对未知结构的样品进行成像。 请建立相应的数学模型和算法,解决以下问题: (1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反映了该点的吸收强度,这里称为“吸收率”。对应于该模板的接收信息见附件2。请根据这一模板及其接收信息,确定CT系统旋转中心在正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X射线的180个方向。 (2) 附件3是利用上述CT系统得到的某未知介质的接收信息。利用(1)中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何形状和吸收率等信息。另外,请具体给出图3所给的10个位置处的吸收率,相应的数据文件见附件4。 (3) 附件5是利用上述CT系统得到的另一个未知介质的接收信息。利用(1)中得到的标定参数,给出该未知介质的相关信息。另外,请具体给出图3所给的10个位置处的吸收率。 (4) 分析(1)中参数标定的精度和稳定性。在此基础上自行设计新模板、建立对应的标定模型,以改进标定精度和稳定性,并说明理由。 (1)-(4)中的所有数值结果均保留4位小数。同时提供(2)和(3)重建得到的介质吸收率的数据文件(大小为256×256,格式同附件1,文件名分别为problem2.xls和problem3.xls) 图1.CT系统示意图图2.模板示意图(单位:mm)图3. 10个位置示意图

相关主题
文本预览
相关文档 最新文档