当前位置:文档之家› 直流激励时霍尔传感器位移特性试验

直流激励时霍尔传感器位移特性试验

直流激励时霍尔传感器位移特性试验
直流激励时霍尔传感器位移特性试验

霍尔传感器位移特性实验

实验14 直流激励时霍尔传感器位移特性实验 141270046 自动化杨蕾生 一、实验目的: 了解直流激励时霍尔式传感器的特性。 二、基本原理: 根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。 三、需用器件与单元: 主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。 四、实验步骤: 1、霍尔传感器和测微头的安装、使用参阅实验九。按图14示意图接线(实验模板的输出V o1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V档。 2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加0.2mm记下一个读数,将读数填入表14。

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的是什么量的变化? 答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 实验数据如下: 表9-2

(1)由上图可知灵敏度为S=ΔV/ΔX=-0.9354V/mm (2)由上图可得非线性误差: 当x=1mm时, Y=-0.9354×1+1.849=0.9136 Δm =Y-0.89=0.0236V yFS=1.88V δf =Δm /yFS×100%=1.256% 当x=3mm时: Y=-0.9354×3+1.849=-0.9572V Δm =Y-(-0.94)=-0.0172V yFS=1.88V δf =Δm /yFS×100%=0.915% 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进 行补偿。 答:(1)零位误差。零位误差由不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。补偿方法是加一不等位电势补偿电路。 (2)温度误差。因为半导体对温度很敏感,因而其霍尔系数、电阻率、霍尔电势的输入、输出电阻等均随温度有明显的变化,导致了霍尔元件产生温度误差。补偿方法是采用恒流源供电和输入回路并联电阻。

传感器测试实验报告

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1 X (mm ) V(mv)

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

霍尔传感器工作原理

半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。 半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。

霍尔传感器制作实训报告

佛山职业技术学院 实训报告 课程名称传感器及应用 报告内容霍尔传感器制作与调试 专业电气自动化技术 班级08152 姓名陈红杰‘’‘’‘’‘’‘’‘’‘’‘ 学号31 二0一0年六月 佛山职业技术学院

《传感器及应用》 霍尔传感器制作实训报告 班级08152学号31 姓名陈红杰时间2009-2010第二学期项目名称霍尔传感器电路制作与 指导老师张教雄谢应然调试 一、实验目的与要求: 1.对霍尔传感器的实物(电路部分)进行一个基本的了解。 2.了解双层PCB板以及一定(霍尔传感器)的焊接排版的技术和工艺。 二、实验仪器、设备与材料: 1.认识霍尔传感器(电路部分)的元件(附图如下): 2.焊接电路PCB板(双层)和对电路设计的排版工艺的了解。 3.对霍尔传感器的电路原理图进行基本的分析(附图如下):

实验开始,每组会得到分发的元件,我先由霍尔传感器的电路原理图开始分析,将每个元件插放好位置,这点很重要,如果出了问题那么会使电路不能正常工作,严重的还有可能导致电路元件受损而无法恢复。所以我先由霍尔传感器的电路原理图开始着手,分析清楚每个元件的指定位置,插放好了之后再由焊接,最后要把多余的脚剪掉。 整个电路的元件除了THS119是长脚直插式元件之外,其余的元件均为低位直插或者贴板直插。 焊接的过程中,所需要注意的事情就是不能出现虚焊脱焊或者更严重的烙铁烫坏元件的表壳封装损坏印制电路板等。这些都是在焊接的整个过程中要注意的事情。 比如,焊接三端稳压管7812时,要考虑到电路板的外壳封装和三端稳压管7812的散热问题,如果直插焊接的话那么就会放不进塑料外壳里,还有直插没有折引脚的话对三端稳压管7812的散热影响很大。综合这些因素再去插放焊接元件,效果会好很多。 又比如,焊接THS119的时,原本PCB板在设计的时已经排好版了,就是在TL082的背面插放THS119。这样的设计很巧妙,能够保证每一个THS119插进去焊接完了之后都能很好地与塑料外壳严密配合安放进去。因为这是利用了IC引脚与PCB板的间距来实现定距离的,绝不会给焊接带来任何麻烦。 最后,顺便提及一下,在保证能将每一个元件正确地焊接在印制电路板上的前提条件下要尽量将元件插放焊接得美观。 五、实验心得体会 (1)首先,从整个霍尔传感器来看,设计的电路的合理性,元件的选用,还有焊接的制作工艺是保证整个电路能正常工作前提。 (2)在学习电子电路的过程中,急需有一个过度期,焊接霍尔传感器电路的过程当中就会得到一个这样的练习。 (3)简单的说就是,拿到一张电路原理图未必做得出一个比较好的产品,这里需要对整个电路设计的元件参数的考虑和排版,元件插放等等。只有将这些问题逐一解决了,才能做好一个电路,也只有这样才能做好一个产品。 (4)霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低。霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁场强度。 六、实验收获 从拿到第一个元件开始,我仍然没有太多的收获,直到开始分析整个电路原理图的时候才慢慢开始了解到一些确实精巧的设计,可以说是独具匠心,到整个霍尔传感器电路完成之后才算是明白了一二。 在此,我具体地说说。首先,为什么不用一个普通的稳压管替代Z2这个精密稳压集成电路TL431呢?我查阅相关资料知道它的温度范围宽能在 区间工作。将其的R、C脚并焊再串上一个电阻来等效代替电

基于线性霍尔元件的位移传感器设计

郑州轻工业学院 传感器及应用系统课程设计说明书基于线性霍尔元件的位移传感器 姓名:吴富昌 专业班级:电子信息工程13-01 学号:9 指导老师:陆立平 时间:2016.6.27 -2016.7.1

郑州轻工业学院 课程设计任务书 题目基于线性霍尔元件的位移传感器设计 专业、班级电子信息工程13-01 学号39 姓名吴富昌 主要内容、基本要求、主要参考资料等: 一、主要内容: 利用线性霍尔元件设计一个位移传感器。 二、基本要求: (1)设计一个位移传感器,并设计相关的信号处理电路。 (2)为达到误差控制要求,需要对霍尔元件的误差进行补偿校正,主要包含霍尔元件的零位误差及补偿和温度误差及补偿。 (3)完成系统框图和电路原理图的设计和绘制,系统理论分析和设计详细明确,有理有据。 (4)信号处理电路应包含激励信号电路、消除不等位电势补偿电路、放大电路、相敏检波电路和低通滤波电路等。 (5)利用软件仿真,得出主要信号输入输出点的波形,根据仿真结果验证设计功能的可行性、参数设计的合理性。 (6)根据模拟结果计算位移传感器的迟滞误差、线性度和灵敏度等参数。 (7)写出3000~5000字的设计报告,主体文本字号为小四号,标题章节字号依照美观合理原则选择,并合理加黑,字体均为宋体。 三、主要参考资料: (1)何金田,张斌主编,传感器原理与应用课程设计指南。哈尔滨:哈尔

滨工业大学出版社,2009.01. (2)周继明,刘先任、江世明等,传感器技术与应用实验指导及实验报告。长沙:中南大学出版社,2006.08. (3)陈育中,霍尔传感器测速系统的设计,科学技术与工程,2010,10:7529-7532. 完成期限:2016年6月27 日-2016年7月1日 指导教师签章: 专业负责人签章: 2016年 6 月27 日 基于线性霍尔元件的位移传感器设计 摘要 霍尔传感器是基于霍效应而将被测量转化成电动势输出的一种传感器。霍尔元件已发展成一个品种多样的磁传感器产品簇,并且得到广泛的应用。霍尔器件是一种磁传感器,用它可以检测磁场及其变化,可以在各种与磁有关的场合中使用。霍尔期间以霍尔效应为其工作原理。当被测物体分别与恒定电流I和恒定磁场B垂直二当被测物体相对于原来位置有微小位移变化时,会产生变化的磁通量,会在导体垂直于磁场和电流的两个端面之间产生电势差,即UH(霍尔电压)。本文主要研究微小位移与霍尔电压的关系来设计霍尔位移传感器。 关键词霍尔传感器位移霍尔电压

霍尔传感器用法

一、霍尔电流电压传感器、变送器的基本原理与使用方法 1.霍尔器件 霍尔器件是一种采用半导体材料制成的磁电转换器件。如果在输入端通入控 制电流I C ,当有一磁场B穿过该器件感磁面,则在输出端出现霍尔电势V H 。 如图1-1所示。 霍尔电势V H 的大小与控制电流I C 和磁通密度B的乘积成正比,即:V H =K H I C Bsin Θ 霍尔电流传感器是按照安培定律原理做成,即在载流导体周围产生一正比于该电流的磁场,而霍尔器件则用来测量这一磁场。因此,使电流的非接触测量成为可能。 通过测量霍尔电势的大小间接测量载流导体电流的大小。因此,电流传感器经过了电-磁-电的绝缘隔离转换。 2.霍尔直流检测原理 如图1-2所示。由于磁路与霍尔器件的输出具有良好的线性关系,因此霍尔 器件输出的电压讯号U 0可以间接反映出被测电流I 1 的大小,即:I 1 ∝B 1 ∝U 我们把U 0定标为当被测电流I 1 为额定值时,U 等于50mV或100mV。这就制成 霍尔直接检测(无放大)电流传感器。

3.霍尔磁补偿原理 原边主回路有一被测电流I1,将产生磁通Φ1,被副边补偿线圈通过的电流I2所产生的磁通Φ2进行补偿后保持磁平衡状态,霍尔器件则始终处于检测零磁通的作用。所以称为霍尔磁补偿电流传感器。这种先进的原理模式优于直检原理模式,突出的优点是响应时间快和测量精度高,特别适用于弱小电流的检测。霍尔磁补偿原理如图1-3所示。 从图1-3知道:Φ 1=Φ 2 I 1N 1 =I 2 N 2 I 2=N I /N 2 ·I 1 当补偿电流I 2流过测量电阻R M 时,在R M 两端转换成电压。做为传感器测量电 压U 0即:U =I 2 R M 按照霍尔磁补偿原理制成了额定输入从0.01A~500A系列规格的电流传感器。 由于磁补偿式电流传感器必须在磁环上绕成千上万匝的补偿线圈,因而成本增加;其次,工作电流消耗也相应增加;但它却具有直检式不可比拟的较高精度和快速响应等优点。 4.磁补偿式电压传感器 为了测量mA级的小电流,根据Φ 1=I 1 N 1 ,增加N 1 的匝数,同样可以获得高磁 通Φ 1 。采用这种方法制成的小电流传感器不但可以测mA级电流,而且可以测电压。 与电流传感器所不同的是在测量电压时,电压传感器的原边多匝绕组通过串 联一个限流电阻R 1,然后并联连接在被测电压U 1 上,得到与被测电压U 1 成比 例的电流I 1 ,如图1-4所示。

传感器实验报告 (2)

传感器实验报告(二) 自动化1204班蔡华轩 U201113712 吴昊 U201214545 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而 只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素? 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S=58.179 非线性误差δf=21.053/353=6.1% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、± 15V、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器按图8-2 安装。霍尔传感器与实验模板的连接 按图8-3 进行。1、3 为电源±4V,2、4 为输出。图8-2 霍尔 传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节RW2 使数显表指示为零。

霍尔传感器的直流激励特性实验

霍尔传感器的直流激励特性实验 一、实验目的:了解霍尔传感器的直流激励特性。 二、实验内容: 给霍尔传感器通以直流电源,经差动放大器放大,当测微头随振动台上、下移动时,就有霍尔电势输出,从而可以测出霍尔传感器在直流激励下的输出特性。 三、实验原理: 由两个半圆形永久磁钢组成梯度磁场,位于梯度磁场中的霍尔元件(霍尔片)通过底座连接在振动台上。当霍尔片通以恒定电流时,将输出霍尔电势。改变振动台的位置,霍尔片就在梯度磁场中上下移动,霍尔电势V值大小与其在磁场中的位移量X有关。 四、实验要求 1、按图1接线,插接线插接要牢靠。 2、直流激励电压为±2V,不能任意加大,否则将损坏霍尔片。 五、实验装置: 1.传感器系统实验仪CSY型1台 2.通用示波器COS5020B 1台 3.系统微机1台 4.消耗材料: 霍尔片(专用) 1个 插接线(专用) 10根 图1 霍尔传感器实验接线图 六、实验步骤: 1.按图1接线,使霍尔片位于梯度磁场中间位置,差放调零。 2.上、下移动振动台并调节差放增益与电桥WD电位器,使得电压表双向指示基本对称且趋近最大。 3.将测微头与振动台吸合,并调节霍尔片使之处于梯度磁场的中间位置。 4.用测微头驱动霍尔片输入位移量X, 每次变化0.5mm,量程为:-3mm +3mm,读取相应的输出电压值,填入表中。 七、实验数据及处理: 1.整理实验数据,作出V-X曲线,求出灵敏度及线性区 2.给出位移测量系统的适宜量程

1.计算灵敏度:S=0.587V/mm 则拟合直线方程为:V=0.857X+0.334 由图像得,当X在(-1.00,3.00)之间时,图像具有线性。当X〉3.00时,图像失去线性。 其线性区间为(-1.00,3.00)单位:mm 2.系统的适宜量程: 霍尔传感器在线性区内测量有效,适宜量成为:(-1.00,3.00)单位:mm

霍尔传感器的工作原理

两种霍尔传感器的工作原理 霍尔电流传感器是根据霍尔原理制成的.它有两种工作方式,即磁平衡式和直式.霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、(次级线圈)和放大电路等组成. 1 直放式电流传感器(开环式) 众所周知,当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出.这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V. 2 磁平衡式电流传感器(闭环式) 磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。 磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is.这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小.当与I H与匝数相乘与“原边电流与匝数相乘”所产生的磁场相等时, I H不再增加,这时的霍尔器件起指示零磁通的作用,此时可以通过I H来平衡.被测电流的任何变化都会破坏这一平衡.一旦磁场失去平衡,霍尔器件就有信号输出.经功率放大后,立即就有相应的电流I H流过次级绕组以对失衡的磁场进行补偿.从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。

工作原理主要是霍尔效应原理. 一、以零磁通闭环产品原理为例: 1、当原边导线经过电流传感器时,原边电流 IP 会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式:IS* NS= IP*NP 其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS—副边线圈匝数; NP/NS—匝数比,一般取 NP=1。 电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比,IS 一般很小,只有 10~400mA。如果输出电流经过测量电阻 RM,则可以得到一个与原边电流成正比的大小为几伏的电压输出信号。 2、传感器供电电压 VA VA 指电流传感器的供电电压,它必须在传感器所规定的范围内。超过此范围,传感器不能正常工作或可靠性降低,另外,传感器的供电电压VA又分为正极供电电压VA+和负极供电电压VA-。要注意单相供电的传感器,其供电电压VAmin是双相供电电压VAmin的2倍,所以其测量范围要相供高于双电的传感器。 3、测量范围 Ipmax 测量范围指电流传感器可测量的最大电流值,测量范围一般高于标准额定值 IPN。二、电流传感器主要特性参数1、标准额定值 IPN 和额定输出电流 ISN IPN 指电流传感器所能测试的标准额定值,用有效值表示(A.r.m.s),IPN 的大小与传感器产品的型号有关。ISN指电流传感器额定输出电流,一般为10~400mA,当然根据某些型号具体可能会有所不同。 2、偏移电流 ISO 偏移电流也叫残余电流或剩余电流,它主要是由霍尔元件或电子电路中运算放大器工作状态不稳造成的。电流传感器在生产时,在25℃,IP=0时的情况下,偏移电流已调至最小,但传感器在离开生产线时,都会产生一定大小的偏移电流。产品技术文档中提到的精度已考虑了偏移电流增加的影响。 3、线性度 线性度决定了传感器输出信号(副边电流IS)与输入信号(原边电流IP)在测量范围内成正比的程度。 4、温度漂移 偏移电流ISO是在25℃时计算出来的,当霍尔电极周边环境温度变化时,ISO会产生变化。因此,考虑偏移电流ISO的最大变化是很重要的,其中,IOT是指电流传感器性能表中的温度漂移值。5、过载电流传感器的过载能力是指发生电流过载时,在测量范围之外,原边电流仍会增加,而且过载电 流的持续时间可能很短,而过载值有可能超过传感器的允许值,过载电流值传感器一般测量不出来,但不会对传感器造成损坏。

实验 线性霍尔式传感器位移特性实验

实验 线性霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。霍尔效应是具有载流子的半导体同时处在电场和磁场中而产生电势的一种现象。如图28—1(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板 图28—1霍尔效应原理 的横向两侧面A ,A 之间就呈现出一定的电势差,这一现象称为霍尔效应(霍尔效应可以用洛伦兹力来解释),所产生的电势差U H 称霍尔电压。霍尔效应的数学表达式为: U H =R H d IB =K H IB 式中:R H =-1/(ne)是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数; K H = R H /d 灵敏度系数,与材料的物理性质和几何尺寸有关。 具有上述霍尔效应的元件称为霍尔元件,霍尔元件大多采用N 型半导体材料(金属材料中自由电子浓度n很高,因此R H 很小,使输出U H 极小,不宜作霍尔元件),厚度d 只有1μm 左右。 霍尔传感器有霍尔元件和集成霍尔传感器两种类型。集成霍尔传感器是把霍尔元件、放大器等做在一个芯片上的集成电路型结构,与霍尔元件相比,它具有微型化、灵敏度高、可靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。 本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变化来测量。霍尔式位移传感器的工作原理和实验电路原理如图28—2 (a)、(b)所示。将磁场强度相同的两块永久磁钢同极性相对放置着,线性霍尔元件置于两块磁钢间的中点,其磁感应强度为0,

霍尔齿轮转速传感器的工作原理和优点

霍尔齿轮转速传感器的工作原理和优点 作者: 发布时间:2009-11-25 来源: 关键字:霍尔转速传感器 霍尔转速传感器的主要工作原理是霍尔效应,也就是当转动的金属部件通过霍尔传感器的磁场时会引起电势的变化,通过对电势的测量就可以得到被测量对象的转速值。霍尔转速传感器的主要组成部分是传感头和齿圈,而传感头又是由霍尔元件、永磁体和电子电路组成的。 霍尔转速传感器的工作原理 霍尔转速传感器在测量机械设备的转速时,被测量机械的金属齿轮、齿条等运动部件会经过传感器的前端,引起磁场的相应变化,当运动部件穿过霍尔元件产生磁力线较为分散的区域时,磁场相对较弱,而穿过产生磁力线较为几种的区域时,磁场就相对较强。 霍尔转速传感器就是通过磁力线密度的变化,在磁力线穿过传感器上的感应元件时,产生霍尔电势。霍尔转速传感器的霍尔元件在产生霍尔电势后,会将其转换为交变电信号,最后传感器的内置电路会将信号调整和放大,输出矩形脉冲信号。 霍尔转速传感器的测量方法 霍尔转速传感器的测量必须配合磁场的变化,因此在霍尔转速传感器测量非铁磁材质的设备时,需要事先在旋转物体上安装专门的磁铁物质,用以改变传感器周围的磁场,这样霍尔转速传感器才能准确的捕捉到物质的运动状态。 霍尔转速传感器主要应用于齿轮、齿条、凸轮和特质凹凸面等设备的运动转速测量。高转速磁敏电阻转速传感器除了可以测量转速以外,还可以测量物体的位移、周期、频率、扭矩、机械传动状态和测量运行状态等。 霍尔转速传感器目前在工业生产中的应用很是广泛,例如电力、汽车、航空、纺织和石化等领域,都采用霍尔转速传感器来测量和监控机械设备的转速状态,并以此来实施自动化管理与控制。 霍尔转速传感器的应用优势 霍尔转速传感器的应用优势主要有三个,一是霍尔转速传感器的输出信号不会受到转速值的影响,二是霍尔转速传感器的频率相应高,三是霍尔转速传感器对电磁波的抗干扰能力强,因此霍尔转速传感器多应用在控制系统的转速检测中。 同时,霍尔转速传感器的稳定性好,抗外界干扰能力强,如抗错误的干扰信号等,因此不易因环境的因素而产生误差。霍尔转速传感器的测量频率范围宽,

传感器测速实验报告(第一组)

传感器测速实验报告 院系: 班级: 、 小组: 组员: 日期:2013年4月20日

实验二十霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平 三、需用器件与单元 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。 四、实验步骤 1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。 图 9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。 3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。 4、将转速调解中的转速电源引到转动源的电源插孔。 5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。 6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。

五、实验结果分析与处理 1、记录频率计输出频率数值如下表所示: 电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了十二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。

霍尔传感器位移特性实验

实验14直流激励时霍尔传感器位移特性实验 一、实验目的: 了解直流激励时霍尔式传感器的特性。 二、基本原理: 根据霍尔效应,霍尔电势U H =K H IB,当霍尔元件处在梯度磁场中运动时,它的电势 会发生变化,利用这一性质可以进行位移测量。 三、需用器件与单元: 主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。 四、实验步骤: 1、霍尔传感器和测微头的安装、使用参阅实验九。按图14示意图接线(实验模板的输出Vo1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V 档。 2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加记下一个读数,将读数填入表14。 表14 作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的是什么量的变化 答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。

七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 实验数据如下: 表9-2 (1)由上图可知灵敏度为S=ΔV/ΔX=mm (2)由上图可得非线性误差: 当x=1mm时, Y=×1+= Δm== yFS= δf=Δm/yFS×100%=% 当x=3mm时: Y=×3+= Δm=Y-()= yFS= δf=Δm/yFS×100%=% 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。答:(1)零位误差。零位误差由不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。补偿方法是加一不等位电势补偿电路。 (2)温度误差。因为半导体对温度很敏感,因而其霍尔系数、电阻率、霍尔电势的输入、输出电阻等均随温度有明显的变化,导致了霍尔元件产生温度误差。补偿方法是采用恒流源供电和输入回路并联电阻。 实验15 交流激励时霍尔传感器位移特性实验 一、实验目的: 了解交流激励时霍尔式传感器的特性。

霍尔传感器测位移课程设计

传感器课程设计说明书线性霍尔元件位移传感器 学号: 学院名称: 专业班级: 学生姓名: 教师姓名: 教师职称: 2015 年 1 月

线性霍尔元件位移传感器设计任务书 一、设计题目 线性霍尔元件位移传感器 二、设计目的 课程设计是工科各专业的主要实践性教学环节之一,是围绕一门主要基础课或专业课,运用所学课程的知识,结合实际应用设计而进行的一次综合分析设计能力的训练。《传感器技术》是测控技术与仪器专业的一门专业技能课,能够运用基本测控电路知识解决日常生活中的问题是本专业学生的基本素质。本次课程设计旨在培养学生运用所学过的理论知识,初步掌握解决实际应用问题时所应具有的查阅资料、综合运用所学知识的能力,为课程设计及今后从事专业学习工作打下坚实的基础。 三、设计内容及要求 1.掌握传感器工作原理 2.掌握信号处理电路的作用与原理 3.画出各电路处理后的信号波形 4.对位移进行测量(正负位移均三次以上) 5.算出传感器的迟滞误差、线性度 6.写出说明书。 四、设计方法和基本原理 1.问题描述 设计一个既能测量位移的大小,也能判别方向的线性霍尔元件位移传感器。 2.解决方案 ①搜集资料,确定电路原理图(包括激励信号电路、消除不等位电势补偿电路、放大电路、移相电路、相敏检波电路和低通滤波电路等信号处理电路) ②搭建实物测量系统,调试各部分电路。 ③测试得出相应的实验数据,给出相应的波形,计算出传感器的量程、线性度和灵敏度、迟滞误差。写出说明书,答辩。

目录 第一章引言 (2) 第二章霍尔传感器工作原理 (2) 2.1霍尔效应 (2) 2.2霍尔元件的主要特性 (4) 2.3霍尔传感器的应用 (4) 第三章测量系统组成 (7) 3.1霍尔元件的误差及补偿 (7) 3.1.1霍尔元件的零位误差与补偿 (7) 3.1.2霍尔元件的温度误差及补偿 (7) 3.2 直流激励的霍尔传感器电路 (8) 3.3交流激励的霍尔传感器电路 (8) 3.3.1传感器补偿放大电路 (8) 3.3.2移相电路 (9) 3.3.2相敏检波电路 (10) 3.3.4低通滤波电路 (10) 第四章电路测试与结果 (11) 4.1进行各部分电路线路元件的连接组装 (11) 4.2移相电路的测试 (12) 4.3相敏检波电路的测试 (13) 4.4低通滤波电路测试 (15) 第五章传感器测试与数据处理 (16) 5.1传感器的回程差 (16) 5.2传感器的灵敏度 (17) 5.3传感器的线性度 (18)

霍尔效应测磁场实验报告(完整资料).doc

【最新整理,下载后即可编辑】 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理: (一)霍耳效应现象 将一块半导体(或金属)薄片放在磁感应强度为B 的磁 场中,并让薄片平面与磁场方向(如Y 方向)垂直。如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。 如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即 d B I R U H H = (1) 式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有 B KI U H H = (2) 式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。如果霍

耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式 H H KI U B = (3) 算出磁感应强度B 。 图 1 霍 耳 效 应 示 意 图 图2 霍耳效应解释 (二)霍耳效应的解释 现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为 evB f B = 方向沿Z 方向。在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为 H E eE f = 方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。当B f 和E f 达到静态平衡后,有E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为 vbB U H = (4)

实验十四--直流激励时霍尔式传感器位移特性实验

实验十四直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它就可以进行位移测量。 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、±15V、测微头、数显单元、相敏检波、移相、滤波模板、双线示波器。 四、实验步骤: (一)直流激励时霍尔式传感器 1、将霍尔传感器按图5-1安装。霍尔传感器与实验模板的连接按图5-2进行。1、3为电源±4V, 2、4为输出。 图5-1 霍尔传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节R W1使数显表指示为零。

图5-2 霍尔传感器位移直流激励实验接线图 3、旋转测微头向轴向方向推进,每转动0.2mm记下一个读数,直到读数 近似不变,将读数填入表5-1。 X(mm) 9.700 9.500 9.300 9.100 8.900 8.700 8.500 8.300 8.100 7.900 V(v) 0 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 X(mm) 7.700 7.500 7.300 7.100 6.900 6.700 6.500 6.300 6.100 5.900 V(v) 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.18 0.19 X(mm) 5.700 5.500 5.300 5.100 4.900 4.700 V(v) 0.20 0.21 0.22 0.23 0.24 0.24 作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。

霍尔传感器的原理及应用

第八章霍尔传感器 课题:霍尔传感器的原理及应用课时安排:2 课次编号:12 教材分析 难点:开关型霍尔集成电路的特性 重点:霍尔传感器的应用 教学目的和要求1、了解霍尔传感器的工作原理; 2、了解霍尔集成电路的分类; 3、掌握线性型和开关型霍尔集成电路的特性; 4、掌握霍尔传感器的应用。 采用教学方法和实施步骤:讲授、课堂互动、分析教具:各种霍尔元 件、霍尔传感器 各教学环节和内容 演示1: 将小型蜂鸣器的负极接到霍尔接近开关的OC门输出 端,正极接V cc端。在没有磁铁靠近时,OC门截止,蜂鸣 器不响。 当磁铁靠近到一定距离(例如3mm)时,OC门导通, 蜂鸣器响。将磁铁逐渐远离霍尔接近开关到一定距离(例 如5mm)时,OC门再次截止,蜂鸣器停响。 演示2: 将一根导线穿过10A霍尔电流传感器的铁芯,通入0.1~1A电流,观察霍尔IC的输出电压的变化,基本与输入电流成正比。 从以上演示,引入第一节霍尔效应、霍尔元件的工作原理。 第一节霍尔元件的工作原理及特性 一、工作原理 金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势E H,这种现象称为霍尔效应(Hall Effect),该电动势称为霍尔电动势(Hall EMF),上述半导体薄片称为霍尔元件(Hall Element)。用霍尔元件做成的传感器称为霍尔传感器(Hall Transducer)。

图8-1霍尔元件示意图 a)霍尔效应原理图b)薄膜型霍尔元件结构示意图c)图形符号d)外形霍尔属于四端元件: 其中一对(即a、b端)称为激励电流端,另外一对(即c、d端)称为霍尔电动势输出端,c、d端一般应处于侧面的中点。 由实验可知,流入激励电流端的电流I越大、作用在薄片上的磁场强度B越强,霍尔电动势也就越高。霍尔电动势E H可用下式表示 E H=K H IB(8-1)式中K H——霍尔元件的灵敏度。 若磁感应强度B不垂直于霍尔元件,而是与其法线成某一角度θ时,实际上作用于霍尔元件上的有效磁感应强度是其法线方向(与薄片垂直的方向)的分量,即B cosθ,这时的霍尔电动势为 E H=K H IB cosθ(8-2) 从式(8-2)可知,霍尔电动势与输入电流I、磁感应强度B成正比,且当B的方向改变时,霍尔电动势的方向也随之改变。如果所施加的磁场为交变磁场,则霍尔电动势为同频率的交变电动势。 目前常用的霍尔元件材料是N型硅,霍尔元件的壳体可用塑料、环氧树脂等制造。 二、主要特性参数 (1)输入电阻R i恒流源作为激励源的原因:霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值从几十欧到几百欧,视不同型号的元件而定。温度升高,输入电阻变小,从而使输入电流I ab变大,最终引起霍尔电动势变大。使用恒流源可以稳定霍尔原件的激励电流。 (2)最大激励电流I m激励电流增大,霍尔元件的功耗增大,元件的温度升高,从而引起霍尔电动势的温漂增大,因此每种型号的元件均规定了相应的最大激励电流,它的数值从几毫安至十几毫安。 提问:霍尔原件的最大激励电流I m为宜。 A.0mA B.±0.1 mA C.±10mA D.100mA (4)最大磁感应强度B m磁感应强度超过B m时,霍尔电动势的非线性误差将明显增大,B m的数值一般小于零点几特斯拉。 提问:为保证测量精度,图8-3中的线性霍尔IC的磁感应强度不宜超过为宜。 A.0T B.±0.10T C.±0.15T D.±100Gs

霍尔传感器工作原理及其应用

霍尔传感器工作原理及其应用 | [<<][>>]一、霍尔齿轮传感器 差动霍尔电路制成的霍尔齿轮传感器,如图1所示,新一代的霍尔齿轮转速传感器,广泛用于新一代的汽车智能发动机,作为点火定时用的速度传感器,用于ABS(汽车防抱死制动系统)作为车速传感器等。 在ABS中,速度传感器是十分重要的部件。ABS的工作原理示意图如图2所示。图中,1是车速齿轮传感器;2是压力调节器;3是控制器。在制动过程中,控制器3不断接收来自车速齿轮传感器1和车轮转速相对应的脉冲信号并进行处理,得到车辆的滑移率和减速信号,按其控制逻辑及时准确地向制动压力调节器2发出指令,调节器及时准确地作出响应,使制动气室执行充气、保持或放气指令,调节制动器的制动压力,以防止车轮抱死,达到抗侧滑、甩尾,提高制动安全及制动过程中的可驾驭性。在这个系统中,霍尔传感器作为车轮转速传感器,是制动过程中的实时速度采集器,是ABS中的关键部件之一。 在汽车的新一代智能发动机中,用霍尔齿轮传感器来检测曲轴位置和活塞在汽缸中的运动速度,以提供更准确的点火时间,其作用是别的速度传感器难以代替的,它具有如下许多新的优点。 (1)相位精度高,可满足0.4°曲轴角的要求,不需采用相位补偿。 (2)可满足0.05度曲轴角的熄火检测要求。 (3)输出为矩形波,幅度与车辆转速无关。在电子控制单元中作进一步的传感器信号调整时,会降低成本。 用齿轮传感器,除可检测转速外,还可测出角度、角速度、流量、流速、旋转方向等等。

图1霍尔速度传感器的内部结构 1.车轮速度传感器 2.压力调节器 3.电子控制器 图2 ABS气制动系统的工作原理示意图 二、旋转传感器 按图3所示的各种方法设置磁体,将它们和霍尔开关电路组合起来可以构成各种旋转传感器。霍尔电路通电后,磁体每经过霍尔电路一次,便输出一个电压脉冲。

相关主题
文本预览
相关文档 最新文档