当前位置:文档之家› 小直流电机的调速

小直流电机的调速

小直流电机的调速
小直流电机的调速

微机原理及应用课程设计说明书设计题目:微型直流电机调速系统设计学院自动化与信息工程学院

专业电气工程及其自动化

班级电气111

姓名王雨露

学号3110421004

指导教师李好文

同组同学刘万成张晓彤葛杨

王洋洋孙伏洋乔九平

2013 年秋季学期

起止时间:2013 年12月21日至2013年12月30日

一、系统功能要求分析 (1)

二、方案设计及其说明 (2)

三、原理线路设计 (3)

1.原理线路

2.工作原理说明

3.操作时序分析

4.特点说明

四、程序设计 (4)

1.程序结构及流程

2.程序算法分析

3.关键程序段说明

4.源程序清单

五、系统调试及结论 (5)

1.调试方法

2.重点问题及解决方法

3.运行结果及结论

六、设计体会 (6)

参考文献 (7)

一、系统功能要求分析

此设计要求利用实验装置,设计一个直流电机控制系统的原理线路,编制应用程序,实现直流电机转速控制的功能,并且进一步可增加转速测量的功能。系统功能具体要求及分析如下:

(1)开始运行,电机停止:未按任何键之前,设定初值,使经DA0832转换后的电流为零,电机不转。

(2)按档调速功能:直流电机可有三个转速,分为一、二、三档,其中按下按键“一”电机在低速档运行;按下按键“二”电机在中速档运行;按下按键“三”电机在高速档运行。

(3)连续调速功能:按下“加速”键,编程控制DA0832输入数字量累加,直流电机可在原速基础上升速;按下“减速”键,编程控制DA0832输入数字量自减,直流电机可相对原速减速。

(4)停止功能:设有停止键,控制电机的停止运行。调节电位器改变DA0832的基准电压,使得初值00H对应的输出电流为0,从而电机停止运行。(5)改变转向功能:原理上,调节DAC0832的基准电压,使得某一中间值对应转速为零,则在输入数字量大于此值时为正电压,电机正转;再输入数字量小于此值时为负电压,电极反转。

(6)测速功能:在一定时间内对霍尔元件产生的脉冲数计数,从而求得电机转速,并在数码管显示。

二、方案设计及其说明

(一)硬件设计

在硬件上,所用到的芯片主要有:CPU8086、并行通信接口芯片8255A、可编程定时计数芯片8253、可编程中断控制器8259A、以及键盘扫描显示芯片8279。

(1)电机转速的控制:电机转速大小的控制可以通过改变加于电机两端的电压来实现,选用DAC0832芯片实现数字量到模拟量的转化,设置电机转速给定值,不同的数字量对应输出不同的电流,再通过一个高输入阻抗的线性

(2)按键状态的检测及显示:设K1、K2、K3为一、二、三档,K4为停止键,K5、K6为加速和减速键。选用8255芯片PA口读取按键状态从而控制电机在不同档运行以及电机加速或减速,并且可以通过8255 的PB口输出控制相应按键指示灯的亮灭以及利用8279芯片得到数码管相应的显示,如:在一档,其灯亮,且显示“1”。

(3)转速的测量及显示:利用霍尔传感器产生转速脉冲,用8253芯片设计定时/计数电路通过脉冲计数测得转速。可用8253的CT0记脉冲数,CT1定时到利用8259产生中断,显示计数。经分析,实验时电机旋转一圈可产生4个脉冲,则可以定时0.25S产生中断,利用8279对计数进行显示,即为转速。

(二)软件设计

设计中用到的有8253、8255,8259的初始化程序,各开关状态检测及电机速度控制子程序,以及调用库函数DISPLAY8显示程序,中断服务程序,延时子程序等。

三、原理线路设计

3.1原理框图:

3.2工作原理说明

1、数模转换模块:利用DAC0832芯片,其工作原理如下:

DAC0832是采样频率为八位的D/A转换芯片,集成电路内有两级输入寄存器,使DAC0832芯片具备双缓冲、单缓冲和直通三种输入方式。其由倒T型R-2R 电阻网络、模拟开关、运算放大器和参考电压VREF四大部分组成。运算放大器输出的模拟量与输入的数字量成正比,从而实现D\A转换。

DAC0832输出的是电流,本设计中需用输出电压控制电机转速,所以还必须经过一个外接的运算放大器转换成电压。

DAC0832外部线路如图所示。

2、按键控制模块:利用并行接口通信8255芯片,其有三个8位的并行I/O 端口为PA、PB、PC ,一个控制端口,运用可编程功能对控制端口写入不同的控制字可定义PA、PB、PC的工作方式或者直接对C口进行操作。

8255有两个控制字如图:

图2.1 C口置位/复位控制字图2.2 工作方式控制字

在此设计中,用PA、和PB工作在基本输入输出方式,PA输入开关状态,PB作为输出口控制8个LED的亮灭。8255接线原理如图2.3

图2.3

3、测速模块:利用8253和8259芯片。

8253有3个完全独立的16位定时计数器:CT0、CT1、CT2,均为减法计数器,可预置计数初值,有6种可选择的工作方式,写入相应控制字,以实现计数、定时、分频等功能。

8253接线原理如图3.1.

图3.1

在此设计中,选用计数器0工作在方式二作为计数器,对霍尔元件产生的转速脉冲进行计数;用计数器1工作在方式二作为定时器,定时0.25S,可循环定时,每次定时到会产生负脉冲,利用其上升沿作为8259的中断信号,在中断服务中对所计数进行显示。

方式二为计数分频方式,工作方式如图3.2。

4、显示模块:利用可编程键盘/显示接口8279,8279可为64键的接触式按键阵列提供扫描接口,显示部分能为发光二极管、数码管、液晶显示器等提供扫描显示接口。由于它本身可提供扫描信号,因而可代替微处理器完成键盘和显示器的控制,单个芯片就能完成键盘输入和LED显示控制两种功能。

在此设计中,通过调用8279显示函数在晶体管上显示开关状态和电机运行

3.3操作时序分析

(1)开始运行时,电机停止,未按键前,状态灯全灭,状态显示00,转速显示00。

(2)按下K1键LED1亮,状态显示01,表示为一档,电机以低速运行,晶体管高两位显示相应速度。

(3)按下K2键LED2亮,状态显示02,表示为二档,电机以中速运行,晶体管高两位显示相应速度。

(4)按下K3键LED3亮,状态显示03,表示为三档,电机以高速运行,晶体管高两位显示相应速度。

(5)按下K4键LED4亮,状态显示04,为停止档,电机停止运行,晶体管高两位显示00。

(6)按下K5键LED5亮,状态显示AA,为连续加速档,电机在原速上逐渐加速,直至最高速度后以最高速度运行,速度显示增加至显示最高速。

(7)按下K6键LED6亮,状态显示DD,为连续减速档,电机在原速上逐渐减速,直至停止,速度显示逐减至显示00。

3.4特点说明

(1)在调速方面既可以直接的选择低、中、高某一档位让电机运行,要想更精准的调速,可使用连续加减速按键加或减至自己想要的速度让电机以此速度运行。可见,此系统的调速是灵活的。

(2)本设计有速度显示功能,将此刻的电机转速成为可观量,切实的掌握电机转速,从而按主覌要求要求进行调速。

(3)在测速时,采用定时到产生中断进行计数显示的方法,时延比较小,较为精确。

四、程序设计

4.1程序结构及流程

中断服务程序流程:电机加速程序流程:

4.2 程序算法分析

在主程序中有8253、8255、8259的初始化以及开关状态检测程序,检测到某开关闭合转入相应的档位子程序或连续加减速子程序并进行速度的输出,控制电机的调速。为实现测速,加入了中断服务程序,0.25S产生一次中断,即0.25S 采一次值,进入中断服务程序,锁存计数值并计算得所记脉冲数进行显示,即为电机的转速。

4.3关键程序段说明

1、显示程序段

LedDisplay PROC NEAR ;输出显示速度,状态

CALL DELAY

MOV AL,COUNTER2

MOV AH,AL

AND AL,0FH ;取低四位

MOV Buffer,AL ;显示速度低位

AND AH,0F0H ;取高四位

ROR AH,4

MOV Buffer + 1,AH ; ;显示速度高位

MOV Buffer + 2,10H ;中间4位不需要显示

MOV Buffer + 3,10H

MOV Buffer + 4,10H

MOV Buffer + 5,10H

MOV AL,COUNTER1

MOV AH,AL

AND AL,0FH

MOV Buffer+6,AL ;显示状态低位

AND AH,0F0H

ROR AH,4

MOV Buffer + 7,AH ;显示状态高位

LEA SI,Buffer

CALL DELAY

CALL Display8 ;调用现实函数

RET

LedDisplay ENDP

2、中断服务程序段

INT_0 PROC NEAR

CLI ;关中断

PUSH DX ;寄存器入栈保护

PUSH AX

MOV DX,TCL ;写8253控制字

MOV AL,00000000B

OUT DX,AL

XOR BX,BX ;BX清零

MOV DX,T0 ;读T0的低字节,存放BL

IN AL,DX

MOV BL,AL

IN AL,DX ;读T0的高字节,存放BH

MOV BH,AL

MOV AX,Counter3 ;取T0上次中断时的CE

SUB AX,BX ;计算脉冲数存放AX

MOV Counter3,BX ;中断后的CE存放Counter3数组

MOV COUNTER1,AL ;脉冲数输出显示

MOV DX,IO8259_0 ;8259的IR0中断

MOV AL,20H

OUT DX,AL

POP AX ;寄存器出栈

POP DX

STI ;开中断

IRET ;中断返回

I NT_0 ENDP

4.4源程序清单(见附录)

五、系统调试及结论

5.1调试方法

先在星研软件下编好程序进行编译链接,若无语法错误,则与硬件连接,全速

(1)加跳转指令进行调试:若程序中出现逻辑错误,可在某一句的后边加跳转指令,跳过下一段指令,以检测前面的程序是否有问题。这样可以缩小查找问题的范围,以发现问题之所在。

(2)单步进入进行调试:星研软件中可进行单步调试,这样可以掌握指令的执行顺序及跳转的位置,并可观察每一步运行后寄存器内值的变化,从而发现一些问题。

5.2重点问题及解决方法

问题一:状态灯显示混乱,开关与LED没有对应显示。

解决:通过对实验箱上的LED进行电平测试,发现所采用的8个LED灯是在接低电平的情况下亮的,由此,应对8255的A口输入量取反后再由B口输出控制灯的亮灭,这样开关状态刚好与状态灯的亮灭对应,解决了此问题。问题二:测速时,速度显示为不变值或一直显示00。

解决:经请教老师,发现是设计思路有误。开始时,我们是用8255检测按键状态,通过对PC口的置位和复位控制计数器8253的门控信号,以此控制计数的停止来产生中断再显示计数。老师讲每个芯片的工作都是有时延的,这样连接下来,时延就比较大了,不能准确的测速,甚至不能正常的显示。分析后我们直接用定时计数器1的OUT1作为8259的中断信号,利用其计数定时到的上升沿产生中断,对计数进行显示。

问题三:测速时,电机以恒速运行,速度显示却不停变化。

解决:8253计数器为减1计数,则初值减现值得计数值。对程序进行调试分析,0.25S采一次数,发现在下一次计数时计数初值并没有重新装入,起初认为是8253计数器0工作方式的问题,但改变其工作方式并未解决问题,最后修改程序,用上次计完数的值减此次计数后的值得计数值进行显示,成为一个累减的过程。这样修改后显示正确,但是减为零时的计数值需避过,否则会有错误。

问题四:程序在单步运行时结果正确,全速运行时结果混乱。

解决:原理上单步运行和全速运行所得结果是一样的,其差别主要在于单步时指令执行间时差更大,经分析,DAC0832的D/A转换是需要一定时间的,所以输出时必须要加延时程序,给它足够的转换时间。

问题五:直流电机转速不受控制。

解决:查资料知DAC0832输出的是电流,要输出电压,必须经过一个运算放大器转换。

5.3运行结果及结论

运行结果:开始运行时,电机停止,状态灯全灭,速度显示为零,按下按键后,相应状态灯亮并显示相应的电机速度,按停止键后,电机停止运行。

结论:运行结果与预期要求相符,利用实验装置完成小直流电机调速系统的原理线路设计,编制应用程序,实现了直流电机的转速控制和速度显示等一系列功能,达到了设计要求并且进行了功能的扩展。

六、设计体会

通过本次微机原理课程设计,我深刻体会到了微机原理课程的实用性及重要性。让我知道学习并不是停留于课本和知识表面的,真正的学习是理论与时间的糅合,是将抽象化的知识变为切实可用的事物。在设计的过程中,也是对自身的一种考验,考验知识的娴熟度,动手的能力,创新的思维,细心和耐心等,当然这也是一个发现不足的过程,知不足而后进,其中收益是很大的。

在设计的过程中,我们遇到了各种各样的问题,有失落过,却也有解决后的欣喜。在摸索中,我进一步认识和掌握了各个芯片的功能及用法,练习了编程及调试,提高了独立思考的能力和解决问题的思维。总之,在这几天中,自己的探索,老师的指导及与同学的讨论让我获益匪浅。

由于本次设计时间比较短,我们完成的设计达到了预期要求,但并不是尽善尽美的,还有很多进步的空间。所以我会继续努力的,饱含信心和热情的去学习。

参考文献

[1] 微机接口实验系统使用手册

[2] 微机接口实验系统实验指导书

[3] 微机原理及应用课程设计指导书

[4] 微机原理及接口技术项目教程

[5] 微型计算机原理及应用

附录:源程序代码

.MODEL TINY

EXTRN Display8:NEAR

IO8259_0 EQU 0D000H

IO8259_1 EQU 0D001H

DAC0832 EQU 0F000H

PA EQU 0E000H

PB EQU 0E001H

PC EQU 0E002H

PTL EQU 0E003H

T0 EQU 0C000H

T1 EQU 0C001H

T2 EQU 0C002H

TCL EQU 0C003H

.STACK 100

.DATA

BUFFER DB 8 DUP(?)

Counter1 D B ? ;定义速度数组

Counter2 D B ? ;定义电机状态数组Counter3 D W ?

ReDisplayFlag DB 0 ;中断标志

.CODE

START: MOV AX,@DATA

MOV DS,AX

MOV ES,AX

NOP ;

MOV DX,PTL ;8255初始化

MOV AL,10010000B

OUT DX,AL

MOV DX,DAC0832 ;初速度为0

MOV AL,00H

OUT DX,AL

MOV DX,TCL

MOV AL,00110010B;计数器T0,工作方式1,初值0FFFFH

OUT DX,AL

MOV AL,01110100B;定时器T1,工作方式2,实现0.25秒定时 OUT DX,AL

MOV DX,T1 ;定时器T1装初值

MOV AX,31250

OUT DX,AL

MOV AL,AH

OUT DX,AL

MOV DX,T0 ;计数器T0装初值

MOV AX,200

OUT DX,AL

MOV AL,AH

OUT DX,AL

AGAIN:

STI ;开中断

NOP

MOV CX,0FFFFH

LOOP $

MOV DX,PA ;读开关状态

IN AL,DX

TEST AL,00000001B

JE NEXT1

CALL ONE

JMP AGAIN

NEXT1:

JE NEXT2

CALL TWO

JMP AGAIN

NEXT2:

TEST AL,00000100B JE NEXT3

CALL THREE

JMP AGAIN

NEXT3:

TEST AL,00001000B JE AA

CALL TINGZHI JMP AGAIN

AA:

TEST AL,00010000B JE CC

CALL JIASU

JMP AGAIN

CC:

TEST AL,00100000B JE WU

CALL JIANSU

JMP AGAIN

WU:

NOT AL

MOV DX,PB

OUT DX,AL

MOV Counter2,00H ;CALL LedDisplay

CALL DELAY

NOP

NOP

CALL LedDisplay

SHUCHU0:CALL SHUCHU

JMP AGAIN

JIANSU PROC NEAR ;减速函数NOT AL

MOV DX,PB

OUT DX,AL

POP BX

POP CX

POP AX

CMP AL,00H

JBE SHUCHU0

SUB AL,05H

PUSH AX

PUSH CX

PUSH BX

MOV DX,DAC0832

OUT DX,AL

MOV Counter2,0AAH

CALL LedDisplay

RET

JIANSU ENDP

JIASU PROC NEAR ;加速函数NOT AL

MOV DX,PB

OUT DX,AL

POP BX

POP CX

POP AX

CMP AL,0FFH

JAE SHUCHU0

ADD AL,05H

PUSH AX

PUSH CX

PUSH BX

MOV DX,DAC0832

OUT DX,AL

MOV Counter2,0DDH

CALL LedDisplay

JIASU ENDP

ONE PROC NEAR ;1档运行函数MOV DX,PB

NOT AL

OUT DX,AL

MOV AL,70H

CALL SHUCHU

MOV Counter2,01H

CALL LedDisplay

RET

ONE ENDP

TWO PROC NEAR ;2档运行函数MOV DX,PB

NOT AL

OUT DX,AL

MOV AL,0A0H

CALL SHUCHU

MOV Counter2,02H

CALL LedDisplay

RET

TWO ENDP

THREE PROC NEAR ;3档运行函数MOV DX,PB

NOT AL

OUT DX,AL

MOV AL,0F0H

CALL SHUCHU

MOV Counter2,03H

CALL LedDisplay

RET

THREE ENDP

TINGZHI PROC NEAR ;停止档位函数MOV DX,PB

NOT AL

OUT DX,AL

MOV AL,0H

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

实验一 直流电机调速系统的数学模型

实验一直流电机调速系统的数学模型 一、实验目的 1.通过实验掌握直流电机PWM开环调速控制方法。 2.掌握PWM功率放大H桥芯片LMD18200T的应用方法。 3.掌握开关电源PWM控制芯片SG3525A在直流调速系统中的应用。 4.掌握直流调速系统的数字模型的建立方法。 二、实验线路 实验线路如图1所示,所发的元件按图1所示焊接好,检查核对无误后,接上30V电源,在U4的2脚处断开与运放U3的连接,U4的2脚接一10K的电位器,称为PR1(图1中没画),电位器电源电压为5V,电位器的滑动端接U4的2脚,即Uc接电位器PR1的中点,调节该电位器PR1即可改变Uc的大小,实现直流电机的开环速度控制。 图1 实验电路 三、实验内容 1 PWM环节数学模型测定调节PR使SG3525A的13脚输出的PWM波形占空比为50%,测量SG3525A 2脚的输入电压及PWM环节的输出电压,填入表1。改变PR,按不同的占空比测量2脚的电压和PWM环节输出电压,填入表1。

表1 PWM 环节数学模型测试表 空比比 10% 20% 30% 40% 50% 60% 70% 80% 90% Vc(2pin) V 2电机参数的测量 1) 电势常数C E Φ的测定 用另一台电动机牵引被测电机运在额定转速, 测出电机的电势Ea ,则 电势常数:C E Φ=N a n E 。 (1) 2)电机转矩常数C m Φ 转矩常数可由C E Φ求出:Φ= ΦE m C C π30。 (2) 3)飞轮矩GD 2的测定 已知电机的运动方程为: dt dn GD T T l e 3752=- (3) 电机接可调稳压电源,测速发电机接数字示波器的Y 轴输入,调节稳压电源电压使电机运行在额定转速附近,测量此时的空载电流I O 。断开电源使电机自由行使,测出电机的下降时间t ?(若为指数下降曲线,则按其初始斜率求下降时间t ?),则电机的飞轮矩可由下式求出: GD 2 =t n I C o m ??Φ375 (4) 4)电枢电阻的测定 电机电枢接可调稳压电源,卡住电机轴不让转动,调节稳压电源使电机电流为额定电流,测出一组V 1,I 1 。电机轴转动一定位置,重复测量得另一组数据,V 2,I 2 。 测出4、5组数据。则电枢电阻a R 为: a R =n Rn R R ++21 (5) 5)电源内阻的测定 在H 桥输出端接电压表,电流表和可调负载电阻, 调节控制电压U C 使PWM 电路输出为额定电压的2 1,调节负载电阻使电流为额定电流I N ,保持控制电压不变,调节负载电阻,使负载约为额定电流的0.8倍,测 出电流I 1,测出电压为V 2,则按下式可算出电源的等效内阻: R pwm =2 112I I V V -- (6) 6)电枢电感的测定 自耦变压器输出与电机联接在如图所示。交流电流应大于额定值,测得电压,电流分别为U 和I ,则电枢电感a L 为:

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验 魏小景张晓娇刘姣 (自动化0602班) 摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。 关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真 1.引言 双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。 2.基本原理和系统建模 为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、 图1 直流电机双闭环调速系统的动态结构图

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机原理及应用课程设计报告设计题目: 学院: 专业: 班级: 学号: 学生姓名: 指导教师: 年月日 目录

设计题目:PWM直流电机调速系统 本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路以及独立按键组成的电子产品。电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。 关键词:直流电机调速;定时中断;电动机;波形;LED显示器;51单片机 1 设计要求及主要技术指标: 基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM调速控制装置。 设计要求 (1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。 (2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。 (3)设计一个4个按键的键盘。 K1:“启动/停止”。 K2:“正转/反转”。 K3:“加速”。 K4:“减速”。 (4)手动控制。在键盘上设置两个按键----直流电动机加速和直流电动机减速键。在

手动状态下,每按一次键,电动机的转速按照约定的速率改变。 (5)*测量并在LED显示器上显示电动机转速(rpm). (6)实现数字PID调速功能。 主要技术指标 (1)参考L298说明书,在系统中扩展直流电动机控制驱动电路。 (2)使用定时器产生可控PWM波,定时时间建议为250us。 (3)编写键盘控制程序,实现转向控制,并通过调整PWM波占空比,实现调速; (4)参考Protuse仿真效果图:图(1) 图(1) 2 设计过程 本文设计的直流PWM调速系统采用的是调压调速。系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构。PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。由定时器来产生宽度可调的矩形波。通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。 本设计以控制驱动电路L298为核心,L298是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。可驱动2个电机,OUTl、OUT2和OUT3、OUT4之间分别接2个电动机。5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。 本设计以AT89C52单片机为核心,如下图(2),AT89C52是一个低电压,高性能 8位,片内含8k bytes的可反复擦写的只读程序存储器和256 bytes的随机存取数据存储器(),器件采用的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。 图(2) 对直流电机转速的控制即可采用开环控制,也可采用闭环控制。与开环控制相比,速度控制闭环系统的机械特性有以下优越性:闭环系统的机械特性与开环系统机械特性相比,其性能大大提高;理想空载转速相同时,闭环系统的静差(额定负载时电机转速降落与理想空载转速之比)要小得多;当要求的静差率相同时, 闭环调速系统的调速范

#直流电机调速系统分析与设计

第一部分并励直流电动机的工作原理 并励直流电机的励磁绕组和电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组和电枢共用同一电源,从性能上讲和他励直流电动机相同。 导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 当电枢转了180°后,导体 cd转到 N极下,导体ab转到S极下时,由于直流电源供给的电流方向不变,仍从电刷 A流入,经导体cd 、ab 后,从电刷B流出。这时导体cd 受力方向变为从右向左,导体ab 受力方向是从左向右,产生的电磁转矩的方向仍为逆时针方向。 因此,电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由导体 ab和cd 流入,使线圈边只要处于N 极下,其中通过电流的方向总是由电刷A 流入的方向,而在S 极下时,总是从电刷 B流出的方向。这就保证了每个极下线圈边中的电流始终是一个方向,从而形成一种方向不变的转矩,使电动机能连续地旋转。这就是直流电动机的工作原理。 转速电流双闭环原理 转速、电流双闭环直流调速系统的组成,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。 从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。 这就形成了转速、电流双闭环调速系统。 限幅的作用: 转速调节器ASR的输出限幅电压U*im --电流给定电压的最大值,即限制了最大电流; τ电流调节器ACR的输出限幅电压Ucm --Uc的最大值,即限制了电力电子变换器的最大输出电压Udm。 第二部分 PID算法的基本原理 PID调节器各校正环节的作用 1、比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节 器立即产生控制作用以减小偏差。 2、积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分 时间常数TI,TI越大,积分作用越弱,反之则越强。 3、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太 大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减 小调节时间。 下面对控制点所采用的PID控制算法进行说明。

实验十 直流电机调速实验

实验十直流电机调速实验 一、实验目的: 了解直流电机调速的原理与方法。 二、实验原理: (一)直流电机调速的方法有: 1.调节电枢供电电压U 改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 2.改变电动机主磁通 改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 3.电枢回路串电阻调速 电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 (二)ETD 790 791系列装置是三相全数字式直流调速器,其工作电压最高可达500 Vac,工作电流可达4000A,频率范围为45-62赫兹,可用来控制电机的转速和转矩。 通过采用不同的外形尺寸,装置的电流最大可达到9000A。 调速器可分为两种类型:不可逆(791)和可逆(790)。 不可逆调速器仅用来控制一个方向的转速和转矩,而可逆调速器则可用来控制两个方向的速度和转矩。 当使用可逆调速器时,通过使用全控的反并联的可控硅模块,使电机电枢实现了真正四象限控制。在制动期间,电机的能量可迅速反馈回电网。 调速器内部标配一个可调的励磁模块,用来调整电机励磁电流或者弱磁控制。 通过ETD 10.07.0 调控板上的一个32位的微处理器实现对调速器进行控制。调控板同时可用于不可逆和可逆调速器。 微处理器的功能包括:主调节功能、与外部设备的接口功能、诊断功能。这些功能可概

直流电机地PWM电流速度双闭环调速系统课程设计

电力拖动课程设计 题目:直流电机的PWM电流速度双闭环调速系统 姓名:强 学号:U201311856 班级:电气1303 指导老师:徐伟 课程评分:

日期:2016-07-10 目录 一、设计目标与技术参数 二、设计基本原理 (一)调速系统的总体设计 (二)桥式可逆PWM变换器的工作原理(三)双闭环调速系统的静特性分析(四)双闭环调速系统的稳态框图 (五)双闭环调速系统的硬件电路 (六)泵升电压限制 (七)主电路参数计算和元件选择 (八)调节器参数计算

三、仿真 (一)仿真原理(含建模及参数) (二)重要仿真结果(目的为验证设计参数的正确性) 四、结论 参考文献 附录1:调速系统总图 附录2:调速系统仿真图 一、设计目标与技术参数 直流电机的PWM电流速度双闭环调速系统的设计目标如下: 额定电压:U N=220V;额定电流:I N=136A;额定转速:n N:=1460r/min; 电枢回路总电阻:R=0.45Ω;电磁时间常数:T l=0.076s;机电时间常数:T m=0.161s; 电动势系数:C e=0.132V*min/r;转速过滤时间常数:T on=0.01s;转速反馈系数α=0.01 V*min/r; 允许电流过载倍数:λ=1.5;电流反馈系数:β=0.07V/A;

电流超调量:σi≤5%;转速超调量:σi≤10%;运算放大器:R0=4KΩ; 晶体管PWM功率放大器:工作频率:2KHz;工作方式:H型双极性。 PWM变换器的放大系数:K S=20。 二、设计基本原理 (一)调速系统的总体设计 在电力拖动控制系统的理论课学习中已经知道,采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环调速系统就难以满足需要。这主要是因为在单闭环调速系统中不能随心所欲的控制电流和转矩的动态过程。如图2-1所示。 图2-1 直流调速系统启动过程的电流和转速波形 用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。在启动过程的主要阶段,只有电流负反馈,没有转速负反馈,不让电流负反馈发挥主要作用,既能控制转速,实现转速无静差调节,又能控制电流使系统在充分利用电机过载能力的条件下获得最佳过渡过程,很好的满足了生产需求。 直流双闭环调速系统的结构图如图2-2所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM装置。其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。 直流PWM控制系统是直流脉宽调制式调速控制系统的简称,与晶闸管直流调速系统的区

直流电动机调速系统设计综述

概述 (2) 1 设计任务与分析 (3) 1.1 任务要求 (3) 1.2 任务分析 (3) 2方案选择及论证 (4) 2.1 三相可控整流电路的选择 (4) 2.2 触发电路的选择 (4) 2.3 电力电子器件的缓冲电路 (5) 2.4 电力电子器件的保护电路 (5) 3主电路设计 (7) 3.1 整流变压器计算 (7) 3.1.1 U2的计算 (7) 3.1.2一次侧和二次侧相电流I1和I2的计算 (8) 3.1.3变压器的容量计算 (8) 3.2 晶闸管元件的参数计算 (9) 3.2.1晶闸管的额定电压 (9) 3.2.2晶闸管的额定电流 (9) 3.3 电力电子电路保护环节 (10) 3.3.1交流侧过电压保护 (10) 3.3.2直流侧过电压保护 (11) 3.3.3晶闸管两端的过电压保护 (11) 3.3.4过电流保护 (11) 4触发电路设计 (11) 4.1 触发电路主电路设计 (11) 4.2 触发电路的直流电源 (13) 5电气原理图 (14) 小结与体会 (15) 参考文献 (16) 附录 (16)

直流电动机具有良好的起动和制动性能,广泛应用于机械、纺织、冶金、化工、轻工等工业系统。随着电力电子技术的发展,晶闸管在直流电动机的调速系统中得到广泛应用。晶闸管直流电动机调速系统,可实现电动机的无级调速,具有调节范围宽,控制精度高,使用寿命长、成本低等优点。正确掌握晶闸管直流电动机调速系统的设计方法,对系统的可靠运行及应用有重大意义。 本设计以晶闸管直流电动机调速装置为主,介绍了系统的各个部件的组成及主要器件的参数计算。调速装置以可控整流电路作为直流电源,把交流电变换成大小可调的单一方向直流电。通过改变触发电路所提供的触发脉冲送出的早晚来改变直流电压的平均值。 关键词:可控整流晶闸管触发电路保护电路

基于单片机的直流电机调速系统的课程设计

一、总体设计概述 本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩 阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。 二、直流电机调速原理 根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。但是对于直流电动机的转速,总满足下式: 式中U——电压; Ra——励磁绕组本身的内阻; ——每极磁通(wb ); Ce——电势常数; Ct——转矩常数。 由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。 电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。随着电力电子的发展,出现了许多新的电枢电压控制法。如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电. 压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。如 果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。平均转 速Vd与占空比的函数曲线近似为直线。 三、系统硬件设计

直流电机调速方案及优缺点教学文案

直流电机调速方案及优缺点 1、电枢回路串联电阻调速 可在电源电压不变的情况下,改变电枢回路中的电阻,达到调速的目的。调速的机械特性如下图所示。当电枢回路中串联的电阻越大,直线的倾斜率越小。 电枢回路串联电阻调速优缺点 1、 由于电阻智能分段调节,因此调速的平滑性比较差。 2、 低速时,调速电阻上有较大电流,损耗大,电机效率低。 3、 轻载时调速范围比较小。 4、 串入电阻阻值越大,机械特性越软,稳定越差。 2、降低电源电压调速 根据直流电动机机械特性方程式可以知道,改变电额定电压,因此电枢电压只能在额定电压一下进行调节。 N T Tn n T

降低电源电压调速的优点 1、电压便于平滑性调节,调速平滑性好,可实现无级调速。 2、调速前后机械斜率不变,机械特性硬度高,稳定性好,调速范围广。 3、调速是损耗小,调速经济性好。 4、改变励磁磁通道调速 根据机械特性方程可以知道,当u为恒定时,调节励磁磁通,也可以实现电动机转速的目的。额定运行的电动机,其磁通已基本饱和,因此改变磁通只能从额定值往下掉。 Tn T 改变励磁磁通道调速的优点 1、调节平滑,可实现无级调速。 2、励磁电流小,能量损耗小,调节前后电动机的效率不变,经济性好。 3、机械特性较硬,转速稳定。 4、本次我们用的是pwm即脉冲宽度调节。 它主要是通过改变输出方波的占空比,使得负载上的平均接通时间从0-100%变化,以达到调整负载速度的目的。脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。图2-3a所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。因此,从图2-3中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。

单片机PWM控制直流电机的速度

用单片机控制直流电机的速度 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 直流电机的调速方案一般有下列3种方式: ?1、改变电枢电压; ?2、改变激磁绕组电压; ?3、改变电枢回路电阻。 使用单片机来控制直流电机的变速,一般采用调节电枢电压的方式,通过单片机控制PWM1,PWM2,产生可变的脉冲,这样电机上的电压也为宽度可变的脉冲电压。根据公式 U=aVCC 其中:U为电枢电压;a为脉冲的占空比(0

电动机的电枢电压受单片机输出脉冲控制,实现了利用脉冲宽度调制技术(PWM)进行直流电机的变速。 因为在H桥电路中,只有PWM1与PWM2电平互为相反时电机才能驱动,也就是PWM1与PWM2同为高电平或同为低电平时,都不能工作,所以上图中的实际脉冲宽度为B, 我们把PWM波的周期定为1ms,占空比分100级可调(每级级差为10%),这样定时器T0每0.01ms产生一次定时中断,每100次后进入下一个PWM波的周期。上图中,占空比是60%,即输出脉冲的为0.6ms,断开脉冲为0.4ms,这样电枢电压为5*60%=3V。 我们讨论的是可以正转反转的,如果只按一个方向转,我们就只要把PWM1置为高电平或低电平,只改变另一个PWM2电平的脉冲变化即可,,如下图(Q4导通,Q3闭合,电机只能顺时针调整转动速度)

基于STC52单片机的直流电机PWM调速系统

实训报告 实训名称直流电机调速试验系别电子与电气工程学院专业、班级09测控C1 学生姓名、学号刘凡094821257 学生姓名、学号沈阳094821345 学生姓名、学号覃新造094820364 指导教师陈进 实训地点16号楼212室 实训日期2012 年5月20日

基于STC52单片机的直流电机PWM调速系统 摘要 本文介绍一种基于STC52单片机控制的PWM直流电机脉宽调速系统。系统以廉价的STC52单片机为控制核心,以直流电机为控制对象。从系统的角度出发,对电路进行总体方案论证设计,确定电路各个的功能模块之间的功能衔接和接口设置,详细分析了各个模块的方案论证和参数设置。整个系统利用52单片机的定时器产生1K左右的PWM脉冲,通过快速光耦6N137实现控制单元与驱动单元的强弱电隔离,采用4个9013和2个9012构成的H桥电路实现对直流电机的调速,用光电编码盘完成测速功能。 关键字STC52,PWM,光耦隔离,光电编码盘

1前言 1.1数字直流调速的意义 现在电气传动的主要方向之一是电机调速系统采用微处理器实现数字化控制。从上世纪80年代中后期起,世界各大电气公司如ABB、通用、西屋、西门子等都在竞相开发数字式调速传动装置,经过二十几年的发展,当前直流调速已发展到一个很高的技术水平:功率元件采用可控硅;控制板采用表面安装技术;控制方式采用电源换相、相位控制[1]。特别是采用了微处理器及其他先进电力电子技术,使数字式直流调速装置在精度的准确性、控制性能的优良性和抗干扰的性能有很大的提高和发展,在国内外得到广泛的应用。数字化直流调速装置作为目前最新控制水平的传动方式显示了强大优势。全数字化直流调速系统不断升级换代,为工程应用和工业生产提供了优越的条件。 采用微处理器控制,使整个调速系统的数字化程度,智能化程度有很大改观;采用微处理器控制,使调速系统在结构上简单化,可靠性提高,操作维护变得简捷,电机稳态运行时转速精度等方面达到较高水平。由于微处理器具有较佳的性价比,所以微处理器在工业过程及设备控制中得到日益广泛的应用。近年来,尽管交流调速系统发展很快,但是直流电机凭借其良好的启动、制动性能,在金属切削机床、轧钢机、海洋钻机、挖掘机、造纸机、矿井卷扬机、电镀、高层电梯等需要广泛范围内平滑调速的高性能可控电力拖动领域中仍得到了广泛的应用。 现阶段,我国还没有自主的全数字化直流调速控制装置生产商,而国外先进的控制器价格昂贵,且技术转让受限,为此研究及更好的使用国外先进的控制器,吸收国外先进的数字化直流电机调速装置的优点,具有重要的实际意义和重大的经济价值。 1.2研究现状综述 1.2.1电气传动的发展现状 20世纪70年代以来,直流电机传动经历了重大的技术、装备变革。整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进[1]。同时,高集成化、小型化、高可靠性及低成本成为控制的电路的发展方向。使直流调速系统的性能指标大幅提高,应用范围不断扩大。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代[1]。 早期直流传动的控制系统采用模拟分离器件构成,由于模拟器件有其固有的缺点,

实验一 他励直流电动机的起动与调速

上海开放大学 电气传动技术及应用 实验一他励直流电动机的起动与调速 实验报告 分校:_____ _____ 班级:__________________ 学生姓名:__________________ 学号:__________________ 实验成绩:__________________ 批阅教师:__________________ 实验日期年月日

实验一他励直流电动机的起动与调速 一、实验目的 1、学习电机实验的基本要求与安全操作注意事项。 2、认识在直流电机实验中所用的电机、仪表、变阻器等组件及使用方法。 3、熟悉他励电动机(即并励电动机按他励方式)的接线、起动、改变电机转向与调速的方法。 二、实验项目 1、了解DD01电源控制屏中的电枢电源、励磁电源、校正过的直流电机、变阻器、多量程直流电压表、电流表及直流电动机的使用方法。 2、用伏安法测直流电动机和直流发电机的电枢绕组的冷态电阻。 3、直流他励电动机的起动、调速及改变转向。 三、实验设备及控制屏上挂件排列顺序 1 2、控制屏上挂件排列顺序 D31、D42、D41、D51、D31、D44 四、实验说明及操作步骤 1、由实验指导人员介绍DDSZ-1型电机及电气技术实验装置各面板布置及使用方法,讲解电机实验的基本要求,安全操作和注意事项。 2、用伏安法测电枢的直流电阻

图1-1 测电枢绕组直流电阻接线图 (1)按图1-1接线,电阻R 用D44上1800Ω和180Ω串联共1980Ω阻值并调至最大。A 表选用D31直流、毫安、安培表,量程选用5A 档。开关S 选用D51挂箱。 (2)经检查无误后接通电枢电源,并调至220V 。调节R 使电枢电流达到0.2A (如果电流太大,可能由于剩磁的作用使电机旋转,测量无法进行;如果此时电流太小,可能由于接触电阻产生较大的误差),迅速测取电机电枢两端电压U 和电流I 。将电机分别旋转三分之一和三分之二周,同样测取U 、I 三组数据列于表1-1中。 (3)增大R 使电流分别达到0.15A 和0.1A ,用同样方法测取六组数据列于表1-1中。 取三次测量的平均值作为实际冷态电阻值 ) (3 1 321a a a a R R R R ++=

4kw以下直流电动机的不可逆调速系统课程设计要点

设计任务书 一.题目: 4kw 以下直流电动机不可逆调速系统设计 二.基本参数: 三.设计性能要求: 调速范围D=10静差率s < 10%制动迅速平稳 四.设计任务: 五.参考资料: 1. 设计合适的控制方案。 2. 画出电路原理图,最好用计算机画图(号图纸) 3. 计算各主要元件的参数,并正确选择元器件。 4. 写出设计说明书,要求字迹工整,原理叙述正确。 5. 列出元件明细表附在说明书的后面。 直流电动机:额定功率 Pn=1.1kW 额定电压 Un=110V 额定电流 In=13A 转速 Nn=1500r/min 电枢电阻 Ra=1Q 极数 2p=2 励磁电压 Uex=110V 电流 Iex=0.8A

电动机作为一种有利工具,在日常生活中得到了广泛的应用。而直流电动机具有很好的启动,制动性能,所以在一些可控电力拖动场所大部分都米用直流电动机。 而在直流电动机中,带电压截止负反馈直流调速系统应用也最为广泛, 其广泛应用于轧钢机、冶金、印刷、金属切割机床等很多领域的自动控制。 他通常采用三相全桥整流电路对电机进行供电,从而控制电动机的转速, 传统的控制系统采用模拟元件,比如:晶闸管、各种线性运算电路的等。 虽在一定程度上满足了生产要求,但是元件容易老化和在使用中易受外界干扰影响,并且线路复杂,通用性差,控制效果受到器件性能、温度等因素的影响,从而致使系统的运行特征也随着变化,所以系统的可靠性及准确性得不到保证,甚至出现事故。直流调速系统是由功率晶闸管、移相控制电路、转速电路、双闭环调速系统电路、积分电路、电流反馈电路、以及缺相和过流保护电路。通常指人为的或自动的改变电动机的转速,以满足工作机械的要求。机械特性上通过改变电动机的参数或外加电压等方法来改变电动机的机械特性,从而改变电动机的机械特性和工作特性的机械特性的交点,使电动机的稳定运转速度发生变化 由于本人和能力有限,错误或不当之处再所难免,期望批评和指正

直流电机调速方法

直流电动机分为有换向器和无换向器两大类。直流电动机调速系统最早采用恒定直流电压给直流电动机供电,通过改变电枢回路中的电阻来实现调速。这种方法简单易行、设备制造方便、价格低廉;但缺点是效率低、机械特性软,不能得到较宽和平滑的调速性能。该法只适用在一些小功率且调速范围要求不大的场合。30年代末期,发电机-电动机系统的出现才使调速性能优异的直流电动机得到广泛应用。这种控制方法可获得较宽的调速范围、较小的转速变化率和平滑的调速性能。但此方法的主要缺点是系统重量大、占地多、效率低及维修困难。近年来,随着电力电子技术的迅速发展,由晶闸管变流器供电的直流电动机调速系统已取代了发电机-电动机调速系统,它的调速性能也远远地超过了发电机-电动机调速系统。特别是大规模集成电路技术以及计算机技术的飞速发展,使直流电动机调速系统的精度、动态性能、可靠性有了更大的提高。电力电子技术中IGBT等大功率器件的发展正在取代晶闸管,出现了性能更好的直流调速系统。 直流电动机的转速n和其他参量的关系可表示为 (1) 式中 Ua——电枢供电电压(V); Ia ——电枢电流(A); Ф——励磁磁通(Wb); Ra——电枢回路总电阻(Ω); CE——电势系数,,p为电磁对数,a为电枢并联支路数,N为导体数。

由式1可以看出,式中Ua、Ra、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;;(2)改变电枢供电电压Ua;(3)改变励磁磁通Ф。 1. 改变电枢回路电阻调速 各种直流电动机都可以通过改变电枢回路电阻来调速,如图1(a)所示。此时转速特性公式为 (2) 式中Rw为电枢回路中的外接电阻(Ω)。 图1(a) 改变电枢电阻调速电路图1(b) 改变电枢电阻调速时的机械特性 当负载一定时,随着串入的外接电阻Rw的增大,电枢回路总电阻R=(Ra+Rw)增大,电动机转速就降低。其机械特性如图1(b)所示。Rw的改变可用接触器或主令开关切换来实现。 这种调速方法为有级调速,调速比一般约为2:1左右,转速变化率大,轻载下很难得到低速,效率低,故现在已极少采用。 2. 改变电枢电压调速 连续改变电枢供电电压,可以使直流电动机在很宽的范围内实现无级调速。

51单片机控制直流电机PWM调速C语言程序

#include #define uchar unsigned char #define uint unsigned int sbit KEY1 = P3^4; sbit KEY2 = P3^5; sbit KEY3 = P3^6; sbit IN1 = P1^0; sbit IN2 = P1^1; sbit ENA = P1^2; sfr ldata=0x80; sbit dula=P2^6; sbit wela=P2^7; //sbit lcden=P3^4; //uchar timer,ms,t_set = 1; uchar T_N=100; uchar T_N1=100; uchar T_H_N=50; uchar T_H_N1=50; void msplay(uchar,uchar); uchar code x1[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x27,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; //uchar code x2[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xd8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e}; uchar code x3[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf}; //uchar code x4[]={0x01,0x02,0x04,0x08,0x10,0x20}; void delay(uint z) //延时函数 { uint x; for(x=z;x>0;x--); }

直流小电动机调速系统

题目直流小电机测速系统 一.题目要求 设计题目:直流小电动机调速系统 描述:采用单片机、uln2003为主要器件,设计直流电机调速系统,实现电机速度开环可调。 具体要求:1、电机速度分30r/m、60r/m、100r/m共3档; 2、通过按选择速度; 3、检测并显示各档速度。 实验器件: 实验板、STC89C52、直流电机、晶振(12MHz)、电容(30pFⅹ2、10uFⅹ2)、)uln2003、小按键、按键(4个)、、数码管、以及 电阻等 二.组分工

摘要 在电气时代的今天,电动机在工农业生产与人们日常生活中都起着十分重要的作用。直流电机作为最常见的一种电机,具有非常优秀的线性机械特性、较宽的调速围、良好的起动性以及简单的控制电路等优点,因此在社会的各个领域中都得到了十分广泛的应用。 本文设计了直流电机测速系统的基本方案,阐述了该系统的基本结构、工作原理、运行特性及其设计方法。本系统采用PWM 测量电动机的转速,用MCS-51单片机对直流电机的转速进行控制。本设计主要研究直流电机的控制和测量方法,从而对电机的控制精度、响应速度以及节约能源等都具有重要意义。 ·关键词:直流电机单片机 PWM 转速控制 硬件部分 1.时钟电路 系统采用12M晶振与两个30pF电容组成震荡电路,接STC89C52的XTAL1与XTAL2引脚

2.按键电路 三个按键分别控制电机的不同转速,采用开环控制方法 3.电机控制与驱动部分 电机的运行通过PWM波控制。PWM波通过STC89C52的P2.4口输出。

显示部分 采用4位共阳极数码管实现转速显示。数码管的位选端1~4分别接STC89C52的P2.0~P2.3管脚。 完整仿真电路图

实验一 转速负反馈直流调速系统

实验一转速负反馈直流调速系统 一、实验目的 (1)了解单闭环直流调速系统的原理、组成及各主要单元部件的原理。 (2)掌握晶闸管直流调速系统的一般调试过程。 (3)认识闭环反馈控制系统的基本特性。 二、实验所需挂件及附件

三、实验线路及原理 为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。在单闭环系统中,转速单闭环使用较多。 在本装置中,转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经“速度变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压U Ct,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。 在电流单闭环中,将反映电流变化的电流互感器输出电压信号作为反馈信号加到“电流调节器”的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压U Ct,控制整流桥的“触发电路”,改变“三相全控整流”的电压输出,从而构成了电流负反馈闭环系统。电机的最高转速也由电流调节器的输出限幅所决定。同样,电流调节器若采用P(比例)调节,对阶跃输入有稳态误差,要消除该误差将调节器换成PI(比例积分)调节。当“给定”恒定时,闭环系统对电枢电流变化起到了抑制作用,当电机负载或电源电压波动时,电机的电枢电流能稳定在一定的范围内变化。

温度控制直流电动机转速的课程设计

目录 1 1引言 (1) 2设计任务及要求 (2) 2.1设计目的 (2) 2.2设计要求 (2) 3 本课程设计的意义 (2) 4使用软件介绍 (3) 4.1Proteus仿软真件的介绍 (3) 4.2 Keil软件 (3) 5电路使用元件的介绍 (4) 5.1关于AT89C51单片机的简介 (4) 5.2关于DS18B20温度传感器的简介 (4) 5.3关于L298电机驱动芯片的简介 (4) 5.4关于LM016液晶模块的简介 (5) 6部分硬件的工作原理 (5) 6.1直流电动机的工作原理 (5) 6.2转速的测量原理 (6) 6.3直流电动机的转速控制系统的工作原理 (6) 7直流电动机的转速控制系统软件设计 (7) 7.1编程思路 (7) 7.2系统流程图 (7) 8仿真程序(C语言) (10) 9结束语 (16) 1 1引言 在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用。据资料统计,现在有的90%以上的动力源自于电动机,电动机和人们的生活

息息相关,密不可分。随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机控制向更复杂的控制发展。 近年来由于微型机的快速发展,国外交直流系统数字化已经达到实用阶段由于以微处理器为核心的数字控制系统硬件电路的标准化程度高,制作成本低,且不受器件温度漂移的影响,且单片机具有功能强、体积小、可靠性好和价格便宜等优点,现已逐渐成为工厂自动化和各控制领域的支柱之一。其控制软件能够进行逻辑判断和复杂运算,可以实现不同于一般线性调节的最优化、自适应、非线性、智能化等控制规律。所以微机数字控制系统在各个方而的性能都远远优于模拟控制系统且使用越来越广泛。 现在市场上通用的电机控制器大多采用单片机和DSP。但是以前单片机的处理能力有限,对采用复杂的反馈控制的系统,由于需要处理的数据量大,实时性和精度要求高,往往不能满足设计要求。近年来出现了各种单片机,其性能得到了很大提高,价格却比DSP低很多。其相关的软件和开发工具越来越多,功能也越来越强,但价格却在不断降低。现在,越来越多的厂家开始采用单片机来提高产品性价比。 2设计任务及要求 2.1设计目的 设计一个基于温度的电动机转速控制电路,在相应的软件控制下可以完成要求的功能,即外部温度大于45C时,直流电动机在L298驱动下加速正转,温度大于75C全速正转,当外部温度小于10C时电动机加速反转,温度小于0C时电动机全速反转。温度回到10C-45C时电动机停止转动。在液晶显示屏1602LCD上显示当前的温度值。 2.2设计要求 一、设计一个基于温度的电动机转速控制电路,在相应的软件控制下可以完成要求的功能,即外部温度大于45C时,直流电动机在L298驱动下加速正转,温度大于75C全速正转,当外部温度小于10C时电动机加速反转,温度小于0C 时电动机全速反转。温度回到10C-45C时电动机停止转动。在液晶显示屏1602LCD 上显示当前的温度值。 二、画出基于温度的电动机转速控制电路的电路图; 三、所设计的电路需要在仿真软件Protues v7.5上能够运行,课程设计报告的最后必须附有在仿真软件Protues v7.5下设计的电路图和控制程序清单。 3 本课程设计的意义 直流电动机作为一种高效率速度控制电动机引人注目、但市场的知名度还小

相关主题
文本预览
相关文档 最新文档