当前位置:文档之家› 缨帽变换(KT变换)矩阵

缨帽变换(KT变换)矩阵

缨帽变换(KT变换)矩阵
缨帽变换(KT变换)矩阵

https://www.doczj.com/doc/d515142558.html,ndsat MMS 数据变换矩阵:

{ 0.443, 0.632, 0.586, 0.264}

{-0.290, -0.562, 0.600, 0.491}

{-0.824, 0.533, -0.050, 0.185}

{ 0.223, 0.012, -0.543, 0.809}

2.IKNOS 数据变换矩阵:

{0.326, -0.311, -0.612, -0.650}

{0.509, -0.356, -0.312, 0.719}

{0.560, -0.325, 0.722, -0.243}

{0.567, 0.819, -0.081, -0.031}

https://www.doczj.com/doc/d515142558.html,ndsat4 TM 数据变换矩阵:

{ 0.3037, 0.2793, 0.4743, 0.5585, 0.5082, 0.1863} {-0.2848,-0.2435,-0.5436, 0.7243, 0.0840,-0.1800} { 0.1509, 0.1973, 0.3279, 0.3406,-0.7112,-0.4572} { 0.8832,-0.0819,-0.4580,-0.0032,-0.0563, 0.0130} { 0.0573,-0.0260, 0.0335,-0.1943, 0.4766,-0.8545} { 0.1238,-0.9038, 0.4041, 0.0573,-0.0261, 0.0240} https://www.doczj.com/doc/d515142558.html,ndsat5 TM 数据变换矩阵:

{ 0.2909, 0.2493, 0.4806, 0.5568, 0.4438, 0.1706} {-0.2728,-0.2174,-0.5508, 0.7221, 0.0733,-0.1648} { 0.1446, 0.1761, 0.3322, 0.3396,-0.6210,-0.4186} { 0.8461,-0.0731,-0.4640,-0.0032,-0.0492, 0.0119} { 0.0549,-0.0232, 0.0339,-0.1937, 0.4162,-0.7823} { 0.1186,-0.8069, 0.4094, 0.0571,-0.0228,-0.0220} https://www.doczj.com/doc/d515142558.html,ndsat7 ETM+ 数据变换矩阵:

{ 0.3561, 0.3972, 0.3904, 0.6966, 0.2286, 0.1596} {-0.3344,-0.3544,-0.4556, 0.6966,-0.0242,-0.2630} { 0.2626, 0.2141, 0.0926, 0.0656,-0.7629,-0.5388} { 0.0805,-0.0498, 0.1950,-0.1327, 0.5752,-0.7775} {-0.7252,-0.0202, 0.6683, 0.0631,-0.1494,-0.0274} { 0.4000,-0.8172, 0.3832, 0.0602,-0.1095, 0.0985}

第三章 矩阵的初等变换与线性方程组习题.

第三章矩阵的初等变换与线性方程组 3.4 独立作业 3.4.1 基础练习 1.已知,求. 2.已知,求. 3.若矩阵满足,则(). (A (B (C (D 4.设矩阵满足关系,其中,求. 5.设矩阵,求. 6.是矩阵,齐次线性方程组有非零解的充要条件是 . 7.若非齐次线性方程组中方程个数少于未知数个数,那么( . (A 必有无穷多解; (B 必有非零解;

(C 仅有零解; (D 一定无解. 8.求解线性方程组 (1),(2) (3) 9.若方程组 有无穷多解,则 . 10.若都是线性方程组的解,则( . (A (B (C (D 3.4.2 提高练习 1.设为5阶方阵,且,则= . 2.设矩阵,以下结论正确的是( . (A时, (B 时, (C时, (D 时,

3.设是矩阵,且,而,则 . 4.设,为3阶非零矩阵,且,则 . 5.设, 问为何值,可使 (1)(2)(3). 6.设矩阵,且,则 . 7.设,试将表示为初等矩阵的乘积. 8.设阶方阵的个行元素之和均为零,且,则线性方程组的 通解为 . 9.设,,

,其中可逆,则 . 10.设阶矩阵与等价,则必有(). (A)当时,(B)当时, (C)当时,(D)当时, 11.设,若,则必有(). (A)或(B)或 (C)或(D)或 12.齐次线性方程组的系数矩阵记为,若存在三阶矩阵,使得,则(). (A)且(B)且 (C)且(D)且 13.设是三阶方阵,将的第一列与第二列交换得到,再把 的第二列加到第三列得到,则满足的可逆矩阵为().

(A)(B)(C)(D) 14.已知,为三阶非零矩阵,且,则(). (A)时,(B)时, (C)时,(D)时, 15.若线性方程组有解,则常数应满足条件 . 16.设方程组有无穷多个解,则 . 17.设阶矩阵与维列向量,若,则线性方程组(). (A)必有无穷多解(B)必有唯一解 (C)仅有零解(D)必有非零解. 18.设为矩阵,为矩阵,则线性方程组(). (A)当时仅有零解(B)当时必有非零解 (C)当时仅有零解(D)当时必有非零解

矩阵初等变换及应用

矩阵初等变换及应用 王法辉 摘要:矩阵初等变换是高等代数的重要组成部分。本文对初等变换进行了研究探讨,详细介绍了与矩阵初等变换有关的基础知识。在阐述矩阵初等变换方法及应用原理的基础上,首先重点讨论该方法在解决高等代数相关计算问题上的应用,如求多项式的最大公因式、求逆矩阵解矩阵方程、求解线性方程组、判定向量的线性相关性、化二次型为标准型、求空间的基等。尤其是利用矩阵初等变换法求空间的基(解空间、特征子空间、核、值域等)的问题的计算,以具体实例生动的展示出问题的内在关系,最后给出了该方法在解决实际问题中的应用。本文理论分析与实际相结合,凸现了矩阵初等变换法直接、便利、有效的威力与作用。 关键词:矩阵初等变换;最大公因式;线性相关性;二次型;空间的基 1 导言 在线性方程组的讨论中我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程。在数学的学习和应用中,矩阵理论是高等代数的重要组成部分,矩阵初等变换方法更是贯穿高等代数理论的始终。应用初等变换证明命题过程容易被接受,同时也是解决高等代数相关计算问题最直接、便利、有效的方法。此外,还有大量的各种各样的,表面上看完全没有联系的问题的解决,都可以通过相同的方法实现:矩阵的初等变换。 因此,对矩阵初等变换方法及应用进行探讨,无疑是十分必要和重要的。 目前,有许多文献涉及到对矩阵初等变换方法该的讨论,但比较零散。在研读文献的基础上,对矩阵初等变换的内涵进一步挖掘,使矩阵初等变换方法的威力作用得以充分展示是重要也是必要的。 2 矩阵及其初等变换

2.1 矩阵 由n m ?个数)j ,,,2,1(==m i a ij (i =1,2, ,j =1,2,n , )排成m 行n 列 的数表 ? ? ??? ???????=mn m m n n a a a a a a a a a A 2 1 22221 11211 称为m 行n 列的矩阵,简称n m ?矩阵。 2.2 矩阵的初等变换及初等矩阵 矩阵有行列之分,因此有如下定义 定义1 矩阵的初等行(列)变换是指如下三种变换 (1)交换矩阵某两行(列)的位置,记为j i r r ? )(j i c c ?; (2)把某一行(列)的k 倍加到另一行(列)上,记为j i kr r + )(j i kc c +; (3)用一个非零常数k 乘以某一行(列),记为i kr )(i kc ,k ≠0; 矩阵的初等行变换及初等列变换统称为矩阵的初等变换。 定义2 由单位矩阵E 经过一次初等变换得到的方阵称为初等矩阵。有以下3种形式 (1)互换矩阵E 的i 行和j 行的位置,得 ? ???? ? ??? ?? ? ????? ???????????????? ?=1101111011),( j i P ; (2)用数域P 种非零数c 乘E 的i 行,得

旋转矩阵公式法

旋转矩阵公式法!一,选11个号,中了5个号,100%能组合到4个号。假设你选了01、02、03、04、05、06、07、08、09、10、11,则可以组合成以下22注,需投入44元: (1)01、05、07、09、11 (2)01、05、06、08、10 (3)01、04、06、08、09 (4)01、04、05、07、10 (5)01、03、07、08、11 (6)01、03、04、09、10 (7)01、02、06、10、11 (8)01、02、04、08、11 (9)01、02、03、06、07 (10)01、02、03、05、09 (11)02、07、08、09、10 (12)02、05、06、07、08 (13)02、04、07、09、11 (14)02、04、05、06、09 (15)02、03、05、10、11 (16)02、03、04、08、10 (17)03、06、08、09、11 (18)03、06、07、09、10 (19)03、04、05、07、08 (20)03、04、05、06、11 (21)04、06、07、10、11 (22)05、08、09、10、11 二,选11个号,中了4个号,100%能组合到4个号。假设你选了01、02、03、04、05、06、07、08、09、10、11,则可以组合成以下66注,只要132元就能搞定: (1)01、07、08、09、10 (2)01、06、07、09、11 (3)01、05、08、09、11 (4)01、05、07、10、11 (5)01、05、06、08、10 (6)01、04、09、10、11 (7)01、04、06、08、11 (8)01、04、06、07、10 (9)01、04、05、07、08 (10)01、04、05、06、09 (11)01、03、08、10、11 (12)01、03、06、09、10 (13)01、03、06、07、08 (14)01、03、05、07、09 (15)01、03、05、06、11 (16)01、03、04、08、09 (17)01、03、04、07、11 (18)01、03、04、05、10

用矩阵的初等变换求逆矩阵

2007年11月16日至18日,有幸参加了由李尚志教授主讲的国家精品课程线性代数(非数学专业)培训班,使我受益匪浅,在培训中,我见识了一种全新的教学理念。李老师的“随风潜入夜,润物细无声”“化抽象为自然”“饿了再吃”等教学理念很值得我学习。作为刚参加工作的年轻教师,我应该在以后的教学中,慢慢向这种教学理念靠拢,使学生在不知不觉中掌握较为抽象的知识。下面这个教案是根据李老师的教学理念为“三本”学生写的,不知是否能达要求,请李老师指教。 用矩阵的初等变换求逆矩阵 一、问题提出 在前面我们以学习了用公式 求逆矩阵,但当矩阵A 的阶数较大时,求 A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢? (饿了再吃) 二、求逆矩阵方法的推导 (“润物细无声”“化抽象为自然”) 我们已学习了矩阵初等变换的性质,如 1.定理 2.4 对mxn 矩阵A ,施行一次初等行变换,相当于在A 的左边乘以相应m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵。 2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。 3.定理2.5的推论 A 可逆的充要条件为A 可表为若干初等矩阵之积。即 4.推论 A 可逆,则A 可由初等行变换化为单位矩阵。 (1) 由矩阵初等变换的这些性质可知,若A 可逆,构造分块矩阵(A ︱E ),其中E 为与A 同阶的单位矩阵,那么 (2) 由(1)式 代入(2)式左边, 上式说明分块矩阵(A ︱E )经过初等行变换,原来A 的位置变换为单位阵E ,原来E 的位置变换为我们所要求的1A -,即 211211111111 12112112s t s s t t m P P P AQ Q Q E A P P P P EQ Q Q Q R R R ----------=?=? 11121m R R R A E ---= 111121m R R R A ----= ()()122n n n n A E E A -???????→ 1*1A A A -=()()()1111A A E A A A E E A ----==111121m A R R R ----= ()()111121m R R R A E E A ----=

摄像机内外参计算过程

摄像机内外参计算过程 罗海风2011-2-28 1.对内参的初始化: 涉及函数:init_intrinsic_param_fisheye.m 输入:x_1,x_2,x_3,…--角点的图像坐标,X_1,X_2,X_3,…--角点的世界坐标; 输出:所有内参,包括摄像机焦距fc,摄像机坐标系原点在图像上的坐标cc,几何畸变系数kc,斜交系数alpha_c,摄像机矩阵KK(包含以上系数)。 焦距的初始值:fc= max(,) _ max(,) nx ny f init nx ny π π ?? ?? =?? ?? ?? ?? 原点坐标的初始值设为图像中心处,即cc= 0.50.5 _ 0.50.5 nx c init ny - ?? =?? - ?? 计算内参时不考虑畸变,畸变系数初始值为零,即kc= 0 _ 0 k init ?? ?? ?? = ?? ?? ?? 不考虑摄像机坐标轴夹角非正交情况,即alpha_c=_0 alpha init= 内参数矩阵初始值 max(,) 00.50.5 max(,) 00.50.5 001 nx ny nx nx ny KK ny π π ?? - ?? ?? ?? =- ?? ?? ?? ?? ?? -------------------(1)

2.对外参的初始化: 涉及函数:comp_ext_calib_fisheye.m 功能:主要是调用compute_extrinsic_init_fisheye.m 和compute_extrinsic_refine_fisheye.m compute_extrinsic_init_fisheye.m 输入:像点的世界坐标和图像坐标x_kk 和X_kk,以及所有内参fc,cc,kc,alpha_c; 输出:所有外参初始值,包括平移矩阵Tckk ,旋转矩阵Rckk 和旋转向量omckk compute_extrinsic_refine_fisheye.m 输入:像点的世界坐标和图像坐标x_kk 和X_kk,最大迭代次数MaxIter 以及所有内参fc,cc,kc,alpha_c; 输出:所有外参初始值,包括平移矩阵Tckk ,旋转矩阵Rckk 和旋转向量omckk 对像点世界坐标和图像坐标进行整理(整理过程考虑到坐标变换和畸变模型,涉及normalize_pixel_fisheye .m 输入:像点图像坐标x_kk,所有内参fc,cc,kc,alpha_c;输出:标准化无畸变图像坐标xn )。 坐标变换首先按照原点坐标进行线性映射,转换成以焦距为单位: 111 222___x kk cc fc x distort x kk cc fc -????? ?=-?????? 然后校正相机平面和图像平面不平行带来的误差: 122_____x distrot alpha c x distrot x distort x distrot -??? =???? 最后进行畸变补偿:(调用函数comp_fisheye_distortion.m 输入:畸变的像点图像坐标xd ,畸变系数k ; 输出: 无畸变的像点图像坐标x ) xd 是畸变后的像素坐标,令__theta d theta theta d == 进入循环20次的补偿迭代,每次循环中有 12 24682468 1121314112223242__11theta d theta d theta k theta k theta k theta k theta k theta k theta k theta k theta ??=??++++++++?? ,其中k 为畸变系数。本程序中,只考虑径向畸变不考虑切向畸变,k 虽然是5x1矢量,但是 最后一位即切向畸变系数没有使用。 然后有1212tan()tan()__theta theta scaling theta d theta d ?? =? ??? 111 1221211 2222Np Np Np Np xd scaling xd scaling xd scaling xn xd scaling xd scaling xd scaling ?? =? ??? 畸变补偿结束。 得到标准化无畸变的世界坐标X_new 和图像坐标xn 。 由这两组坐标计算得到透视投影矩阵H(计算过程见摄像机定标程序中透视投影矩阵H 的计算过程.doc ),并对H 进行整理得到 ((:,1))()((:,2))H H H norm H sc mean norm H = =???? ??

知识点总结 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质

设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=:存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=:存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使 (2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 (4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,,,,l l P P P A PP P =L L 使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? ) 初等变换的应用 (1)求逆矩阵:()1(|)|A E E A -????→初等行变换或1A E E A -????????→ ? ????? 初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即() 1(|)|A B E A B -??→行,则P =A -1B 。或1E A B BA -????????→ ? ????? 初等列变换. 第二节 矩阵的秩

旋转变换(一)旋转矩阵

旋转变换(一)旋转矩阵 1. 简介 计算机图形学中的应用非常广泛的变换是一种称为仿射变换的特殊变换,在仿射变换中的基本变换包括平移、旋转、缩放、剪切这几种。本文以及接下来的几篇文章重点介绍一下关于旋转的变换,包括二维旋转变换、三维旋转变换以及它的一些表达方式(旋转矩阵、四元数、欧拉角等)。 2. 绕原点二维旋转 首先要明确旋转在二维中是绕着某一个点进行旋转,三维中是绕着某一个轴进行旋转。二维旋转中最简单的场景是绕着坐标原点进行的旋转,如下图所示: 如图所示点v 绕原点旋转θ角,得到点v’,假设v点的坐标是(x, y) ,那么可以推导得到v’点的坐标(x’, y’)(设原点到v的距离是r,原点到v点的向量与x轴的夹角是? ) x=rcos?y=rsin? x′=rcos(θ+?)y′=rsin(θ+?) 通过三角函数展开得到 x′=rcosθcos??rsinθsin? y′=rsinθcos?+rcosθsin? 带入x和y表达式得到 x′=xcosθ?ysinθ y′=xsinθ+ycosθ 写成矩阵的形式是: 尽管图示中仅仅表示的是旋转一个锐角θ的情形,但是我们推导中使用的是三角函数的基本定义来计算坐标的,因此当旋转的角度是任意角度(例如大于180度,导致v’点进入到第四象限)结论仍然是成立的。 3. 绕任意点的二维旋转 绕原点的旋转是二维旋转最基本的情况,当我们需要进行绕任意点旋转时,我们可以把这种情况转换到绕原点的旋转,思路如下: 1. 首先将旋转点移动到原点处 2. 执行如2所描述的绕原点的旋转 3. 再将旋转点移回到原来的位置

也就是说在处理绕任意点旋转的情况下需要执行两次平移的操作。假设平移的矩阵是T(x,y),也就是说我们需要得到的坐标v’=T(x,y)*R*T(-x,-y)(我们使用的是列坐标描述点的坐标,因此是左乘,首先执行T(-x,-y)) 在计算机图形学中,为了统一将平移、旋转、缩放等用矩阵表示,需要引入齐次坐标。(假设使用2x2的矩阵,是没有办法描述平移操作的,只有引入3x3矩阵形式,才能统一描述二维中的平移、旋转、缩放操作。同理必须使用4x4的矩阵才能统一描述三维的变换)。 对于二维平移,如下图所示,P点经过x和y方向的平移到P’点,可以得到: x′=x+tx y′=y+ty 由于引入了齐次坐标,在描述二维坐标的时候,使用(x,y,w)的方式(一般w=1),于是可以写成下面矩阵的形式 按矩阵乘法展开,正好得到上面的表达式。也就是说平移矩阵是 如果平移值是(-tx,-ty)那么很明显平移矩阵式 我们可以把2中描述的旋转矩阵也扩展到3x3的方式,变为:

用矩阵的初等变换求逆矩阵

2007年11月16日至18日,有幸参加了由李尚志教授主讲的国家精品课程线性代数(非数学专业)培训班,使我受益匪浅,在培训中,我见识了一种全新的教学理念。李老师的“随风潜入夜,润物细无声”“化抽象为自然”“饿了再吃”等教学理念很值得我学习。作为刚参加工作的年轻教师,我应该在以后的教学中,慢慢向这种教学理念靠拢,使学生在不知不觉中掌握较为抽象的知识。下面这个教案是根据李老师的教学理念为“三本”学生写的,不知是否能达要求,请李老师指教。 用矩阵的初等变换求逆矩阵 一、问题提出 在前面我们以学习了用公式求逆矩阵,但当矩阵A的阶数较大时,求A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢?(饿了再吃) 二、求逆矩阵方法的推导(“润物细无声”“化抽象为自然”) 我们已学习了矩阵初等变换的性质,如 1.定理对mxn矩阵A,施行一次初等行变换,相当于在A的左边乘以相应m阶初等矩阵;对A施行一次初等列变换,相当于在A的右边乘以相应的n阶初等矩阵。 2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。 3.定理的推论A可逆的充要条件为A可表为若干初等矩阵之积。即 4.推论 A可逆,则A 可由初等行变换化为单位矩阵。 (1) 由矩阵初等变换的这些性质可知,若A可逆,构造分块矩阵(A︱E),其中E为与A同阶

的单位矩阵,那么 (2) 由(1)式代入(2)式左边, 上式说明分块矩阵(A︱E)经过初等行变换,原来A的位置变换为单位阵E,原来E的位置 A ,即 变换为我们所要求的1 三,讲解例题 1. 求逆矩阵方法的应用之一 例 解: 四,知识拓展 2.求逆矩阵方法的应用之二 利用矩阵的初等行变换也可以判断一个矩阵是否可逆,即分块矩阵(A︱E)经过初等行变换,原来A的位置不能变换为单位阵E,那么A不可逆。

考研数学:用初等变换求逆矩阵及乘积的方法

考研数学:用初等变换求逆矩阵及乘积的方法 来源:文都教育 在考研数学线性代数中,初等变换是一种非常重要的方法,被广泛地用于很多题型的求解之中,如行列式的计算、矩阵的求逆、线性方程组的求解、矩阵秩的计算、化二次型为标准型等。初等变换包括初等行变换和初等列变换,具体说有三种:互换两行(列)、某行(列)乘以一个非零数、某行(列)乘以一个数加到另一行(列)。下面我们对初等变换在矩阵求逆及乘积中的应用做些分析总结,供各位考研的学子参考。 一、用初等变换求逆矩阵及乘积的方法 1、用初等行变换求逆矩阵1A -:对(,)A E 作初等行变换,将其中的A 变为单位矩阵E ,这时单位矩阵E 就变为1 A -,即1(,)(,)r A E E A -→,由此即求得1A -; 2、用初等列变换求逆矩阵1A -:求1A -也可用初等列变换,对A E ?? ??? 作初等列 变换,将其中的A 变为单位矩阵E ,这时单位矩阵E 就变为1 A -,即1c A E E A -???? → ? ????? , 由此即求得1A -; 3、用初等行变换求1A B -:对(,)A B 作初等行变换,将其中的A 变为单位矩阵E ,这时矩阵B 就变为1 A B -,即1(,)(,)r A B E A B -→,由此即求得1A B -; 4、用初等列变换求1BA -:对A B ?? ??? 作初等列变换,将其中的A 变为单位矩阵 E ,这时矩阵B 就变为1 BA -,,即1c A E B BA -???? → ? ????? ,由此1BA -此即求得1BA -.

上面的1)和2)实际上是3)和4)的特殊情况,只要取B E =即得1)和2)。 下面只要证明3)和4)即可。 证:3)由于作一次初等行变换相当于左乘一个初等矩阵,所以对A 作一系列的初等行变换得到单位矩阵E 相当于A 左乘一个可逆阵P ,使PA E =,这时 1 P A -=,1 (,)(,)(,)(,B)P A B PA PB E PB E A -===,即1(,)(,)r A B E A B -→; 4)同3)类似,由于作一次初等列变换相当于右乘一个初等矩阵,所以对A 作一系列的初等列变换得到单位矩阵E 相当于A 右乘一个可逆阵P ,使A P E =, 这时1 P A -=,1A AP E P B BP BA -??????== ? ? ??????? ,即1c A E B BA -???? → ? ?????. 二、典型实例 例1.设011111112A -?? ? =- ? ?--?? ,求1A -. 解:作初等行变换: 011100111010(,)111010011100112001021011r r A E --???? ? ?=-→-→ ? ? ? ?----???? 11110101003120111000 10111(,)0012110 1 211r r E A -----???? ? ?→--→-= ? ? ? ?----??? ? ,故1312111211A --?? ?=- ? ?-?? . 例2.解矩阵方程211113210432111X -?? -?? ?= ? ??? ?-?? .

三维旋转矩阵的计算

三维旋转矩阵的计算 旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。 在三维空间中,旋转变换是最基本的变换类型之一,有多种描述方式,如Euler 角、旋转矩阵、旋转轴/旋转角度、四元数等。本文将介绍各种描述方式以及它们之间的转换。 1. 旋转矩阵 用一个3阶正交矩阵来表示旋转变换,是一种最常用的表示方法。容易证明,3阶正交阵的自由度为3。注意,它的行列式必须等于1,当等于-1的时候相当于还做了一个镜像变换。 2. Euler角 根据Euler定理,在三维空间中,任意一种旋转变换都可以归结为若干个沿着坐标轴旋转的组合,组合的个数不超过三个并且两个相邻的旋转必须沿着不同的坐标轴。因此,可以用三个沿着坐标轴旋转的角度来表示一个变换,称为Euler角。旋转变换是不可交换的,根据旋转顺序的不同,有12种表示方式,分别为:XYZ、XZY、XYX、XZX、YXZ、YZX、YXY、YZY、ZXY、ZYX、ZXZ、ZYZ,可以自由选择其中的一种。对于同一个变换,旋转顺序不同,Euler角也不同,在指定Euler角时应当首先约定旋转顺序。 2.1 Euler角转化为旋转矩阵 不妨设先绕Z轴旋转γ,再绕Y轴旋转β,最后绕X轴旋转α,即旋转顺序为XYZ,旋转矩阵

3. 旋转轴/旋转角度 用旋转轴的方向向量n和旋转角度θ来表示一个旋转,其中 θ>0表示逆时针旋转。 3.1 旋转轴/旋转角度转化为旋转矩阵 设v是任意一个向量,定义

矩阵投影与最小二乘方法

题目:《神奇的矩阵——矩阵投影与最小二乘方法》 学校:哈尔滨工程大学 姓名:黎文科 联系方式: QQ群:53937814 联系方式: 190356321@https://www.doczj.com/doc/d515142558.html,

矩阵投影与最小二乘方法 最小二乘法(Least Squares Method,简记为LSE)是一个比较古老的方法,源于天文学和测地学上的应用需要。在早期数理统计方法的发展中,这两门科学起了很大的作用。丹麦统计学家霍尔把它们称为“数理统计学的母亲”。此后近三百年来,它广泛应用于科学实验与工程技术中。美国统计史学家斯蒂格勒( S. M. Stigler)指出, 最小二乘方法是19世纪数理统计学的压倒一切的主题。1815年时,这方法已成为法国、意大利和普鲁士在天文和测地学中的标准工具,到1825年时已在英国普遍使用。 追溯到1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。高斯于其1809年的著作《关于绕日行星运动的理论》中。在此书中声称他自1799年以来就使用最小二乘方法,由此爆发了一场与勒让德的优先权之争。 近代学者经过对原始文献的研究,认为两人可能是独立发明了这个方法,但首先见于书面形式的,以勒让德为早。然而,现今教科书和著作中,多把这个发明权归功于高斯。其原因,除了高斯有更大的名气外,主要可能是因为其正态误差理论对这个方法的重要意义。勒让德在其著作中,对最小二乘方法的优点有所阐述。然而,缺少误差分析。我们不知道,使用这个方法引起的误差如何,就需建立一种误差分析理论。高斯于1823年在误差e 1 ,… , e n 独立同分布的假定下,证明了最小二乘方法的一个最优性质: 在所有无偏的线性估计类中,最小二乘方法是其中方差最小的!在德国10马克的钞票上有高斯像,并配了一条正态曲线。在高斯众多伟大的数学成就中挑选了这一条,亦可见这一成就对世界文明的影响。 现行的最小二乘法是勒让德( A. M. Legendre)于1805年在其著作《计算慧星轨道的新方法》中提出的。它的主要思想就是选择未知参数,使得理论值与观测值之差的平方和达到最小: 2 211 ()()m m i i i H y y ===-=-∑∑理论值观测值

用矩阵初等变换逆矩阵

用矩阵初等变换逆矩阵

————————————————————————————————作者:————————————————————————————————日期:

2007年11月16日至18日,有幸参加了由李尚志教授主讲的国家精品课程线性代数(非数学专业)培训班,使我受益匪浅,在培训中,我见识了一种全新的教学理念。李老师的“随风潜入夜,润物细无声”“化抽象为自然”“饿了再吃”等教学理念很值得我学习。作为刚参加工作的年轻教师,我应该在以后的教学中,慢慢向这种教学理念靠拢,使学生在不知不觉中掌握较为抽象的知识。下面这个教案是根据李老师的教学理念为“三本”学生写的,不知是否能达要求,请李老师指教。 用矩阵的初等变换求逆矩阵 一、问题提出 在前面我们以学习了用公式 求逆矩阵,但当矩阵A 的阶数较大时,求A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢? (饿了再吃) 二、求逆矩阵方法的推导 (“润物细无声”“化抽象为自然”) 我们已学习了矩阵初等变换的性质,如 1.定理 2.4 对mxn 矩阵A ,施行一次初等行变换,相当于在A 的左边乘以相应m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵。 2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。 3.定理2.5的推论 A 可逆的充要条件为A 可表为若干初等矩阵之积。即 4.推论 A 可逆,则A 可由初等行变换化为单位矩阵。 (1) 由矩阵初等变换的这些性质可知,若A 可逆,构造分块矩阵(A ︱E ),其中E 为与A 同阶的单位矩阵,那么 (2) 由(1)式 代入(2)式左边, 上式说明分块矩阵(A ︱E )经过初等行变换,原来A 的位置变换为单位阵E ,原来E 的位置 变换为我们所要求的1 A -,即 21121111111112112112s t s s t t m P P P AQ Q Q E A P P P P EQ Q Q Q R R R ----------=?=?L L L L L 111 21m R R R A E ---=L 111121m R R R A ----=L () () 1 22n n n n A E E A -???????→ 1* 1A A A -=( )()() 1111A A E A A A E E A ----==1111 21m A R R R ----=L ( )() 1 111 21m R R R A E E A ----=L

旋转矩阵

三维旋转矩阵 三维旋转特性 给定单位向量u和旋转角度φ,则R(φ,u)表示绕单位向量u旋转φ角度。 R(0,u)表示旋转零度。 R(φ,u)= R(?φ,?u)。 R(π+φ,u)= R(π?φ,?u)。 如果φ=0,则u为任意值。 如果0<φ<π,则u唯一确定。 如果φ= π,则符号不是很重要。因为- π和π是一致的,结果相同,动作不同。 由旋转矩阵求旋转角和旋转轴 每一个三维旋转都能有旋转轴和旋转角唯一确定,好多方法都可以从旋转矩阵求出旋转轴和旋转角,下面简单介绍用特征值和特征向量确定旋转轴和旋转角的方法。 将旋转矩阵作用在旋转轴上,则旋转轴还是原来的旋转轴,公式表示如下: Ru=u 转化得: Ru=Iu =>(R?I)u=0 可以确定的是u在R-I的零空间中,角度可有下面的公式求得,Tr表示矩阵的迹: Tr(R)=1+2cosθ 从旋转轴和旋转角求旋转矩阵 假设给定单位向量u=(u x,u y, u z) T ,并且u为单位向量即: u x2+u y2+u z2=1,给定绕u旋转的角度θ,可以得出旋转矩阵R: R=[cosθ+u x2(1?cosθ)u x u y(1?cosθ)?u z sinθu x u z(1?cosθ)+u y sinθ u y u x(1?cosθ)+u z sinθcosθ+u y2(1?cosθ)u y u z(1?cosθ)?u x sinθ u z u x(1?cosθ)?u y sinθu z u y(1?cosθ)+u x sinθcosθ+u z2(1?cosθ) ] 上面的公式等价于: R=cosθI+sinθ[u]×+(1?cosθ)u?u 其中[u]×是单位向量u的叉乘矩阵,?表示张量积,I是单位向量. 这是罗德里格斯旋转方程的矩阵表示。下面给出叉乘和张量积的公式:

openGL投影矩阵原理及数学推导

openGL投影矩阵 概述 显示器是2d的。3d场景需要转换为2d图像才能显示在屏幕上。投影矩阵(GL_PROJECTION)用于完成这个工作。投影矩阵将观察坐标(eye coordinates)转换成裁剪坐标(clip coordinates)。然后,裁剪坐标被除以w,转换为规范化的设备坐标(NDC)。 需要记住的一点是,裁剪操作和规范化都由投影矩阵(GL_PROJECTION)完成。下面介绍如何用6个参数(left,right,bottom,top,near,far)构建投影矩阵。 裁剪(clipping)操作是在裁剪坐标上进行的,安排在透视除法执行之前。裁剪坐标xc,yc,zc同wc比较,若每个分量都落在(-wc,wc)外,那么此坐标将被裁剪掉。 在透视投影中,3d场景中的点(观察坐标)从平截头体中映射到正方体(NDC)中;x坐标从[l,r]映射到[-1,1],y坐标从[b,t]映射到[-1,1],z坐标从[n,f]映射到[-1,1]。 注意到,观察坐标系是右手系,规范设备坐标系是左手系。这就有,在观察坐标系中,摄像机朝向沿着-z,而在NDC中,方向沿着z。由于glFrustum()只接受正参数,所以构造投影矩阵的时候要变号。 openGL中,3d场景中,观察坐标系下的点被投影到近投影面。下图展示了观察坐标系点(xe,ye,ze)投影到近投影面上的点(xp,yp,zp)。 从Top View of Projection看,xe投影到xp,根据等比性质:

从Side View of Projection看,yp计算类似: 注意到,xp和yp依赖于-ze,这一点要引起重视。在观察坐标被投影矩阵转换为裁剪坐标后,裁剪坐标仍然是同质坐标。在规范化阶段执行透视除法变为规范设备坐标(NDC)。 因此,可以将wc的值定为-ze。投影矩阵最后一行为(0,0,-1,0) 下一步,将xp,yp映射到xn,yn,此为线性映射[l,r]=>[-1,1],[b,t]=>[-1,1]:

第三章 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 讲授内容§3.1 矩阵的初等变换;§3.2 初等矩阵 教学目的和要求:(1)理解矩阵的初等变换,理解初等矩阵的性质和矩阵等价的概念. (2)掌握用初等变换求逆矩阵的方法. (3)理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 教学重点:矩阵的初等变换和用矩阵的初等变换求逆矩阵的方法 教学难点:矩阵的初等变换、初等矩阵的性质. 教学方法与手段:从解线性方程组的消元法的三种重要运算入手,引出矩阵的初等变换的定义;初等矩阵与矩阵的初等变换密切相关,三种初等变换对应着三种初等矩阵;从分析初等矩阵的性质出发,推理出用矩阵的初等变换求逆矩阵的方法.传统教学,教练结合 课时安排:2课时 教学过程 §1 矩阵的初等变换 本节介绍矩阵的初等变换,它是求矩阵的逆和矩阵的秩的有利工具。 一、矩阵的初等变换 在利用行列式的性质计算行列式时,我们对其行(列)作过三种变换——“初等变换”. 定义1 对矩阵的行(列)施以下述三种变换,称为矩阵的行(列)初等变换. 初等变换 行变换 列变换 ① 对调 j i r r ? j i c c ? ② 数乘)0(≠k i r k i c k ③ 倍加 j i r k r + j i c k c + 矩阵的行初等变换与列初等变换统称为矩阵的初等变换. n m A ?经过初等变换得到n m B ?, 记作n m n m B A ??→. 定义2 等价矩阵:若n m n m B A ??→有限次 , 称n m A ?与n m B ?等价, 记作n m n m B A ???. 矩阵之间的等价关系有下列性质: (1) 自反性:A A ? (2) 对称性:n m n m B A ???n m n m A B ???? (3) 传递性:n m n m B A ???, n m n m C B ???n m n m C A ???? 定义3 在矩阵中可画出一条阶梯线,线的下方全为0,每个台阶只有一行,台阶数即 是非零行的行数,阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第一个非零元.若非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0,则称矩阵为行最简形矩阵.

总结求矩阵的逆矩阵的方法

总结求矩阵的逆矩阵的方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

总结求矩阵的逆矩阵的方法 课程名称: 专业班级: 成员组成: 联系方式:

摘要:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数 研究的主要内容之一.本文将给出几种求逆矩阵的方法. 关键词:矩阵逆矩阵方法 Method of finding inverse matrix Abstract: Matrix in linear algebra is the main content,many prictical problems with the matrix theory is simple and fast. The inverse matrix andmatrix theory the important content, the solution of inverse matrix nature has become one of the main research contents of linear algebra. The paper will give some method of finding inverse matrix. Key words: Matrix inversematrix method

正文: 1.引言:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 2.求矩阵的逆矩阵的方法总结: 2.1 矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素 在矩阵中的位置。比如,或表示一个 矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称 为付对角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即:。如一个阶

投影矩阵的计算过程

投影矩阵的计算过程3d模型经过世界坐标变换、相机坐标变换后,下一步需要投影变换。投影变换的目的就是要把相机空间转换到标准视图空间,在这个空间的坐标都是正规化的,也就是坐标范围都在[-1,1]之间,之所以转换到这个空间是为了后续操作更方便。下面的讨论都是以列向量来表示,这样在变换操作时,采用的是矩阵左乘法,如果采用的是行向量的话,那就相反,矩阵右乘法即是向量在左边乘以变换矩阵。采用哪种表示并不影响结果,只需要把该种表示下得出的变换矩阵转置一下,就是采用另外一种表示模式需要的结果。常见的投影有两种,正交投影和透视投影,正交投影相对来说更简单,所以先来看看正交投影。最简单的正交变换矩阵 1 0 0 0 0 1 0 0 0 0 0 1 这个正交变换是不可逆变换,变换后x和y保留,z变成了0,在实际应用中,更常见的情况是限定x、y、z在一定的范围内的进行投影变换,比如x[l,r],y[b,t],z[n,f]。那么要把这段空间中的点变换到-1和1之间,只要完成两个变换,首先把坐标轴移到中心,然后进行缩放就可以了。采用列向量的话,那就是缩放矩阵乘以平移矩阵。2/(r-l) 0 0 0 1 0 0 -(r+l)/2 2/(r-l) 0 0 -(r+l)/(r-l) 0 2/(t-b) 0 0 x 0 1 0 -(b+t)/2 = 0 2/(t-b) 0 -(t+b)/(t-b) 0 0 2/(f-n) 0 0 0 1 -(n+f)/2 0 0 2/(f-n) -(f+n)/(f-n) 0 0 0 1 0 0 0 1 0 0 0 1 透视投影类比于我们人眼系统,看一个物体,会有远小近大的效果。在转换到相机空间后,相机是这个空间的原点,和正交投影体是一个长方体或者立方体不同,透视投影体是一个锥体被近平面截取掉头部剩下的空间。假定仍然采用上面的坐标表示。在透视投影下,空间上面的任何一点P投影到近平面上某点q,通过三角几何学我们可以得到qx=px*n/pz ,y点同理。假定直接投影到近平面,则该矩阵很简单,用Ma表示下面的矩阵1 0 0 0 0 1 0 0 0 0 1 0 0 0 1/n 0 则齐次空间某点(x,y,z ,1)被该矩阵转换后变成了(x ,y z, z/n) ,除以z/n,则变成了(nx/z,ny/z,n ,1) 正好吻合上面的公式。 undefined 但是我们知道投影变换需要把坐标变换到-1和1之间,假定先不考虑z轴的变换,在x轴和y轴上面经过上述变换后,已经投影在近平面了,假设近平面xy在[l,r] 和[b,t]之间了,因此只需要和上面的正交投影一样,进行平移和缩放操作就可以了,平移矩阵Mb为 1 0 0 -(l+r)/2 0 1 0 -(t+p)/2 0 0 1 -(f+n)/2 0 0 0 1 以及缩放矩阵Mc 2/(r-l) 0 0 0 0 2/(t-b) 0 0 0 0 2/(f-n) 0 0 0 0 1 McXMbXMa 得到的矩阵为2/(r-l) 0 -(r+l)/(n*(r-l))0 0 2/(t-b) -(t+b)/(n*(t-b)) 0 0 0 j k 0 0 1/n 0 j k 为未知数,这个矩阵也可以同时乘以n,则变为2n/(r-l) 0 -(r+l)/(r-l) 0 0 2n/(t-b) -(t+b)/(t-b) 0 0 0 j k 0 0 1 0 为了求解J k,我们需要把z变换到-1 和1 因此当z=n时为-1,z=f时为1 (j*n+k)/n= j+k/n=-1; 同理j+k/f=1; 得到k=2f*n/(n-f) j=-(n+f)/(n-f) 代入上面的矩阵,就得出通用的正交变换矩阵。而且在一般情况下r=-l ,b=-t 因此上述矩阵可以简化为n/r 0 0 0 0 n/t 0 0 0 0 -(n+f)/(n-f) 2f*n/(n-f) 0 0 1 0 n/r 和n/t可以进一步简化成水平半视角和垂直半视角的三角函数来表示,而水平视角和垂直视角和透视窗口的宽高比有是成正比的,最终上面两行可以用宽高

相关主题
文本预览
相关文档 最新文档