当前位置:文档之家› 第八章接地与过电压防护

第八章接地与过电压防护

第八章接地与过电压防护
第八章接地与过电压防护

第八章接地与过电压防护

答案

8-1 什么叫过电压?过电压有哪几种分类?他们的产生原因分别如何?

答:过电压指在电气设备或线路上出现的超过正常工作要求并对其绝缘构成威胁的电压。过电压的分类如下:

1.雷电过电压由于大气中雷云与雷云、雷云与地面物体间会出现放电现象,雷云直接对地面某物体(电气设备或建筑物)放电或雷电感应而引起的过电压统称为雷电过电压或大气过电压或外部过电压。

雷电过电压又分为直击雷过电压、感应雷过电压、侵入波过电压和雷击电磁脉冲。

(1)直击雷过电压是指雷电对电气设备或建筑物直接放电而产生的过电压,放电时雷电流可达几万甚至几十万安培。

(2)感应雷过电压是指当雷云出现在架空线路上方时,由于静电感应,在架空线路上积聚大量异号电荷,在雷云对其他地方放电后,线路上原来被约束的电荷被释放形成自由电荷以电磁波速度向线路两侧流动,形成感应过电压,其电压可达几十万伏。

(3)雷电侵入波(行进波)过电压是指由于线路、金属管道等遭受直接雷击或感应雷而产生的雷电波,沿线路、金属管道等侵入变电站或建筑物而造成危害。据统计,这种雷电侵入波占系统雷害事故的50%以上。因此,对其防护问题,应予相当重视。

(4)雷击电磁脉冲是指雷电直接去在建筑物防雷装置和建筑物附近所引起的效应。它是一种干扰源,绝大多数是通过连接导体的干扰,如雷电流或部分雷电流、被雷电击中的装置的电位升高以及电磁辐射干扰。

这种干扰脉冲是一种能量脉冲,它既可以以过电压形式出现,也可以以过电流或电磁辐射形式出现,因此,雷击电磁脉冲并不完全是过电压问题,而是一种能量冲击,因此又将其称为“电涌”(surge)或“浪涌”,它对供配电系统中电气设备的绝缘威胁不大,但对用电设备中的信息系统设备的正常工作影响甚大。

2.内部过电压由于系统的操作、故障和某些不正常运行状态,使供配电系统电磁能量发生转换而产生的过电压称为内部过电压。内部过电压的持续时间与过电压的类别有关,短的如操作过电压,其持续时间一般为毫秒级,长的如谐振过电压可持续存在。

常见的内部过电压有:

(1)操作过电压是指由于开关分合闸操作或事故状态而引起的过电压。在开关操作或事故过程中,系统的运行状态发生改变将引起系统中电容和电感间电磁场能量互相转换的暂态过程。在阻尼不足的电路中,这种过程常常是振荡性的。这时,就有可能在某些设备上、局部或全部电网中出现过电压。

常见的操作过电压有:

1)切断小电感电流时的过电压,例如切除空载变压器,切除电抗器等。

2)切断电容性负载时的过电压,例如切除空载长线,电容器等。

3)中性点不接地系统的弧光接地过电压。

(2)谐振过电压产生于系统中电感与电容组合构成的振荡回路。其固有自振频率与外加电源频率相等或接近时,出现的一种周期性或准周期性的运行状态,叫谐振。由谐振导致的过电压称为谐振过电压。

供配电系统中,谐振过电压主要有线性谐振过电压(发生在由恒定电感、电容和电阻组成的回路中)和非线性(铁磁)(由于变压器、电压互感器等的磁路饱和造成)谐振过电压。(3)工频电压升高,是指因为系统发生故障、不正常运行状态或参数失配造成的异常电压

上升。

常见的工频电压升高有长线路电容效应造成的末端电压升高,不对称接地带来的健全相对地电压升高,突然甩负荷造成的电压升高、低压中性点接地系统中性点位移造成的电压升高,共用接地体的高压接地电压窜入低压系统造成的过电压等。

8-2 雷电的特征参数有哪些?分别表示什么意义?如何得到?

答:1.雷电流幅值雷电流的波形呈脉冲形式,雷电流幅值是指该脉冲电流所达到的最高值。雷电流幅值与气象、自然条件等有关,是一个随机变量,其变化范围很大。在相同的雷电情况下,被击物的接地电阻值不同,其雷电流也各异。为了便于互相比较,将接地电阻小于30的物体,遭到直击雷作用时产生的电流最大值,叫雷电流幅值。

2.雷电流波形根据测量,雷电流波党是一种非周期性脉冲波,其幅值和陡度随各次放电条件而异。通常幅值大时陡度也大,幅值和最大陡度都出现在波头部分。

(l)据统计,雷电流的波头长度在l~5的范围内,雷电流的波长在20~50的范围内,在防雷保护中,建议采用的雷电流波形为2.6/50us(波头长度/波长)。

(2)雷电流陡度是指雷电流幅值与雷电流波头长度的比值。由于雷电流的波头长度变化不大,所以雷电流的陡度和福值必然密切相关。当采用2.6波头时,雷电流的。平均陡度a与幅值I线性相关,即:

式中a——雷电流陡度,单位为kA/。图8-2雷电流的波形曲线。

3.雷暴日雷暴日是指每年中有雷电放电的天数,在一天内只要听到雷声就算一个雷暴日。4.年地面落雷密度地面落雷密度是指每年、每平方公里的地面遭受雷击的次数。

5.建筑物年预计雷击次数在进行建筑防雷设计时通常采用年预计雷击次数这一参数。

8-3 什么叫接地?接地的主要作用是什么?

答:电气设备的任何部分与土壤间作良好的电气连接,称为接地。直接与土壤接触的金属导体称为接地体或接地极。连接于电气设备接地部分与接地体间的金属导线称为接地线。接地体可分为人工接地体和自然接地体,人工接地体是指专门为接地而装设的接地体,自然接地体是指兼作接地体用的直接与大地接触的各种金属构件、金属管道及建筑物的钢筋混凝土基础等。接地体和接地线组成的总体称为接地装置。

根据接地类型的不同,其主要作用略有不同:

1)功能性接地,是指为了保证系统或设备的正常运行,或为了实现电气装置的固有功能、提高县则靠性向进行的接地。如:变压器中性点接地。

2)保护性接地,是指为了保证人身安全而进行的接地。如:电气装置外露导电部分和装置外导电部分的接地;为防止雷电过电压对设备或人身安全的危害而进行的防雷接地;为消除静电对电气装置和人身安全危害而进行的接地。

3)功能性和保护性合一的接地,是将功能性和保护性接地结合在一起的接地。如:屏蔽接地。

8-4 什么叫接地装置?有哪几部分构成?

答:接地体与接地线总称接地装置。由若干接地体在大地中用接地线相互连接起来的一个整体,称为接地网。其中接地线又分为接地干线与接地支线。接地干线一般应采用不少于两根导体,在不同地点与接地网连接。

8-5 什么叫冲击接地电阻?什么叫工频接地电阻?用于防雷保护的接地装置中,应对什么接地电阻有大小的限制?

答:接地电阻指构成接地装置的各部分的电阻之和。

1)工频(50HZ)接地电流流经接地装置所呈现出来的接地电阻称为工频接地电阻。

2)冲击电流(如雷电流)流经接地装置所呈现出来的接地电阻称为冲击接地电阻。

用于防雷保护的接地装置中,应对冲击接地电阻有大小的限制。

8-6 什么叫散流场?什么叫接触电压?什么叫跨步电压?用什么方法可使其减小?

答:由于某种原因有电流流入接地体时,电流就通过接地体向大地作半球形散开,这一电流称为接地电流,接地电流流散的范围称为散流场。

当电气设备绝缘损害时,人站在地面上接触该电气设备,人体所承受的电位差称接触电压。在接地故障点附近行走,人的双脚(或牲畜前后脚)之间所呈现的电位差称跨步电压。跨步电压的大小与离接地点的远近及跨步的长短有关,离接地点越近,跨步越长,跨步电压就越大。离接地电达20m时,跨步电压通常为零。

8-7 直击雷防护装置由哪几部分构成?各部分的作用分别是什么?通常由什么材料制成?答:直击雷防护装置由三个主要的部分组成:

1.接闪器直接截受雷击的避雷针、避雷蒂(线)、避雷网,以及作接闪的金属屋面和金属构件等。避雷针、避雷带(线)、避雷网一般以钢管、钢筋或扁钢等制成。

2.引下线连接接闪器和接地装置的金属导体。一般以钢筋或扁钢等制成,也可以利用建筑物结构柱内的钢筋兼作。

3.接地装置接地体与接地线的总称。可以以钢筋、扁钢和各种型钢制成,也可以利用建筑物基础内的钢筋兼作。

8-8 雷电过电压的防护主要采用什么装置?有哪几种类型?

答:雷电过电压主要采用避雷器来防护。避雷器主要有保护间隙、管式避雷器、阀式避雷器和金属氧化物避雷器等几种类型。

8-9 描述避雷器的特征通常用什么参数?

答:避雷器的工作特征用伏秒特征来描述。伏秒特征是指某一被试绝缘体,在同一波形、不同幅值的冲击电压下,击穿电压与放电时间的关系曲线,它由实验数据绘出,不是一条光滑曲线,而是具有一定分散性的由上下包络线包围的一个范围。

8-10 对供配电系统通常采用哪些防雷措施?

答:1.输电线路的雷电过电压防护

对中低压供配电系统,线路雷电过电压以感应雷过电压为主。输电线路雷击过电压的防护,有以下一些具体措施:

(1)架设避雷线

(2)降低杆塔接地电阻这主要是为了降低雷击杆塔时塔顶电位,减小反击导线发生的机率。(3)加强线路绝缘能提高线路的耐雷水平,降低建弧率,但不能降低过电压大小。

(4)采用中性点不接地或经消弧线圈接地运行方式绝大多数单相落雷闪络接他故障被消弧线圈消除,而在两相或三相落雷时,首先闪络的一相接地不会造成跳闸,闪络后相当于地线,增加了耦合作用,使未闪络相绝缘子串上的电压下降,从而提高了耐雷水平。

(5)装设管式避雷器一般仅在线路绝缘的薄弱点、线路交叉处或大跨距(如过江)处装设,用以限制过电压。只要避雷器的冲击放电电压低于绝缘子串的冲击放电电压,就可避免绝缘子串上发生冲击闪络。另外,管式避雷器本身具有灭弧功能,可以很大的概率保证不至因工频续流引起跳闸。

(6)装设自动重合闸由于雷击造成的闪络大多能在跳闸后自行恢复绝缘性能,故重合闸成功率较高。

2.变配电站的雷电过电压保护

(1)变配电所电气设备的过电压保护一般采用阀式或金属氧化物避雷器对变配电所设备进行保护;避雷器一般安装在母线上,应尽量靠近变压器和其他设备;避雷器与所有被保护设备的电气距离均不能超过其最大允许值,若不能满足要求,则应增设避雷器。

(2)变配电所的进线段保护进线段保护是指在进入变配电所前1~2km这一段架空线路上

加强防雷措施,因此将这段线路称为进线段。进线段保护的目的,一是要降低雷电流幅值,二是要降低雷电波陡度。因为阀式避雷器的通流容量是有限的,且残压与电流大小正相关,因此减小雷电流幅值很有必要;而被保持保护设备上电压高出避雷器的部分与雷电波陡度成正比,或者说保护的最大允许距离与雷电波陡度成反比,因此降低雷电波陡度也是有好处的。3.建筑物的雷电过电压防护

一方面,建筑物内电气装置承受的雷电过电压主要是通过进出建筑物的线缆传入,因此在建筑物电源进出线处,应采取的防雷电过电压的措施与变配电所的进线段保护相似;另一方面,雷电流通过各种途径进入建筑物后形成的雷电过电压对周围的物体可能出现反击放电现象,因此需作等电位连接,使相邻的各部分的电位基本保持一致。

8-11 对建筑物通常采用哪些防雷措施?

答:一方面,建筑物内电气装置承受的雷电过电压主要是通过进出建筑物的线缆传入,因此在建筑物电源进出线处,应采取的防雷电过电压的措施与变配电所的进线段保护相似;另一方面,雷电流通过各种途径进入建筑物后形成的雷电过电压对周围的物体可能出现反击放电现象,因此需作等电位连接,使相邻的各部分的电位基本保持一致。

8-12 雷击电磁脉冲的危害主要有哪些?主要的防护措施有哪些?分别如何起到防护作用?

答:雷击电磁脉冲是指雷电直接去在建筑物防雷装置和建筑物附近所引起的效应。它是一种干扰源,绝大多数是通过连接导体的干扰,如雷电流或部分雷电流、被雷电击中的装置的电位升高以及电磁辐射干扰。

这种干扰脉冲是一种能量脉冲,它既可以以过电压形式出现,也可以以过电流或电磁辐射形式出现,因此,雷击电磁脉冲并不完全是过电压问题,而是一种能量冲击,因此又将其称为“电涌”(surge)或“浪涌”,它对供配电系统中电气设备的绝缘威胁不大,但对用电设备中的信息系统设备的正常工作影响甚大。

防雷击电磁脉冲的系统措施:

l)屏蔽。屏蔽是减少电磁干扰的基本措施。为减少电磁干扰的感应效应,应在需屏蔽的建筑物或房间外部设屏蔽措施;以合适的路径敷设线路和线路屏蔽。

2)接地。每幢建筑物应采用共用接地系统;当互相邻近的建筑物之间有电力和通信电缆连通时,其接地装置互相连接;同时应保证接地电阻符合要求。

3)等电位连接。穿过各防雷区界面的金属物和系统,以及在一个防雷区内部的金属物和系统均应在界面处做符合规范要求的等电位连接。

8-13 什么叫电涌保护器?它与避雷器有哪些异同?

答:电涌保护器(SPD——Surge Protective Device)又称浪涌保护器(以前曾被称为浪涌过电压保护器),是一种限制瞬态过电压并分走电涌电流的器件,主要在低压配电系统和信息系统中,用于对雷电过电压、操作过电压、雷击电磁脉冲或电磁干扰(EMI)脉冲的防护。SPD一般由气体放电管、放电间隙、半导体放电管(SAD)、氧化锌压敏电阻(MOV)、齐纳二级管、滤波器、保险丝等元件单独或组合构成,但至少含有一个非线性元件。SPD与用于高压系统的避雷器有一定的可比性,但不完全相同。电涌保护器的主要参数电涌保护器是用来限制电压和泄放能量的,因此它的参数主要与这两者有关,但在工作中它会对系统造成一些负面影响,它自身的安全也可能受到过电压或过电流的威胁,因此在这两方面也有一些相关参数。

电压保护装置

电压保护装置采用面板式安装,高雅、亮丽的外观,为低压电控装置提升档次。 相序保护器、过欠压保护器等)主要用于交流50/60Hz, 400V)、440V(460V)、660V等电压级别的各种故障检测,对三相输入电源的电压过高、电压过低、断相、错相(逆相序)、三相电压不平衡等提供继电保

复位方式:相序、缺相故障手动复位;不平衡、过欠压故障自动复位,也可按复位键手动复位。断 电后故障锁存功能。 JL-410电压保护装置功能选型 电压保护装置按功能的组合分以下四个系列,每个系列都有不同电压等级的产品。 ●表示具有该功能 ○表示不具有该功能 电压保护装置不同电压等级的产品选型 产品选型举例 1. 如用户需要全部保护功能(过电压保护、欠电压保护、缺相保护、三相电压不平衡保护、相序保护), 使用于380V 电压,那所选择的电压保护装置产品型号,应该为JL-410。 2. 如用户只需要相序保护,缺相保护两种功能,使用于煤矿660V 的电压,那所选的电压保护装置产品 型号应该为JL-411-60。 JL-410电压保护装置功能描述: 1、过压保护:当电网电压大于设定值时启动该项保护功能,动作门限值设定范围OFF-390-490V ,动作 方式为定时限,动作时间设置范围0.1-25s 。保护动作后电网电压恢复到小于设定值10V 以上时,保护器 自动复位,也可按复位键手动复位。用户可选择是否启用该项保护功能。 2、欠压保护:当电网电压小于设定值时启动该项保护功能,动作门限值设定范围300-370V-OFF ,动作 方式为定时限,动作时间设置范围0.1-25s 。保护动作后电网电压恢复到大于设定值10V 以上时,保护器 自动复位,也可按复位键手动复位。用户可选择是否启用该项保护功能。 3、三相电压不平衡保护:当电网电压三相不平衡度大于设定值时启动该项保护功能,不平衡度动作门 限值设定范围OFF-5-30%,动作方式为定时限,动作时间设置范围1-25s 。当电网电压三相不平衡度恢复 到小于设定门限值2%以上时,保护器自动复位,也可按复位键手动复位。用户可选择是否启用该项保护 功能。 三相电压不平衡度计算公式: A ——电压不平衡度 max U ——三相线电压中最大线电压值 % 100max min max ?-=U U U A

2021版防止接地网和过电压事故

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2021版防止接地网和过电压事 故 Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

2021版防止接地网和过电压事故 1根据地区短路容量的变化,应校核接地装置(包括设备接地引下线)的热稳定容量,并根据系统短路容量的变化及接地装置的腐蚀程度对接地装置进行改造。 2根据热稳定条件,接地线不考虑腐蚀时,接地线最小截面应符合规程要求。 3接地装置的焊接质量,接地试验应符合规定,各种设备与主接地网的连接必须可靠,扩建接地网与原接地网间应为多点连接。 4接地装置引下线的导通检查工作应每年进行一次,根据历次测量结果进行分析比较,以决定是否需要进行开挖、处理。 5对于运行10年以上的接地网,应每3~5年开挖检查一次,发现地网腐蚀较为严重时,应及时进行处理。 6认真执行《电力设备预防性试验规程》(DL/T596-2005)中对

接地装置的试验要求,同时还应测试各种设备与接地网的连接情况,严禁设备失地运行。 7接地电阻的测量按照《接地装置工频特性参数的测量导则》(DL475-1992)进行;每4年进行1次接地装置接地电阻的测量。 8接地装置应与线路的避雷线相连,且有便于分开的连接点。当不允许避雷线直接与配电装置构架相连时,接地装置应在地下与避雷线相连,连接线埋在地中的长度不应小于15m。 9配电装置构架上的避雷针(悬挂避雷针的构架)的集中接地装置应与主接地网相连,由连接点至变压器接地点沿接地极的长度不应小于15m。 10独立避雷针(线)宜设独立的接地装置。独立避雷针不应设在人经常通行的地方,避雷针及其接地装置与道路或入口等的距离不宜小于3m,否则应采取均压措施。在非高土壤电阻率地区,其接地电阻不宜超过10Ω。当有困难时,该接地装置可与主接地网连接,但避雷针与主接地网的地下连接点至35kV及以下设备与主接地网的地下连接点之间,沿接地体的长度不得小于15m。

电力系统的过电压保护(第二版)学习

电力系统的过电压保护(第二版) 1、防止雷电过电压的手段:减少架空电力线路雷害事故的基本方法是安装避雷线,降低杆塔接地装置的接地电阻,适当提高线路的绝缘水平,对特殊杆塔接地和绝缘弱点更须加强保护以及广泛采用自动重合闸等;防止发电厂、变电所的电气设备遭受直接雷击的基本方法是装设避雷针或避雷线;防止侵入过电压波的方法是采用性能良好的母线避雷器和加强进线保护段。早110kV及以下电力网中,绝缘水平主要由雷电过电压决定。 2、内部过电压是由系统两种运行情况之间的过渡过程引起的。操作过电压、弧光接地过电压、谐振过电压。操作和故障》振荡》高次谐波》过电压。影响因素:电力网结构、系统容量及参数、中性点接地方式、断路器的性能、母线上的出现路数、电力网的运行接线、操作方式。@考虑操作过电压时,还要考虑系统突然失去负荷后或者对称短路后切除故障时出现的动态电压升高或空载长线路由于导线的电容效应在线路末端引起的工频电压升高。操作过电压在与动态过电压同时出现时,就有可能引起设备绝缘击穿的事故,在500kV系统中,要采用并联电抗器。@操作过电压取决于中性点接地方式,时间短。a、切电容负荷》断路器电弧重燃》电磁振荡,切空载长线》与线路长度有关的高频振荡电压,空载线路和并联电容器。b、切除含有电感的设备如空载变压器、电抗器、非同期电动机、熔断器熔断、变压器中性点接有消弧线圈时断开最后一条线路的两相接地故障,都会出现过电压。持续时间短的高频振荡波,对绝缘的作用与雷电相似。c、中性点不接地或经消弧线圈接地方式(60kV以下采用,110kV~154kV用经消弧线圈接地方式,以上中性点直接接地),在单相接地故障时,仍能保持三相电压平衡,继续供电。经消弧线圈接地可以迅速消除单相的瞬间接地电弧,好处很大,尤其在电容电流较大的系统中更应采用。近年来电缆线路大量投入,电容电流迅猛增加,也可以改用高阻或低阻接地方式。@谐振过电压,线性谐振过电压、参数谐振过电压、铁磁谐振过电压。时间较操作过电压长。a、铁磁谐振过电压,断路器非全相拉合闸或保护熔断器非全相动作,在中性点不接地的变压器中性点上产生。解决措施:在中性点上加装高值阻尼电阻(以M欧计),消除铁磁谐振过电压;避免双侧电源时的工频电压升高,必要时采用放电间隙。

过电压保护

过电压及过电压保护 一什么是过电压 在电力系统中由于某种原因出现的对设备绝缘有危害,暂时性的电压升高现象。 二过电压的分类 分为:内部过电压和外部过电压 (1)系统运行中由于由于断路器的正常操作或系统发生事故时,因电磁能转换所以起的过电压,叫内部过电压。如操作过电压和谐振过电压. 工频过电压 (2)外部过电压(也叫大气过电压)它有两种形式:直击雷(雷电直接对建筑物或其他物体放电,其过电压所以起的雷电流通过这些物体流入大地,产生破坏性很大的热效应和机械效应)。感应雷就是雷电的静电感应或电磁感应所引起得过电压 内部过电压 操作过电压产生主要有3种形式(1)切除空载变压器。(在切除空载变压器时,因断路器可能在电流未过零点时分断,变压器绕组中的磁场能量转换为电能,从而产生过电压。这种过电压与变压器空载电流的大小和断路器的灭弧能力有关。)(2)分合空载长线路。(分合空载长线路时由于断路器触头间电弧多次重燃引起的过电压)(3)弧光接地(在中性点不接地系统中,当发生间歇性的弧光接地时,再发在非故障相引发的高频振荡过电压)工频过电压产生主要有3种形式(1)空载长线路的电压升高(2)三相中性点不接地系统发生单相接地时非故障相对地电压的升高(3)超高大容量线路从满载状态突然甩掉负荷时的电压升高。这种过电压对电器设备的绝缘影响不大,但是操作过电压一般是在工频过电压的基础上发展起来的。 谐振过电压产生主要有2种形式(1)当电网参数选择不当,因某一线路或母线的自振频率与电源谐波频率之一接近,就会产生谐振过电压。(2)高压真空开关的同期性差 三过电压保护 (1)外部过电压保护(也就是防雷保护) 雷电的危害 1.热效应。烧断导线,烧毁电器设备。 2.机械效应。当雷电直接击中房屋、电杆、树木,雷电电流经过木质纤维时,会产生高热,将其炸裂破坏。 3.电磁场效应。在雷电电流通过的周围,将产生很大的电磁场,使附近的导线或金属结构产生很高的感应电压,击穿电气设备一引起火灾和爆炸从而产生极其严重的破坏作用。 4.雷电的闪络放电。烧毁绝缘子造成断路器跳闸,线路停电等供电事故 防雷保护装置 避雷针.(用来保护发电厂,变电所) 作用:将雷电吸引到金属针上,安全的导入大地,从而保护附近的建筑和 设施免受雷击。 原理:在雷雨天气,建筑物上空出现带电云层时,迅雷针被感应上大量电荷,由于避雷针针头是尖的,而静电感应时,导体尖端总是聚集了最多的电荷.这样,避雷针就聚集了大部分电荷.避雷针又与这些带电云层形成了一个电

高压电工入网考试题单选题 (电力系统过压)

六、单选题(电力系统过压) 1. 电力系统过电压分成(A.外部过电压和内部过电压)两大类。 2. 下列关于保护变压器的角型间隙安装位置描述正确的是(C.高压熔断器的内侧)。 3. 为防止直接雷击高大建筑物,一般多采用(A.避雷针)。 4. 烟囱顶上的避雷环采用镀锌圆钢或镀锌扁钢,其尺寸不应小于下列数值:(C.圆钢直径12mm;扁钢厚度4mm,截面积100mm2)。 5. (D.避雷器)用来防护高压雷电波侵入变、配电所或其他建筑物内,损坏被保护设备。 6. 普通阀型避雷器由于阀片热容量有限,所以只允许在(A.大气过电压)下动作。 7. 下列避雷针高度为h,其影响系数描述正确的是(A.h<30m时P=1)。 8. 外部过电压,与气象条件有关,又称为(B.大气过电压)。 9. 在防雷装置中用以接受雷云放电的(B.金属导体)称为接闪器。 10. 在高杆塔增加绝缘子串长度,线路跳闸率(A.降低)。 11. 屋顶上单支避雷针的保护范围可按保护角(A.60°)确定。 12. 独立避雷针及其接地装置与道路的距离应(A.大于)3m。 13. 阀型避雷器都由火花间隙和阀电阻片组成,装在密封的瓷套管内。火花间隙用铜片冲制而成,每对间隙用 (C.0.5~1.0mm)厚的云母垫圈隔开。 14. 35~110kV线路电缆进线段为三芯电缆时,避雷器接地端应与电缆金属外皮连接,其末端金属外皮应 (D.直接接地)。 15. 雷季经常运行的进出线路1条时,10kV避雷器与变压器的最大电气距离是(D.15)m。 16. 氧化锌避雷器的阀片电阻具有非线性特性,在(B.电压超过其启动值时),其阻值很小,相当于“导通”状态。 17. 一般地,电力系统的运行电压在正常情况下不会超过(B.允许最高工作电压)。 18. 其他接地体与独立避雷针的接地体之地中距离不应(B.<)3m。 19. 以下过电压中(C.操作过电压)属于内部过电压。 20. 多雷区,如变压器高压侧电压在35kV以上,则在变压器的(D.高、低压侧)装设阀型避雷器保护。 21. 无续流管型避雷器安装时其轴线与水平方向的夹角应(A.不小于45°)。 22. 下列关于保护间隙特点描述正确的是(B.灭弧能力小)。 23. 同等高度的避雷针,平原的保护范围(B.大于)山区的保护范围。 24. 雷季经常运行的进出线路3条时,10kV避雷器与变压器的最大电气距离是(A.27)m。 25. 雷电放电时,强大的雷电流由于(A.静电感应和电磁感应)会使周围的物体产生危险的过电压,造成设备损 坏、人畜伤亡。雷电的这种破坏形式称为感应雷。 26. 在土壤率不大于100Ω·m的地区,独立避雷针接地电阻不宜超过(A.10Ω)。 27. 下列关于低压阀型避雷器特点描述正确的是(D.串联的火花间隙和阀片少)。 28. 单支避雷针的高度为h,其地面保护半径是(B.1.5h)。 29. 在防雷装置中用以接受雷云放电的金属导体称为(A.接闪器)。 30. 内部过电压是在电力系统内部(D.能量)的传递或转化过程中引起的过电压。 31. 为防止直接雷击架空线路,一般多采用(B.避雷线)。 32. 金属氧化锌避雷器特点有动作迅速、(A.无续流)、残压低、通流量大。 33. 在腐蚀性较强的场所引下线应适当(B.加大截面)或采用其他防腐措施。 34. 与FZ型避雷器残压相比,FS型避雷器具有(A.残压低)的特点。 35. 管型避雷器由(B.产气管、内部间隙和外部间隙)三部分组成。 36. 单支避雷针的保护范围是一个(C.近似锥形空间)。 37. 下列关于避雷线保护角描述正确的是(D.多雷区的线路保护角适当缩小)。 38. 金属氧化性避雷器应安装垂直,每一个元件的中心线与避雷器安装中心线的垂直偏差不应大于该元件高度的 (B.1.5%)。 39. 下列关于氧化锌避雷器特点描述正确的是(D.残压低)。 40. 对于需要频繁投切的高压电容器,为了防止断路器触头弹跳和重击穿引起操作过电压,有时需要并联 (C.金属氧化物避雷器)。 41. 金属氧化性避雷器应(C.垂直立放)保管。 42. 外部过电压通常指(C.雷电)过电压。

各种过电压保护器比较分析

1过电压防护问题 1.1过电压防护的背景 建国初期我国中压电网主要由架空线路和油电缆构成,空气绝缘与油绝缘具有可恢复性,3~4倍的内部过电压对绝缘构不成威胁,所以当时的中压电网只需要对高幅值的雷电过电压采取限制措施,不需要考虑内部过电压的防护问题。采取的具体措施是在相与地之间各安装一只普通的阀式避雷器,用于防护雷电造成的高幅值的相对地过电压。 到了上世纪90年代以后,我国中压电网大量采用真空断路器取代了原有的少油断路器。真空断路器相比少油断路器的免维护、寿命长、运行可靠。但由于真空灭弧室的超强的灭弧能力,往往在电弧过零点之前就被强行截断。真空断路器截流时电感储存的磁能与杂散电容储存的电能之间相互转换的振荡过程,使得操作过电压频繁发生。 企业中压配电网越来越多的由电缆线路取代了架空线路,与架空线路的可恢复性绝缘不同,交联聚乙烯电缆的固体化绝缘是不可恢复的,绝缘击穿具有累积效应。3~5倍的内部过电压会在绝缘介质内部产生局部放电,产生细微的破坏,反复多次的内部过电压就会造成绝缘的累积破坏,导致固体绝缘的运行寿命会明显缩短。 1.2普通避雷器不能限制内部过电压 电网的内部过电压一般在相电压的3—4倍之间,多数在3.5倍左右。过去采用的阀式避雷器是按照躲过电网内部过电压设计的,例如: 工频放电电压U(动作电压)=1.1×3.5×(1.15Ue/3) 按照这样原则设计的参数,普通避雷器在电网内部过电压下是不放电的。另一方面,包括操作过电压、弧光接地过电压在内的电网内部过电压是发生在相与相之间的,而普通避雷器是接在相与地之间的。所以,普通避雷器不能限制电网的内部过电压。 在电缆线路与真空断路器大量使用的大背景下,我国中压配电线路的绝缘越来越多的受到系统内部过电压的威胁,过去的阀式避雷器和普通的氧化锌避雷器已无法满足系统内部过电压与雷电过电压的双重防护要求。由于能不过电压不能有效限制,导致交联聚乙烯电缆一般在投运5~8年后事故率明显上升。 1.3无间隙氧化锌避雷器分析 单只无间隙氧化锌避雷器其核心器件是氧化锌非线性电阻,或者叫氧化锌阀片。单只结构,安装于相与地之间。的设计初衷是针对架空线路不需要考虑其内部操作过电压的绝缘危

过电压保护(装置)及维护

过电压保护(装置)及维护 一、过电压的定义及分类 1、过电压:超过电力系统最高工作电压的电压,称为过电压。 2、过电压的分类 ①外部过电压(雷电过电压):由电力系统外部的雷电引起的 过电压。 ②内部过电压(操作过电压、谐振过电压):由电力系统内部 原因引起的过电压。 二、过电压保护措施的选用原则 一个世纪以来,始终是遵循着如下原则。 1、选用保护措施、避雷器保护性能、绝缘水平等,归根到底 是经济问题。 保护措施可靠性越高,避雷器保护性能越优,保护系统投资和避雷器售价越大,可以降低绝缘造价或减少运行故障损失得到回报。反之,保护措施可靠性越低,避雷器保护性能越差,保护系统投资和避雷器售价越小,绝缘造价或运行故障损失越大。 总之,选用过电压保护措施,力求达到最佳经济效益。 2、任何防雷技术措施应经实践检验原则 至今,在实验室里不能逼真模拟自然雷。理论计算和模拟试验 只能作某些定性分析。防雷保护技术措施主要依据长期的大量

的运行经验积累,不断地修正和改进。国际上常出现过以假设 为依据的形形色色的防雷保护装置,经实践检验被淘汰掉了。 三、过电压保护措施的发展概况 1、人为制造弱绝缘,最早采用的,也是最简单的是放电间隙。 迄今为止,人们还在应用放电间隙。仅是结构不断改进。放电 间隙存在的问题是不能自动熄灭工频续流电弧。 2、1870~1890年,主要是放电间隙和熔丝构成变电设备防雷 保护装置。 3、1896~1908年,制成羊角放电间隙。为了增强间隙熄弧能 力,在间隙上加装磁吹线圈。为了限制工频续流,间隙串联线 性电阻。随后发展多间隙,构成多间隙又串又并联线性电阻的 防雷保护装置。 4、1907~1920年,发明了氧化铝和氧化铅电阻器来替代多间 隙串并联线性电阻,这是阀式避雷器的原型。 5、1920~1930年,又将氧化铝和氧化铅避雷器加装外串羊角 放电间隙,或内串间隙。比较广泛地采用羊角放电间隙与消弧 线圈配合使用。 6、1930~1940年,发明了碳化硅非线性电阻片。使阀式避雷 器起了质的变化。 7、1940~1950年,碳化硅阀式避雷器迅速发展和普及。至今, 我国仍在采用这种普阀避雷器。即我国第一代阀式避雷器。

电力系统过电压及接地装置

课程设计 设计题目:电力系统过电压与接地装置 班级:电气化铁道技术1132 姓名:刘浩 学号:201108023211 指导教师:赵永君 二〇一三年六月十九日 摘要 本课程设计中和运用高电压技术、电力系统过电压、接地技术等知识,采用理论与实践相结合的方法,研究电力系统各种过电压防护措施研究接地装置的测量方法和降阻方式,设计电力系统的接地装置等。 关键词:内部过电压雷电过电压接地保护 前言 电力系统在特定条件下所出现的超过工作电压的异常电压升高,属于电力系统中的一种电磁扰动现象。电工设备的绝缘长期耐受着工作电压,同时还必须能够承受一定幅度的过电压,这样才能保证电力系统安全可靠地运行。研究各种过电压的起因,预测其幅值,

并采取措施加以限制,是确定电力系统绝缘配合的前提,对于电工设备制造和电力系统运行都具有重要意义。 为了保护电力系统、用电设备和人员的安全,往往采用接地的方式来保证设备和人员的安全。本课程设计根据《高电压技术》简单的对电力系统的过电压与接地装置进行研究。 电力系统过电压与接地装置 一、电力系统过电压 在电力系统中,由于雷电、电磁能量的转换会使系统电压产生瞬间升高,其值可能大大超过电气设备的最高工频运行电压。其对电力系统的危害是很大的。电力系统过电压主要分以下几种类型:雷电过电压、工频过电压、操作过电压、谐振过电压。 1内部过电压 1.1工频过电压 系统中在操作或接地故障时发生的频率等于工频(50Hz)或接近工频的高于系统最高工作电压的过电压。特点是持续时间长,过电压倍数不高,一般对设备绝缘危险性不大,但在超高压、远距离输电确定绝缘水平时起重要作用当系统操作、接地跳闸后的数百毫秒之内,由于发电机中磁链不可能突变,发电机自动电压调节器的惯性作用,使发电机电动势保持不变,这段时间内的工频过电压称为暂时工频过电压。随着时间的增加,发电机自动电压调节器产生作用,使发电机电动势有所下降并趋于稳定,这时的工频过电压称为稳态工频过电压。

2010级电力系统过电压复习题

1、试分析雷击杆塔时影响耐雷水平的各种因素的作用,工程实际中往往采用哪些措施 来提高耐雷水平 2、输电线路有哪些防雷措施?试分析各种防雷措施的作用。 3、什么是彼德逊法则?其适用范围如何 4、电弧接地过电压产生的原因是什么,影响电弧接地过电压的因素有哪些,如何消除 电弧接地过电压? 评价消弧线圈限制电弧接地过电压的作用 5、变电站入侵雷电波防护设计的原则是什么?对于接线复杂的变电所该如何处理避 雷器的安装位置?阀型避雷器与被保护设备间的电气距离对其保护作用有何影响? 6、断路器的并联电阻为什么可以限制空载分、合闸过电压?它们对并联电阻值的要求 有何区别? 7、什么是电力系统的绝缘配合? 绝缘配合的方法有哪几种? 8、说明直配电机防雷保护的基本措施及其原理。 9、断路器的并联电阻为什么可以限制空载分、合闸过电压?它们对并联电阻值的要求 有何区别? 10、试分析中性点运行方式对绝缘水平的影响? 11、试求线路、电感、电容的贝瑞隆等值电路,并描述用贝瑞隆法计算电力系统过 电压的具体步骤。 12、试分析冲击电晕对线路波过程的影响。 13、试说明在何种情况下,保护变电所的避雷针可装设在变电所构架上,何种情况 下又不行,为什么 14、试画出25000~60000kW直配电机的保护接线图,并说明各种保护原件的作用。 15、试分析断路器灭弧能力的强弱对切除空载线路过电压和切除空载变压器过电 压的影响。 16、为什么在超高压电网中很重视工频电压升高?引起工频电压升高的主要原因有哪些? 17、220kV及以下电压等级的电气设备,往往用1min工频耐压试验代替雷电冲击 与操作冲击试验,试分析如何确定1min短时工频耐受电压值? 18、试分析保护间隙、管型避雷器、阀型避雷器和氧化锌避雷器的工作原理 19、平原地区110kV单避雷线线路水泥杆塔如图所示,绝缘子串由6×X-7组成, R为7Ω,导线和避雷线长为1.2m,其正极性U50%为700kV,杆塔冲击接地电阻 i 的直径分别为21.5mm和7.8mm,15℃时避雷线弧垂2.8m,下导线弧垂5.3m,其它数据标注在图中,单位为m,试求该线路的耐雷水平和雷击跳闸率。

简述过电压保护器试验方法

简述过电压保护器试验方法 摘要:在每年的电气预防性试验中,检修试验人员都误认为过电压保护器是一个整体,无法进行正常的高压电气试验,只能放弃过电压保护器电气试验,从而给电力系统安全运行带来了潜在的隐患。 关键词:过电压保护器电气试验 引言:目前,过电压保护器在我们新密局李堂变、园区变、李湾变等变电站10kV或35kV高压开关柜内部安装,为开关柜、母线提供过电压保护作用,如不能定期进行电气预防性试验,一定影响到开关柜等电气设备正常运行。 一、过电压保护器试验方法 过电压保护器在投入使用前以及使用后每年都应进行预防性试验,试验时保护器的四个端子应从其它电器设备上拆下,不允许和其它设备连接时进行试验,试验的具体内容如下: 1)外观检查:检查外绝缘有无损伤。 2)对于无间隙组合式过电压保护器,应进行以下试验:直流 1mA 参考电压:在保护器两两端子之间施加直流电压,当流过保护器的电流稳定于 1mA 后,读取此时保护器两端子之间的电压数值,该值不得小于技术参数表中的规定值。 泄漏电流:在保护器两两端子间施加 0.75 倍的直流 1mA 参考电压,此时流过保护器的泄漏电流不得大于50μA。 无间隙组合式过电压保护器不允许做工频放电电压试验。 3) 对于串联间隙组合式过电压保护器,应进行工频放电电压试验,

试验接线如图所示。试验时在保护器 A、B、C、D 两两端子之间分别施加工频电压,调节自耦变压器 ZT,缓慢加压,观察安培表 A 的电流变化。当安培表 A 的电流突然增大时,表示间隙电极放电,记录此时电压表 V 的电压值,此值即为工频放电电压在变压器原边的数值,此值乘以升压变压器 ST 的变比,即为该两相的工频放电电压值。由于放电电极允许有一定的分散度,以及测试方法的差异,现场测试值不应超出出厂试验值的 20%。如果超出该范围,应停止运行,及时通知厂家处理。 二、过电压保护器注意事项 1)应根据电压等级和被保护对象正确地选择保护器的型号和技术参数。 2)应提供所需连接电缆的长度L。 3)开关柜进行耐压试验时,应将保护器四个端子从母线上拆下,否则,可能损坏保护器。

过电压保护

电力电子器件的保护 一 、过电压保护 电力电子装置中可能产生的过电压外分为外因过电压和内因过电压两类。外因过电压主要来自雷击和系统中的由分闸、合闸等开关操作引起的。电力电子装置中,电源变压器等储能元器件,会在开关操作瞬间产生很高的感应电压。 内因过电压主要来自电力电子装置内部器件的开关过程,包括: (1)换相过电压:由于晶闸管或者与全控器件反并联的续流二极管在换相结束不能立刻恢复阻断能力,因而有较大的反向电流过,使残存的载流子恢复,而当其恢复了阻断能力时,该反向电流急剧减小,会由线路电感在器件两端感应出过电压。 (2)关断过电压:全控型器件在较高频率下工作,当器件关断时,因正向电流的迅速降低而由线路电感在器件两端感应出的过电压。 电力电子电路常见的过电压有交流测过电压和直流测过电压。常用的过电压保护措施及配置位置如图1-1所示。 S F RV RCD T D C U M RC 1 RC 2 RC 3 RC 4 L B S DC 图9-10 过电压保护措施及装置位置 F ─避雷器 D ─变压器静电屏蔽层 C ─静电感应过程电压抑制电容 1RC ─阀测浪涌过电压抑制用RC 电路 2RC ─阀测浪涌过电压抑制用反向阻断式RC 电路 RV─压敏电阻过电压抑制器 3RC ─阀器件换相过电压抑制用RC 电路 4RC ─直流测RC 抑制电路 RCD─阀器件关断过电压抑制用RCD 电路

过电压保护所使用的元器件有阻容吸收电路、非线性电阻元件硒堆和压敏电阻等,其中RC 过电压抑制电路最为常见。由于电容两端电压不能突变,所以能有效抑制尖峰过电压。串联电阻能消耗部分产生过电压的能量,并抑制回路的振荡。 视变流装置和保护装置点不同,过电压保护电路可以有不同的连接方式。图9-11所示为RC 过电压抑制电路用于交流测过电压抑制的连接方式。 + -+ -a) b) 网侧 阀侧 直流侧 C a R a C a R a C dc R dc C dc R dc C a R a C a R a 图9-11 RC 过电压抑制电路联结方式 a)单相 b)三相 二、过电流保护 过电流分为过载和短路两种情况。过流保护常采用的有快速熔断器、直流快速断路器、过电流继电器保护措施,以晶闸管变流电路为例,其位置配置如图2-1所示。

防雷和接地技术

雷击过电压损坏设备可分为两种情况,一种是受雷电直击,另一种受感应雷影响所致。据统计电子设备受雷电直击而损坏的机率很小,而绝大多数损坏为感应雷造成,雷电行波通过传输信息的电路线传至电子设备使其某些电子元件受损。 还有一种情况值得重视的是电子设备附近的大地或其他设备的接地体,因受直击雷引起的电位升高,会使电子设备造成反击,使之对地绝缘击穿。根据传统经验电子设备的地线与电源设备的地线分开设置是减少这种雷电侵入途径的有效措施之一。所以凡联结有输人或输出线路的电子设备应考虑以上三条侵入途径。 不论那种途径侵入的雷击过电压加在电子设备上冲击引起两种过电压,一种是:使平衡电路某点出现超过允许的对地过电压,称为纵向过电压,地电位上升引起的反击也属于从地系统侵入的纵向过电压;另一种是平衡电路线间或不平衡电路线对地出现的过电压称为横向过电压。使用对称传输线的设备,横向过电压是因线路两线间存在不同的纵向过电压;或因纵向防护元件放电性能的分散性(如动作时间有快慢的差别)是造成横向过电压的原因,如果在平衡线路上的两个纵向防护元件,其中一路故障或失效这就造成了横向过电压的极限情况。对不平衡电路如对连接同轴电缆的电子设备其纵向过电压即横向过电压。雷电冲击过电压可导致绝缘击穿,也可产生过电流。进行纵向雷击试验的目的,在于检验设备在纵向过电压下元器件对地的绝缘。横向雷击试验则是检验两线间出现冲击过电压时设备耐受冲击的能力。 在电子设备中,易受雷击过电压损坏的元部件,大多数是靠近设备的入口端,如纵向过电压会击穿线路和设备间起匹配作用的变压器匝间、层间、或线对地绝缘等。横向过电压可随信息同时传至设备内部,损坏设备内的阻容元件及固体元件。设备中元器件受损的程度,取决于元器件绝缘水平,即耐受冲击的强度,对具有自复能力的绝缘,击穿只是暂时的,一旦过压消失,即可恢复。有些非自复性的绝缘介质,冲击时只有小电流流过,一次冲击不会立即中断设备,但经过多次冲击,随着多次冲击的累积可能会使元件逐渐受损最终导致毁坏,这就是为什么在试验时要试验冲击次数,极性和间隔的原因所在。 电子元件受雷击损坏的情况,概括起来不外下列三种:(1)受过电压损坏的,如电容器、变压器及电子元件的反向耐压。 (2)受过电压冲击能量损坏的,如二极管PN结正向损坏,冲击危险程度在于流过元器件的过电流大小和持续时间,即能量大小。(3)易受冲击功率损坏的,对元件的危害决定于冲击电压峰值和由此而产生的过电流。 防雷元件性能 防雷元件的冲击特性与试验方法的关系甚为密切,它是规定防雷元件技术参数标准的基础之一。但试验方法又与雷电波形有联系。因为电子设备大都在一定的频率范围内工作,不同频率范围的通路,对冲击波有着不同的响应。因此,对雷电冲击波形进行频谱分析,无论对电子设备的防雷设计和试验都是有意义的。 防雷元件种类繁多,概括起来可分间隙式的(如放电间隙、阀型避雷器、放电管等)和非间隙式的(如压繁电阻、齐纳二极管),再推广一下像扼流线圈、电阻、电容……也可归人这一类,从动作时间来说有快慢的区别。 使用在电涌保护器(sPD)中几类元件的有关参数,虽然有厂家产品说明,但在选用时有的参数还须注意了解。例如放电管的伏秒特性:表征放电管点火电压与时间的关系。它反映了各种不同上升速度的电压波作用在放电管上其点火电压和延迟时间的关系。由伏秒特性曲线可以判断放电管的防护能力。放电管属间隙式,有空气间隙、气体放电管等。再如氧化锌压敏电阻,是一种对电压敏感的元件,是一种陶瓷非线性电阻器,有氧化锌、氧化硅。这种元件,其电压非线性系数高、容量大、残压低、漏电流小、无续流、伏安特性对称、电压范围宽、响应速度快、电压温度系数小等特点。并且有结构简单,成本低等优点,是目前广泛应用的过电压保护器件。适用于交流电压浪涌吸收和各种线圈,接点间过电压的吸收和灭弧,在电子器件过电压保护中广为应用。在选用时关注的是通流容量;按规定的电流波形,在一定的试验条件下施加的冲击电流值,压敏电阻所能承受冲击电流的能力。我国对压敏电阻的考核一般以8/20us波形,在室温条件下,间隔5分钟单方向冲击两次后,5分钟内测试压敏电阻的起始动作电压Vlma值的变化率在百分之十以内时,冲击电流的最大幅值定为通流容量。压敏电阻的残压(LJres):压敏电阻通过电流时,在其两端的电压降谓之残压。通常均以规定的波形,通过不同的电流幅值进行残压测试。目前采用8/20us电流波形,以100A、1000A、3000A、5000A及该元件的满通容量进行残压试验。另外还有半导体浪涌抑制器件:如瞬间二极管,它是一种过箝压器件,简单TKS,利用大面积硅园锥P-N结的雪崩效应实现过箝位,TRS响应速度快、漏电流小,是极佳的过电压吸收器件。齐纳二极管较为常用,其无极性,正反向具有相同的保护特性,但器件的

消弧消谐及过电压保护装置

AL-XHZ系列消弧消谐及过电压保护装置 一、概述 传统消弧技术概述 长期以来,我国3~66KV的电网大多采用中性点不接地的运行方式。这种电网具有结构简单、投资小,供电可靠性高的优点。该电网发生稳定单相接地故障时,系统线电压不变,只是非故障相的对地电压升高到线电压,虽然该系统中的电气设备的绝缘均可承受长期线电压的强度可以带故障运行两小时。但是,如果系统发生的单向接地故障为间歇性弧光接地,则会在系统中产生高达3.5倍相电压峰值的过电压,如此高的过电压如果数小时作用于电网,会对电气设备的绝缘造成损伤,甚至会造成健全相对地绝缘击穿,进而发展成为相间短路事故。在间歇性弧光接地过程中,还会形成多频段振荡回路,不仅会产生高幅值的相对地过电压,而且还可能出现高幅值相间过电压,使相间绝缘闪络,造成相间短路事故。 随着我国对城市及农村电网的大规模技术改造,城市、农村的配电网必定向电缆化发展,系统对地电容电流在逐渐增大,弧光接地过电压问题也日益严重起来。运行经验证明,当这类电网发展到一定规模时,内部过电压,特别是电网发生单相间歇性孤光接地时产生的孤光接地过电压,及特殊条件下产生的铁磁谐振过电压已成为这类电网设备安全运行的一大威胁,其中以单相弧光接地过电压最为严重。为了解决上述问题,不少电网在电网中性点装设消弧线圈,当系统发生单相弧光接地时,利用消弧线圈产生的感性电流对故障点电容电流进行补偿,使流经故障电流减小,从而达到自然熄弧的目的。运行经验表明,虽然消弧线圈对抑制间歇性弧光接地过电压有一定作用,但在使用中也发现消弧线圈存在的一些问题。 1、由于电网运行方式的多样化及弧光接地点的随机性,消弧线圈要对电容电流进行有效补偿却有难度,且消弧线圈仅仅补偿了工频电容电流,而实际通过接地点的电流不仅有工频电容电流,而且包含大量的高频电流及阻性电流,严重时仅高频电流及阻性电流就可以维持电弧的持续燃烧。 2、当电网发生断线、非全向、同杆线路的电容耦合等非接地故障,使电网的不对称电压升高,可能导致消弧线圈的自动调节控制器误判电网发生接地而动作,这时将会在电网中产生很高的中性点位移电压,造成系统中一相或两相电压升高很多,以致损坏电网中的其它设备。 3、消弧线圈体积大,组件多,成本高,安装所占场地较大,运行维护复杂,而且随着电网的扩大,消弧线圈也要随之更换,不利于电网的远景规划。

防雷接地技术标准和规范标准[详]

通信、计算机、监测监控网络机房 设置防雷接地技术规范指导意见 第一部分:总则 第一条:本技术指导意见适用于集团公司所有通信、计算机、监测监控设备及机房。 第二条:通信、计算机、监测监控设备和机房的接地及防雷应做到确保人身和通信设备的安全以及通信设备的正常工作。 第二部分:机房及设备防雷接地的技术标准和条例 第三条:机房及设备防雷接地应执行下列技术标准和条例:YDJ26-89《通信局(站)接地设计暂行技术规范》(综合楼部分); YD 2011-93《微波站防雷与接地设计规范》; YD 5068-98《移动通信基站防雷与接地设计规范》; YD 5078-98《通信工程电源系统防雷技术规定》; YD 过 5098-2001《通信局(站)雷电过电压保护设计规范》; GA371-2001《计算机信息系统实体安全技术要求》; GB2887-2000《电子计算机场地通用规范》; GB50174-93《电子计算机房设计规范》; GBJ57-83《建筑防雷设计规范》; YD5003-94《电信专用房屋设计规范》; 《煤矿安全规程》;

《通讯机房静电防护通则》; 以上标准是为了解决综合通信大楼、交换局、数据局、模块局、接入网站、IP 网站、移动通信基站、卫星地球站、微波站、监测监控机房及设备等因雷电感应通过电源线、信号线、网络数据线、天馈线、遥控系统、监控系统引入的雷害,确保通信设备的安全和正常运行而编制的。 第四条:所有通信、计算机、监测监控网络机房安装的防雷产品应 当符合国务院气象主管机构规定的使用要求;所有通信、计算机、监测监控场(站)、机房所建防雷设施应符合相关技术标准、规范。 第五条:从事通信、计算机、监测监控网络机房防雷工程的企业,应当持有国务院气象主管机构颁发的《防雷工程专业设计资质证》和《防雷工程专业施工资质证》;工程设计、施工人员应当持有气象主管机构颁发的《防雷工程专业设计资格证》和《防雷工程专业施工资格证》。工程完工后,应将设计施工单位及个人的资质资格证复印件及竣工验收资料等存档备查。 第六条:通信、计算机、监测监控网络机房防雷工程实行设计审核和竣工验收制度。防雷工程的设计、施工单位,必须将防雷工程设计方案报送当地气象主管机构审核,经审核合格后,方可交付施工。工程竣工后,须经法定防雷检测机构检测合格并报当地气象主管机构验证备案后,方可投入使用。 第三部分:机房及设备防雷接地的安全技术要求 第七条:

消弧及过电压保护装置控制器说明书

消弧及过电压保护装置控制器 说 明 书 安徽凯民电力技术有限公司

单位名称:安徽凯民电力技术有限公司 地址:安徽省合肥市高新区科学大道102号邮编:230088 TEL:(0551)5312386 FAX:(0551)5322512

一、概述 在我国3~35KV供电系统中,大部分为中性点不接地系统,这种系统在发生单相接地时,电网仍可带故障运行,这就大大降低了运行成本,提高了供电系统的可靠性,但这种供电方式在单相接地时容易产生弧光接地从而可能引发相间短路,给供电设备造成了极大的危害。以前的解决办法是在中性点加装消弧线圈补偿电容电流来抑制故障点弧光发生的机率。很显然,这种方法的目的是为了消除弧光,但由于消弧线圈的自身的诸多特点,很难对电容电流进行有效补偿,特别是高频分量部分对供电设备造成的危害无法克服。安徽鸿宇电气技术有限公司在研究各种消弧线圈的基础上,提出全新的概念,研制出了智能快速消弧过电压保护装置,该装置在系统出现弧光接地时,通过可以分相控制的真空接触器,使故障相接地,达到彻底消除弧光的目的。 消弧及过电压保护装置控制器,是针对智能快速消弧过电压保护装置研制的一种智能型控制器。该控制器通过P T互感器检测出故障相,然后发出控制信号命令故障相的接地真空接触器闭合,使弧光接地变成金属性接地。 一、功能及特点 1、本控制器结构紧凑,技术先进。控制器的核心采用Mic roc hip 公司生产的PIC单片机和一些外围器件构成信号采集、数据 处理系统。 2、根据信号采集、数据处理结果,发出相应的信号。PT断线、 金属性接地,只报警而不接地;当系统出现弧光接地时,微 机综合控制器作出判断同时发出动作信号,让接触器动作, 使系统对应相转变为金属性接地。

工作接地和保护接地的区别

工作接地和保护接地的区别 保护接地:通信设备金属外壳及其他非正常带电部分的接地。 工作接地:在AC/DC电源内或配电屏内(注意是在电源内部),输出直流48V总接线排的正极接地;对于24系统,是直流24V的负极接地。 工作接地的概念不是针对直流用电通信设备的48V正极(或24的负极)的电源线连接,直流用电通信设备的48V正极(或24的负极)到电源设备的连接应该属于电源线连接的概念,不应属于接地线连接范畴。 屏蔽接地就是一种工作接地; 电器外壳接零线就是保护接地; 两次以上的零线接大地就是重复接地. 电力系统中的"中性"概念 ~在电力变送和市电供用系统中,出于经济性上的考虑,常常采用3相交流的模式馈送电能。 ~3个交流电的相位互隔120°,其矢量和为零。(注意,包括电压和电流) ~对市电用户,直接使用3相电并不方便。因此拆成3个单相电送往终端用户。 ~这3个交流电源的一端连接在一起,形成一个公共“点”。(即星形接法) ~这样一个点对3个相电来说,是对称中立的。所以叫“中性点”。 ~同理,若3相负载也按星形接法,也会形成一个公共点。为避免混淆,我们叫做“负载中点”。~由于3个独立的单相负载大小不可能一致,所以负载中点就不可能对称中立。 ~为防止3个单相电源的不平衡,就要增加一条电线连接电源中性点和负载中点。 ~这条线把负载中点的电位钳制在电源中性点上,并通过不平衡电流。这就是“中性线”。 ~这就是所谓“三相四线制”。它仅用于市电系统。 ~在这个供电制度中,出于系统安全的要求,其中性点是与大地连接在一起的。所以这时的中性线也叫零(电位)线。 ~而在不需要3个单相拆分供电的电力系统中(例如高压输电和三相动力),一般只在电源侧有一个中性点,哪来中性线? ~这样的一个中性点,当然也应该是接地的。但绝不是出于电路原理上的原因。 ~至于远在另一端的发电设备是如何作的,可问一下电厂师傅。 以上观点没有引经据典,仅凭记忆,难免有错。应以著作文献为准。 1.在一个电气设备中,是否可以将零线与地线接到一起? 在供电系统中,“零线”的主要作用是保证电力正常传输的“工作线”,若没有它就不干活了。 而“地线”的更多作用是安全保护方面。两者是否连接在一起,不是由原理决定,而是由规范规定。所以不可自行连接。 2.在什么情况下会需要重复接地,它有什么好处呢? “重复接地”是一个专用术语,是指在三相四线制系统中,其中性线除了在用户变压器端做了工作接地,往往还在用户端再次接地,以提高系统的稳定和可靠性。 3.……变压器和设备处壳需要接地吗? 电力变压器和用电设备的金属外壳,按要求必须做保护接地。 关于接地概念

电力系统过电压及其保护措施

电力系统过电压及其保护措施 电力系统在特定条件下所出现的超过工作电压的异常电压升高。过电压属于电力系统中的一种电磁扰动现象。电工设备的绝缘长期耐受着工作电压,同时还必须能够承受一定幅度的过电压,这样才能保证电力系统安全可靠地运行。在我国电力系统工作运行的过程中,电气设备不仅要承受工作 电压,还将会遭受到过电压的伤害以及作用。这其中的过电压就是作用于电力系统中的电压,而过电压还可以分为两种:一种是内部过电压;另一种是雷电过电压。这其中由系统中的谐振和开关操作上引起的过电压就是内部过电压,该过电压在数值上已经超过了工作电压的数值;而系统中有雷电所引起的过电压就是雷电过电压。电力系统过电压的概念 1 过电压是指在一般情况下,电力系统经常处于正常工作的状 态,而此时的电气设备也在额定的电压下处于绝缘的状态,但是,当遭遇雷击或者由于操作不当、参数配置错误等原因,就会造成电力系统中的一些特定区域的电压值升高,最终超出电力设备的正常运行范围。过电压分为两种:一种是大气电压;另一种是内部过电压。而。此处内容被屏蔽<其中的内部过电压形成的主要原因则是断线和。弟使所发生的事故,合闸与拉闸时的操作以及一些存在的不可>

预测的系统影响因素,但是就是因为这一系列的问题,在电力系统中将会引起运行状态上的变化,从而产生了系统局部性过高电压,最终将会导致电力系统整体遭受到损害。而内部过电压还可以分为两种:一种是暂态过电压;而另一种是操作过电压,它是由于电力系统中操作故障所引起的,最大的特点是随机性较大;而大气过电压可以分为侵入雷电波、直接雷击、感应雷击这三种过电压,并且该电压还具备冲击能力强、持续的时间短对系统的伤害大等诸多优点。过电压产生的原因 2 2.1 操作过电压产生的原因及解决措施内部过电压中的操作过 电压不仅具有随机性,还具有很高的频 率振荡,并且衰减非常迅速。其中,这种操作过电压产生的原因有很多,其中包括了以下几点。)切除空载电路的时候容易产生过电压,这是因为由于在线1 (路上残留的电压造成的。)空载电路合闸上产生的过电压是因为在合闸的时候,突然( 2 发生了回路上的高频振荡而造成的。使用灭弧能力强的高压断路器,而其中,采取的解决措施有: 且要将电网中性点接地进行运行操作。谐振过电压产生的原因及解决措施2.2 谐振过电压是由于在电网中,电容和电感元件的参数组合不合 理而产生的,从而最终导致谐振的产生,这种过电压具有倍数高且 持续时间长的特点。而引起谐振过电压产生的原因有以下几种:)线性的谐振过电压,是因为谐振回路是由输电线路电感等(1

相关主题
文本预览
相关文档 最新文档