当前位置:文档之家› 非线性系统辨识在侦察接收机中的应用

非线性系统辨识在侦察接收机中的应用

非线性系统辨识在侦察接收机中的应用
非线性系统辨识在侦察接收机中的应用

神经网络动态系统辨识与控制

神经网络动态系统的辨识与控制 摘要: 本论文表明神经网络对非线性动态系统进行有效的辨识与控制。本论文的侧重点是辨识与控制模型,并论述了动态反向传播以及静态反向传播方法在参数调节中的作用。在所介绍的模型中,加法器与重复网络结构的内部相连很独特,所以很有必要将他们统一起来进行研究。由仿真结果可知辨识与自适应控制方案的提出是可行的。整篇论文中都介绍到基本的概念和定义,也涉及了必须提出的学术性问题, 简介 用数学系统理论处理动态系统的分析与合成在过去的五十年里已经被列为应用广泛的权威科学原理了。权威系统理论最先进的地方定义于基于线性代数以及复合变量理论的先进技术线性操作器以及线性常微分方程。由于动态系统的设计技术与它们的稳定特性密切相关,线性时间不变系统的充分必要条件在上世纪已经产生了,所以已经建立了动态系统的著名设计方法。相反,只要在系统对系统基础上就可以基本上建立非线性系统的稳定性,因此对于大部分系统没有同时满足稳定性、鲁棒性以及良好动态响应的设计程序并不希奇。 过去三十年来,对线性、非时变和具有不确定参数的对象进行辨识与自适应控制的研究已取得了很大的进展。但是在这些研究中辨识器和控制器的结构选取和保证整个系统全局稳定性的自适应调参规律的构成等,都是建立在线性系统理论基础上的[1]。在本论文中,我们感兴趣的是神经网络非线性动态系统的控制与辨识。由于很少有可以直接应用的非线性系统理论结果存在,所以必须密切关注这个问题以及辨识器和控制器结构的选择和调整参数适应性规则的通用性问题。 在人工神经网络领域里,有两类网络今年来最引人注目:它们是(1)多层神经网络(2)回归神经网络。多层神经网络被证实在解决模式辨识问题[2]-[5]上非常成功。而回归神经网络则经常用于联想记忆以及制约优化问题的解决[[6]-[9]。从系统理论的观点来看,多层网络呈现静态非线性映射,而回归网络则通过非线性动态反馈系统显现。尽管两种网络存在外观上的不同外,但是很有必要将他们用统一成更一般化的网络。事实上,笔者确信将来会越来越多的用到动态因素以及反馈,这导致包括两种网络的复杂系统的产生。这样,将两个网络统一起来就成为必要。在本文的第三章,这个观点会得到进一步的阐述。 本文用了三个主要目标。第一个也是最重要的一个目标是在未知非线性动态系统中为自适应控制利用神经网络提出辨识以及控制器结构。当未知参数线性系

神经网络在系统辨识中的应用

神经网络在系统辨识中的应用 摘要应用于自动控制系统的神经网络算法很多,特点不一,对于非线性系统辨识的研究有一定影响。本文就BP网络算法进行了着重介绍,并点明了其收敛较慢等缺点,进而给出了改进算法,说明了建立在BP算法基础上的其他算法用于非线性系统辨识的可行性与有效性。 关键词神经网络BP算法;辨识;非线性系统 前言 神经网络是一门新兴的多学科研究领域,它是在对人脑的探索中形成的。神经网络在系统建模、辨识与控制中的应用,大致以1985年Rumelhart的突破性研究为界。在极短的时间内,神经网络就以其独特的非传统表达方式和固有的学习能力,引起了控制界的普遍重视,并取得了一系列重要结果。本文以神经网络在系统辨识中的应用作一综述,而后着重介绍BP网络算法,并给出了若干改进的BP算法。通过比较,说明改进算法具有诸多优点及用于非线性系统辨识[1]的可行性与有效性。 1 神经网絡用于系统辨识的原理及现状 神经网络在自动控制系统中的应用已有多年。目前,利用神经网络建立动态系统的输入/输出模型的理论及技术,在许多具体领域的应用得到成功,如化工过程、水轮机、机器入手臂、涡轮柴油发动机等。运用神经网络的建模适用于相当于非线性特性的复杂系统[2]。 目前系统辨识中用得最多的是多层前馈神经网络[1]。我们知道,自动控制系统中,一个单隐层或双隐层的具有任意数目神经元的神经网络,可以产生逼近任意函数的输入/输出映射。但网络的输入节点数目及种类(延迟输入和输出)、隐层节点的个数以及训练所用的算法对辨识精度和收敛时间均有影响。一般根据系统阶数取延迟输入信号,根据经验确定隐层节点数,然后对若干个神经网络进行比较,确定网络中神经元的合理数目。现在用得较多的多层前馈神经网络的学习算法是反向传播算法(Back Propagation),即BP算法。但BP算法收敛速度较慢,后面将会进一步讨论。 1.1 神经网络的结构 感知器是最简单的前馈网络,它主要用于模式分类。也可用在基于模式分类的学习控制和多模态控制中。现以多层前馈神经网络为代表,来说明神经网络的结构。多层前馈神经网络由输入、输出层以及一个或多个隐层组成。每层有若干个计算单元称之神经元。这些神经元在层状结构的网络中按图1所示方式相互连接。信息按树状路径从下至上逐层传送。一旦相邻层间神经元的连接权以及隐层中神经元的阈值被确定,整个网络的特性也就确定了。如图1所示,第1层为输

非线性系统的神经网络辨识

《热动力系统动态学》课程论文 题目:基于BP神经网络对电力系统负荷的预测控制学院:动力工程学院 专业:动力工程及工程热物理 姓名:赵乾学号:20091002055 指导教师:杨晨(教授) 成绩: 2010年7月30日

基于BP神经网络对电力系统负荷的预测控制摘要:电力系统的负荷曲线受很多因素的影响是一个非线性的函数,该文文献提出应用BP神经网络对电力负荷系统的预测控制,来抽取和逼近这种非线性函数。通过MATLAB仿真实验得到,对电力系统的短期负荷预测与实际负荷之间的误差很小,具有很好的应用前途。 关键词:BP神经网络,预测控制,电力负荷 引言 随着智能控制理论研究的不断深入及其在控制领域的广泛应用,神经网络[1]、遗传算法[2-3]模糊理论[4]等方法被应用于系统模型预测和辨识。其中,由于BP神经网络 (Back Propagation,BP)由于具有非线性逼近能力强,网络结构简单,学习速度快等优点已被广泛应用于对非线性系统的建立和预测。电力系统负荷的预测对电力系统和电厂设备的控制、运行和计划都有着重要的意义。电力系统负荷的变化一方面有未知不确定因素引起的随机波动,另一方面又具有周期变化的规律,使得负荷曲线具有相似性,而神经网络具有较强的非线性映射能力,能对负荷的变化具有很好预测性。 1.BP神经网络辨识理论基础 BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。当实际输出与期望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。1.1BP算法内容

最小二乘法在系统辨识中的应用

最小二乘法在系统辨识中的应用 王文进 控制科学与控制工程学院 控制理论与控制工程专业 2009010211 摘要:在实际的工程中,经常要对一个系统建立数学模型。很多时候,要面对一个未知的系统,对于这些未知系统,我们所知道的仅仅是它们的一些输入输出数据,我们要根据这些测量的输入输出数据,建立系统的数学模型。由此诞生了系统辨识这门科学,系统辨识就是研究怎样利用对未知系统的输入输出数据建立描述系统的数学模型的科学。系统辨识在工程中的应用非常广泛,系统辨识的方法有很多种,最小二乘法是一种应用及其广泛的系统辨识方法。本文主要讲述了最小二乘估计在系统辨识中的应用。 首先,为了便于介绍,用一个最基本的单输入单输出模型来引入系统辨识中的最小二乘估计。 例如:y = ax + (1) 其中:y、x 可测,为不可测的干扰项,a未知参数。通过N 次实验,得到测量数据y k和x k ,其中k=1、2、3、…,我们所需要做的就是通过这N次实验得到的数据,来确定未知参数a 。在忽略不可测干扰项的前提下,基本的思想就是要使观测点y k和由式(1)确定的估计点y的差的平方和达到最小。用公式表达出来就是要使J最小: 确定未知参数a的具体方法就是令: J a = 0 , 导出 a 通过上面最基本的单输入单输出模型,我们对系统辨识中的最小二乘法有了初步的了解,但在实际的工程中,系统一般为多输入系统,下面就用一个实际的例子来分析。在接下来的表述中,为了便于区分,向量均用带下划线的字母表示。 水泥在凝固过程中,由于发生了一系列的化学反应,会释放出一定的热量。若水泥成分及其组成比例不同,释放的热量也会不同。 水泥凝固放热量与水泥成分的关系模型如下: y = a0+ a1x1+…+ a n x n + 其中,y为水泥凝固时的放热量(卡/克);x1~x2为水泥的几种成分。

非线性Hammerstein模型的辨识【开题报告】

毕业设计开题报告 电气工程与自动化 非线性Hammerstein模型的辨识 一、选题的背景与意义 系统辨识是是现代控制理论中的一个重要分支。通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及控制器的设计。非线性系统辨识是系统辨识的一个重要的发展方向,一直是现代辨识领域中的一个主要课题,对其研究有十分重要的理论和实际意义。非线性问题的主要困难之一是一直缺乏描述各种非线性系统特性的统一的数学模型。为此,人们提出了多种类型的模型,如块联模型]1[、神经网络模型]2[、双线性模型]3[、非线性参数模型等等。 Hammerstein模型属于块联模型,由一个线性动态系统跟随一个非线性静态模块构成。自从Narendra& Gallman 1966年提出了Hammerstein模型后]4[,由于模型结构简单且能有效地描述常见的非线性动态系统特性,所以许多学者相继研究了Hammerstein模型参数的估计方法,近年来Hammerstein模型被广泛地应用于非线性系统辨识。辨识Hammerstein模型的意义在于:利用辨识结果获得中间层输出,选择合适的性能指标,就可以把原非线性系统的控制问题分解为线性模块的动态优化问题和非线性模块的静态求根问题,因此可以有效结合线性模型预测控制的成熟理论解决这类非线性对象的控制问题,避免传统非线性控制方法计算量大,收敛性和闭环稳定性不能得到保证等诸多问题。 二、研究的基本内容与模拟解决的主要问题: 针对Hammerstein模型的辨识问题,可以归结为线性模块的动态优化问题和非线性模块的静态求根问题。因此研究的重点就是如何运用比较新颖的优化算法得到Hammerstein模型的参数解集,并能通过和传统算法的比较论证阐述采用方法的合理性,可行性及有效性。具体需要解决的问题包括以下几点: 1.什么是Hammerstein模型,它的基本结构式怎么样的; 2.确定Hammerstein非线性系统辨识的思想和实现方法; 3.熟悉PSO/BFO优化算法和熟悉最小二乘法估计方法;

系统辨识—最小二乘法汇总

最小二乘法参数辨识 201403027 摘要:系统辨识在工程中的应用非常广泛,系统辨识的方法有很多种,最小 二乘法是一种应用极其广泛的系统辨识方法.阐述了动态系统模型的建立及其最小二乘法在系统辨识中的应用,并通过实例分析说明了最小二乘法应用于系统辨识中的重要意义. 关键词:最小二乘法;系统辨识;动态系统 Abstract: System identification in engineering is widely used, system identification methods there are many ways, least squares method is a very wide range of application of system identification method and the least squares method elaborated establish a dynamic system models in System Identification applications and examples analyzed by the least squares method is applied to illustrate the importance of system identification. Keywords: Least Squares; system identification; dynamic system

引言 随着科学技术的不断发展,人们认识自然、利用自然的能力越来越强,对于未知对象的探索也越来越深入.我们所研究的对象,可以依据对其了解的程度分为三种类型:白箱、灰箱和黑箱.如果我们对于研究对象的内部结构、内部机制了解很深入的话,这样的研究对象通常称之为“白箱”;而有的研究对象,我们对于其内部结构、机制只了解一部分,对于其内部运行规律并不十分清楚,这样的研究对象通常称之为“灰箱”;如果我们对于研究对象的内部结构、内部机制及运行规律均一无所知的话,则把这样的研究对象称之为“黑箱”.研究灰箱和黑箱时,将研究的对象看作是一个系统,通过建立该系统的模型,对模型参数进行辨识来确定该系统的运行规律.对于动态系统辨识的方法有很多,但其中应用最广泛,辨识 效果良好的就是最小二乘辨识方法,研究最小二乘法在系统辨识中的应用具有现实的、广泛的意义. 1.1 系统辨识简介 系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。现代控制理论中的一个分支。通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。而系统辨识所研究的问题恰好是这些问题的逆问题。通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。系统辨识包括两个方面:结构辨识和参数估计。在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。 1.2系统辨识的目的 在提出和解决一个辨识问题时,明确最终使用模型的目的是至关重要的。它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。通过辨识建立数学模型通常有四个目的。 ①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。 ②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。用于系统分析的仿真模型要求能真实反映系统的特性。用于系统设计的仿真,则强调设计参数能正确地符合它本身的物理意义。 ③预测这是辨识的一个重要应用方面,其目的是用迄今为止系统的可测量的输入和输出去预测系统输出的未来的演变。例如最常见的气象预报,洪水预报,其他如太阳黑子预报,市场价格的预测,河流污染物含量的预测等。预测模型辨识的等价准则主要是使预测误差平方和最小。只要预测误差小就是好的预测

一种连续系统辨识方法及其在飞控规律辨识中的应用

一种连续系统辨识方法及其在飞控规律辨识中的应用 摘要: 针对某型飞机控制系统的规律辨识问题, 对文献[ 2, 3]提出的连续系统辨识方法进行了改进, 给出了该方法可以适用的辨识对象的一般模型, 同时通过对误差模型和极小化指标的改进,把原方法推广至时变参数辨识领域。数值仿真结果表明该方法成功的解决了该飞控系统的辨识问题。该方法还很容易推广到一类具有相同特征的线性、非线性、时变或时不变的参数辨识中。 关键词: 飞控系统; 连续系统辨识; 跟踪- 微分器; 扩张状态观测器; 时变参数 在某型飞机的控制系统中, 大量采用了分段线性的非线性环节, 这一类环节参数的变化一般受到动压信号和静压信号的控制, 用以保证飞控系统的控制规律随着飞机的高度和速度的变化而变化。对这种变化规律进行辨识, 一种方法是固定静压和动压信号, 使辨识对象转化为线性时不变系统, 然后再采用常规的辨识方法进行辨识。其缺点是辨识的次数多, 数据采集与处理的工作量大, 准确性差。另一种方法是, 在一次数据采集的过程中, 固定静压信号, 连续调节动压信号, 使之取遍整个取值范围。这时, 进行一次或较少的几次辨识, 就可以得出被辨识参数在当前静压下的变化规律。由于动压连续变化, 被辨识参数也连续变化, 这时的辨识对象实际上是一个时变系统, 需要考虑时变参数的辨识问题。由于被辨识对象的控制规律本身是连续的, 对于连续系统采用离散的辨识方法会存在一些问题[1] , 例如, 如果离散系统的延迟不是采样时间的整数倍, 则获得的离散模型可能具有非最小相位特性等等。而采用连续的辨识方法则可以较好的解决这样的问题。文献[ 2, 3] 提出了一种基于跟踪- 微分器(TD) 和扩张状态观测器( ESO) 的连续系统辨识方法, 用来解决一些非线性时不变系统的辨识问题。在实际应用中, 我们对文献[ 2, 3] 提出的方法进行适当修改, 并适当选择辨识对象的模型和被辨识参数,就可以把这种方法推广至时变参数辨识领域, 从而可以用来解决飞行控制系统的辨识问题。 1 问题描述 已知某飞机的飞行控制系统工作在自主方式下时, 其纵向通道的部分控制规律的结构图如图1 所示。 图1 某型飞机纵向通道的部分结构图 图1 中, y 为纵向通道输出的过载信号, K a 为俯仰角传动比, K b 为滤波时间常数。用于滤除高频干扰信号。K a 和K b 为待辨识参数。K a 和K b 都是动压q cx 的分段线性化函数。K a 和K b 按照图2 所示规律变化。 图2 中, q cx 为动压信号, P 为静压信号。由图可知, K a 和K b 随动压和静压在不同的段内

非线性系统辨识综述

系统辨识综述 张培硕研4班 摘要:本文主要介绍了系统辨识中的非线性系统辨识方法,包括多层递阶辨识方法,以及把神经网络、模糊逻辑、遗传算法等知识应用于非线性系统辨识而得到的一些新型辨识方法,最后概括了非线性系统辨识未来的发展方向。 关键词:非线性系统辨识;多层递阶;神经网络 1 引言 系统辨识作为现代控制论和信号处理的重要内容,是近几十年发展起来的一门学科,它研究的基本问题是如何通过运行(或实验)数据来建立控制与处理对象(或实验对象)的数学模型。因为系统的动态特性被认为必然表现在它变化着的输入/输出数据之中,辨识就是利用数学方法从数据序列中提炼出系统的数学模型。 从本质上说,系统辨识是一种优化问题,当前常用辨识算法的基本方法是通过建立系统的参数模型,把辨识问题转化为参数估计问题。这类算法能较好地解决线性系统或本质线性系统的辨识问题,但若要应用于本质非线性系统则比较困难。可是,真实世界中的模型都不是严格线性的,它们或多或少都表现出非线性特性,因此越来越多的非线性现象和非线性模型己经引起了人们广泛的重视。 非线性系统广泛的存在于人们的生产生活中,随着人类社会的发展进步,越来越多的非线性现象和非线性系统已经引起研究者们的广泛关注,混沌现象的发现被誉为“ 二十世纪三大发现之一” 。目前关于非线性理论的研究正处于发展阶段。建立描述非线性现象和非线性系统的模型是研究非线性问题的基础。线性系统辨识理论已经趋于成熟,但一般的线性模型实际上是某些非线性被忽略或用线性关系代替后得到的对真实系统的近似数学描述。随着科学技术的迅猛发展,控制系统越来越复杂,对控制精度的要求越来越高,具有复杂非线性的系统不能用线性模型来近似,所以研究非线性系统辨识理论有着很重要的实际意义。 对于非线性系统参数模型的辨识问题,人们最早涉及的是某些特殊类型的非线性系统,如双线性系统模型、Hammerstain 模型、Wiener 模型、非线性时间序列模型、输出仿射模型等。针对每一类特殊模型,各国学者都作了大量的工作,提出了不少辨识算法。同时,也对这些算法的估计一致性问题进行了讨论。随着人们对非线性系统辨识问题研究的日益深入,更为一般的普适性非线性模型的辨识问题就显得日益重要。常用的非线性系统描述方法有微分(或差分)法、泛函级数法、NARMAX 模型法及分块系统法等。一些学者已经对非线性系统辨识方法进行了某方面的综述。例如,1965 年Arnold 和Stark 讨论了正交展开方法在非线性系统辨识中的应用,1968 年Aleksandrovskii 和Deich及1977 年Hung 和Stark综述了核辨识算法,1989 年Titterington 和Kitsos总结了非线性试验设计的最新发展,并列举了十五个在化工领域中常遇到的非线性模型。 本文对近年来新的非线性系统的辨识方法作以简单的综述。

系统辨识

系统辨识理论综述 郭金虎 【摘要】全面论述了系统辨识理论的提出背景以及理论成果,总结了系统辨识理论的基本原理、基本方法以及基本内容,并对其应用及发展做了全面的讨论。 【关键词】系统辨识;准则函数 1概述 系统辨识问题的提出是由于随着科学技术的发展,各门学科的研究方法进一步趋向定量化,人们在生产实践和科学实验中,对所研究的复杂对象通常要求通过观测和计算来定量的判明其内在规律,为此必须建立所研究对象的数学模型,从而进行分析、设计、预测、控制的决策。例如,在化工过程中,要求确定其化学动力学和有关参数,已决定工程的反应速度;在热工过程中,要求确定如热交换器这样的分布参数的系统及动态参数;在生物系统方面,通常希望获得其较精确的数学模型,一般描述在生物群体系统的动态参数;为了控制环境污染,希望得到大气污染扩散模型和水质模型;为进行人口预报,做出相应的决策,要求建立人口增长的动态模型;对产品需求量、新型工业的增长规律这类经济系统,已经建立并继续要求建立其定量的描述模型。其他如结构或机械的振动、地质分析、气象预报等等,都涉及系统辨识和系统参数估计,这类要求正在不断扩大。 2系统辨识的基本原理 2.1系统辨识的定义和基本要素 实验和观测是人类了解客观世界的最根本手段。在科学研究和工程实践中,利用通过实验和观测所得到的信息,或掌握所研究对象的特性,这种方式的含义即为“辨识”。关于系统辨识的定义,1962年,L.A.Zadeh 是这样提出的:“系统辨识就是在输入和输出数据观测的基础上,在指定的一组模型类中,确定一个与所测系统等价的模型”。1978年,L.Ljung 也给出了一个定义:“辨识既是按规定准则在一类模型中选择一个与数据拟合得最好的模型”。可用图2-1来说明辨识建模的思想。 0 G g G 等价准则系统原型 系统模型激励信号y g y e J u 图2-1 系统辨识的原理

闭环系统辨识 报告

闭环系统辨识 气动参数辨识在导弹研发中的作用 气动力参数辨识是飞行器系统辨识中发展最为成熟的一个领域。对于导弹而言,采用系统辨识技术从飞行试验数据获取导弹空气动力特性,已经成为导弹研制和评估程序的重要组成部分。导弹气动参数辨识的作用主要体现在以下几个方面: (1)验证气动力数值计算和风洞试验结果。如前所述,数值计算和风洞试验各有其优点,也各有其局限性,必须通过飞行试验进行验证。如果飞行试验气动参数辨识结果与数值计算和风洞试验结果一致,则说明数值计算和风洞试验结果是正确的;如果不一致,就要找出产生不一致的原因,通过相关性分析,将地面试验结果换算到真实飞行状态下。 (2)为导弹系统仿真提供准确的气动参数。在导弹打靶仿真中,控制系统的执行元件、旋转台、控制系统、目标源等都可以采用实物,但导弹所受外作用力,特别是空气动力是飞行状态参数的函数,无法用实物实现,应代之以数学模型。该数学模型是否正确决定了系统仿真的置信度,因此,采用系统辨识技术,辨识出导弹的外作用力数学模型,特别是气动力数学模型,是导弹系统仿真技术的关键环节之一。 (3)为导弹飞行控制系统设计提供准确的气动参数。控制律设计取决于导弹的气动特性。如果控制律设计所依赖的气动数据误差过大,可能会导致控制失效;如果气动数据误差带很大,为了满足控制系统鲁棒性要求,或者控制精度降低,或者对指令的响应时间加长。利用飞行试验气动参数辨识结果,经过相关性分析给出的导弹气动特性,其可信度可望显著提高,用于飞行控制律设计,可以大大提高控制系统的性能。 (4)自适应控制。自适应控制系统能根据系统的状态和环境参数变化,自动调节控制系统的相应系数,以达到最佳控制状态。系统实时辨识是自适应控制系统的重要组成部分。对于导弹,机动性与导弹的静稳定裕度和动压关系很大,实

Matlab_系统辨识_应用例子

例1、考虑仿真对象 )()2(5.0)1()2(7.0)1(5.1)(k v k u k u k z k z k z +-+-=-+-- 其中,)(k v 是服从正态分布的白噪声N )1,0(。输入信号采用4阶M 序列,幅度为1。选择如下形式的辨识模型 )()2()1()2()1()(2121k v k u b k u b k z a k z a k z +-+-=-+-+ 设输入信号的取值是从k =1到k =16的M 序列,则待辨识参数LS θ?为LS θ?=(T T -ΦΦΦ1)z 。其中,被辨识参数LS θ?、观测矩阵Φ的表达式为: ????? ???????=2121?b b a a LS θ (3)(4)(16)z z z ??????=???? ??z (2)(1)(2)((3)(2)(3)(2)(15)(14)(15)(14)z z u u z z u u z z u u --????--??Φ=????--?? 程序框图如图1所示。Matlab 仿真程序如下: %二阶系统的最小二乘一次完成算法辨识程序,文件名:LS.m

u=[-1,1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,1,1]; %系统辨识的输入信号为一个周期的M序列 z=zeros(1,16); %定义输出观测值的长度 for k=3:16 z(k)=1.5*z(k-1)-0.7*z(k-2)+u(k-1)+0.5*u(k-2); %用理想输出值作为观测值 end subplot(3,1,1) %画三行一列图形窗口中的第一个图形 stem(u) %画输入信号u的径线图形 subplot(3,1,2) %画三行一列图形窗口中的第二个图形 i=1:1:16; %横坐标范围是1到16,步长为1 plot(i,z) %图形的横坐标是采样时刻i, 纵坐标是输出观测值z, 图形格式为连续曲线 subplot(3,1,3) %画三行一列图形窗口中的第三个图形 stem(z),grid on %画出输出观测值z的径线图形,并显示坐标网格u,z %显示输入信号和输出观测信号 %L=14 %数据长度 HL=[-z(2) -z(1) u(2) u(1);-z(3) -z(2) u(3) u(2);-z(4) -z(3) u(4) u(3);-z(5) -z(4) u(5) u(4);-z(6) -z(5) u(6) u(5);-z(7) -z(6) u(7) u(6);-z(8) -z(7) u(8) u(7);-z(9) -z(8) u(9) u(8);-z(10) -z(9) u(10) u(9);-z(11) -z(10) u(11) u(10);-z(12) -z(11) u(12) u(11);-z(13) -z(12) u(13) u(12);-z(14) -z(13) u(14) u(13);-z(15) -z(14) u(15) u(14)] %给样本矩阵 赋值

非线性系统辨识模型选择方法综述

文献2:Model selection approaches for non-linear system identification: a review X. Hong, R.J. Mitchell, S. Chen, C.J. Harris, K. Li and G .W. Irwin. International Journal of Systems Science, 2008,39(10): 925–946 非线性系统辨识模型选择方法综述 摘要:近20年来基于有限观测数据集的非线性系统辨识方法的研究比较成熟。由于可利用现有线性学习算法,同时满足收敛条件,目前深入研究和广泛使用的非线性系统辨识方法是一类具有万能逼近能力的参数线性化非线性模型辨识(linear-in-the-parameters nonlinear model identification )。本文综述了参数线性化的非线性模型选择方法。非线性系统辨识最基本问题是从观测数据中识别具有最好模型泛化性能的最小模型。综述了各种非线性系统辨识算法中实现良好模型泛化性的一些重要概念,包括贝叶斯参数正规化,基于交叉验证和实验设计的模型选择准则。机器学习的一个显著进步,被认为是确定的结构风险最小化原则为基础的内核模式,即支持向量机的发展。基于凸优化建模算法,包括支持向量回归算法,输入选择算法和在线系统辨识算法。 1 引言 控制工程学科的系统辨识,是指从测量数据建立系统/过程动态特性的数学描述,以便准确预测输入未来行为。系统辨识2个重要子问题:(1)确定描述系统输入和输出变量之间函数关系的模型结构;(2)估计选定或衍生模型结构范围内模型参数。最初自然的想法是使用输入输出观测值线性差分方程。早期研究集中在线性时不变系统,近期线性辨识研究考虑连续系统辨识、子空间辨识、变量误差法(errors-in-the-variable methods )。 模型质量重要测度是未知过程逼近的拟合精度。由于大多数系统在某种程度上说都是非线性的,非线性模型通常要求满足合格的建模性能。定义非线性离散系统输入)(t u ,输出)(t y ,训练数据集合N D ={}N t t y t u 1)(),(=,基本目标是找到 )()),(()(t e t X f t y +=θ (1) )(?f 未知,θ相关参数向量,噪声)(t e ,通常假设方差(2σ)恒定,满足独立的同分布(i.i.d.)特 性。模型输入[]T e u y n t e t e n t u t u n t y t y t X )(),1(),(),1(),(),1()(------= 。y n ,u n ,e n 分别为输出、输入和噪声的延迟。方程式(1)是NARMAX 模型表达式,代表一大类非线性系统。 由于大多数工业过程满足光滑连续特性,非线性函数)(?f 辨识等价于函数逼近,即用f ?代替f 函数。为了逼近函数,用户选择各种非线性建模方法[1],如分段线性模型、有理多项式模型、Hammerstein/Wiener 模型、投影寻踪回归(PPR )和多项式自适应回归样条(MARS )、周期神经网络。逼近论中,一种通用函数表示方法是非线性基函数的线性组合。具有参数线性化结构、表示非线性输入输出关系模型表达式 ∑==m i i i t X t X f 1))(()),((?θφθ (2) ((t X i φ为已知非线性基函数映射,例如RBF 或者B 样条函数,i θ未知参数,m 模型中基函数个 数。参数线性化模型具有适合自适应学习的良好结构,具有可证明的学习和收敛条件,具备并行处理能力,明确的工程应用[2]。然而,非线性系统辨识中仍然存在一些重大挑战和障碍: (1)模型的泛化性 采用有限数据辨识模型,不仅要求模型训练精度较好,同样要求模型测试精度良好。由于)(?f 未知,

系统辨识理论及应用(课后题答案第三章3.2、3.3)国防工业出版社

1、系统辨识——连续系统传递函数——脉冲传递函数function h=Continuous_system_transferFcn(N,G,dt) % N——系统阶数 % G——采样数据(个数大于等于2N+1) % G为一维行向量 % dt——采样间隔 if nargin<3 errordlg('not enough input varibles','error hint'); else g_NN=zeros(N,N); for i=1:N g_NN(i,:)=G(i+1:i+1+N-1); end g_N=-G(1:N)'; a=inv(g_NN)*g_N; %% x的求解 syms x for i=1:N X(i)=x^i; end f=X*a+1; x=double(solve(f)); %%极点的求解 p=log(x)/dt; c_NN=zeros(N,N); for i=1:N c_NN(i,:)=x.^(i-1); end c_N=G(1:N)'; %%增益求解 k=inv(c_NN)*c_N; p k z=zeros(1,N); p=p'; k=k'; Continuous_TransferFcn=0; for i=1:N Continuous_TransferFcn=Continuous_TransferFcn+zpk(z(i),p(i),k(i)); end Continuous_TransferFcn end end

例题 3.1(P32) >>G=[0 0.1924 0.2122 0.1762]; >> N=2; >> dt=1; >> Continuous_system_transferFcn(N,G,dt) p = -0.4934 -0.7085 k = 1.6280 -1.6280 Continuous_TransferFcn = 0.35024 s --------------------- (s+0.4934) (s+0.7085) Continuous-time zero/pole/gain model. 习题3.2(P34) >> G=[0 0.196 0.443 0.624 0.748 0.831]; >> N=3; >> dt=0.2; >> Continuous_system_transferFcn(N,G,dt) p = -0.0633 -1.7846 -11.1860 k = 1.1249 -1.3399 0.2150 Continuous_TransferFcn = -0.08507 s (s-253.1) ------------------------------- (s+0.06329) (s+1.785) (s+11.19) Continuous-time zero/pole/gain model.

《系统辨识》实验手册-16页文档资料

《系统辨识》 实验手册 哈尔滨工业大学控制与仿真中心 2012年8月 目录 实验1白噪声和M序列的产生---------------------------------------------------------- 2实验2脉冲响应法的实现----------------------------------------------------------------5实验3最小二乘法的实现--------------------------------------------------------------- 9 实验4递推最小二乘法的实现---------------------------------------------------------- 12附录实验报告模板----------------------------------------------------------------------16 实验1 白噪声和M序列的产生 一、实验目的 1、熟悉并掌握产生均匀分布随机序列方法以及进而产生高斯白噪声方法

2、熟悉并掌握M 序列生成原理及仿真生成方法 二、实验原理 1、混合同余法 混合同余法是加同余法和乘同余法的混合形式,其迭代式如下: 式中a 为乘子,0x 为种子,b 为常数,M 为模。混合同余法是一种递归算法,即先提供一个种子0x ,逐次递归即得到一个不超过模M 的整数数列。 2、正态分布随机数产生方法 由独立同分布中心极限定理有:设随机变量12,,....,,...n X X X 相互独立,服从同一分布,且具有数学期望和方差: 则随机变量之和1n k i X =∑的标准化变量: () n n n k k k X E X X n Y μ --= = ∑∑∑近似服从(0,1)N 分布。 如果n X 服从[0, 1]均匀分布,则上式中0.5μ=,2 1 12 σ= 。即 0.5n k X n Y -= ∑近似服从(0,1)N 分布。 3、M 序列生成原理 用移位寄存器产生M 序列的简化框图如下图所示。该图表示一个由4个双稳态触发器顺序连接而成的4级移位寄存器,它带有一个反馈通道。当移位脉冲来到时,每级触发器的状态移到下一级触发器中,而反馈通道按模2加法规则反馈到第一级的输入端。

【开题报告】非线性Hammerstein模型的辨识

开题报告 电气工程与自动化 非线性Hammerstein模型的辨识 一、选题的背景与意义 系统辨识是是现代控制理论中的一个重要分支。通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及控制器的设计。非线性系统辨识是系统辨识的一个重要的发展方向,一直是现代辨识领域中的一个主要课题,对其研究有十分重要的理论和实际意义。非线性问题的主要困难之一是一直缺乏描述各种非线性系统特性的统一的数学模型。为此,人们提出了多种类型的模型,如块联模型]1[ 、神经网络模型、双线性模型、非线性参数模型等等。 ]2[]3[ Hammerstein模型属于块联模型,由一个线性动态系统跟随一个非线性静态模块构成。自从Narendra& Gallman 1966年提出了Hammerstein模型后,由于模型结构简 ]4[ 单且能有效地描述常见的非线性动态系统特性,所以许多学者相继研究了Hammerstein 模型参数的估计方法,近年来Hammerstein模型被广泛地应用于非线性系统辨识。辨识Hammerstein模型的意义在于:利用辨识结果获得中间层输出,选择合适的性能指标,就可以把原非线性系统的控制问题分解为线性模块的动态优化问题和非线性模块的静态求根问题,因此可以有效结合线性模型预测控制的成熟理论解决这类非线性对象的控制问题,避免传统非线性控制方法计算量大,收敛性和闭环稳定性不能得到保证等诸多问题。 二、研究的基本内容与模拟解决的主要问题: 针对Hammerstein模型的辨识问题,可以归结为线性模块的动态优化问题和非线性模块的静态求根问题。因此研究的重点就是如何运用比较新颖的优化算法得到Hammerstein模型的参数解集,并能通过和传统算法的比较论证阐述采用方法的合理性,可行性及有效性。具体需要解决的问题包括以下几点: 1.什么是Hammerstein模型,它的基本结构式怎么样的; 2.确定Hammerstein非线性系统辨识的思想和实现方法; 3.熟悉PSO/BFO优化算法和熟悉最小二乘法估计方法;

系统辨识在自适应控制中的应用

第八章 系统辨识在自适应控制中的应用-自校正调节器( Self-Tuning Requlator 简称 STR ) §8 —1 最小方差控制器 ( Minimal Variance Control 简称 MVC ) 1. 考虑 CARMA 过程 A(z -1) ?y(k) = z -d B(z -1) ?u(k)+λ C (z -1) ?ε(k) 式(8-1-1) { ε(k) } 为 N (0,1) 白噪声,滞后量 d ≥ 1 。 A(z - 1) = 1+ a 1z - 1 +…+ a n z - n B(z - 1) = b 0+b 1z - 1 +…+ b n z - n (b 0 ≠ 0) C(z - 1) = 1+ c 1z - 1 +…+ c n z - n 设A 、B 、C 均为稳定多项式(过程稳定且逆稳定)。 有: 式(8-1-2) 2. 将C /A 分解成两部分 令: 式(8-1-3) 其中:F(z - 1) 为d 项的商多项式 C A F z G A d =+-. ) ()() ()()() ()(1111k z A z C k u z A z B z k y d ελ-----+=

F(z - 1) = 1+ f 1z - 1 +…+ f d -1 z - d+1 ( d 项 ) G (z - 1) 为余数多项式,有n 项 G(z - 1) = g 0+g 1z - 1 +…+ g n -1 z - n+1 ( n 项 ) 例:A = 1-1.7 z - 1+0.7 z - 2 ; C = 1+1.5 z - 1+0.9 z - 2 ;d=2 ; n=2 3. 证明以下多项式恒等式成立 式(8 -1- 4) 证明: 式(8-1-3) 将左右同 ? A 同 ÷ C 同 ÷ A 同 ? B 4. 向前d 步最优预报 y * ( k+d ∣k ) 由式(8-1-2)向前移d 步,有: B F C B A z G C d .(.)=--1 C A F z G A A F C z G A F C z G C F C A z G C B F C B A z G C d d d d d =+??=-??=-?=-??=-?-----1111()() y k z B z A z u k C z A z k d ()() ()()() ()()=+-----1111λε

关于非线性系统辨识的恢复力曲面法和希尔伯特变换法

第38卷第1期 振动与冲击 JOURNAL OF VIBRATION AND SHOCK Vol.38No.1 2019 关于非线性系统辨识的恢复力曲面法和希尔伯特变换法 袁天辰杨俭陈立群2,3,4 (1.上海工程技术大学城市轨道交通学院,上海201620; 2.上海大学理学院力学系,上海200444; 3.上海大学上海市应用数学和力学研究所,上海200072; 4.上海大学上海市力学在能源工程中的应用重点实验室,上海200072) 摘要:针对均匀薄板和压电双晶薄板进行了非线性辨识实验,比较了两种方法一恢复力曲面法和希尔伯特变 换法。针对辨识数据的函数逼近问题,提出将位移-刚度函数而非位移-恢复力函数用于数据拟合。通过均匀薄板和压电 双晶薄板的实验结果,验证了位移-刚度函数确实能提高小位移处的函数逼近精度并更加准确展现系统的非线性特性。 还对比了恢复力曲面法和希尔伯特变换法在辨识精度和数据利用率方面的区别,结果显示希尔伯特变换法能有效抑制小 位移处位移-刚度曲线的不规则振荡,并有着较高的数据利用率。 关键词:非线性;系统辨识;希尔伯特变换;实验 中图分类号:T H17$T H133.3 文献标志码:A DOI:10.13465/https://www.doczj.com/doc/d52655945.html,ki.jvs.2019. 01.011 Restoring force surface methodand Hilbert transform one for nonlinear system identification YUAN Tianchen1 , YANG Jian1 , CHEN Liqim2,3,4 (1.School o f Urban Railway Transportation,Shanghai University o f Engineering Science,Sha 2.Department of Mechanics,School o f Sciences,Shanghai University,Shanghai200444,China; 3.Shanghai I n s t i t u t e o f Applied Mathematics and Mechanics,Shanghai University,Shangha 4.Shanghai Municipal Key Lab o f Mechanics Applied i n Energy Engineering,Shanghai Universi Abstract#Two nonlinear system identification metliods including the restoring force surface metliod and Hilbert transform one were compared based on experiments of a homogeneous plate and a piezoelectric bimo displacement function was proposed to be used for data f i t ting instead of the restoring for function approximation process.T he experiment results of a homogeneous plate and a piezoelectric bimorjDh one showed that using the stiffness-displacement function can improve the function approximation accuracy a t identification accuracy and data utilization rate obtained by the restoring force surface method were obtained by Hilbert transform one.The results showed that Hilbert transform method can effectively suppress irregular oscillations of the stiffness-displacement curve at small displacements,and i t has a higher data utilization rate. K e y words:nonlinearity;system identification;HillDert transform;experiment 非线性系统辨识受到越来越多的研究者的关注,通过系统辨识可以获得结构在大幅振动下的精确模 型,这些方法主要分为频域方法和时域方法两大类。典型的非线性系统的频域辨识方法有Volterra和 Wienei?级数[1]、多尺度法M M S*2]和谐波平衡法H B M[3]。与频域方法相比,时域方法需要的数据量较 少,但容易受到数据噪声的干扰[4]。时域方法中的恢 基金项目:国家自然科学基金(51575334; 11802170; 11232009) 收稿日期:2017 -03 -29修改稿收到日期:2017 -09 -25 第一作者袁天辰男,博士,讲师,1988年生 通信作者陈立群男,博士,教授,1962年生复力曲面法(或称为力-状态映射法)[5]和基于希尔伯 特变换的辨识方法[6-]不需要事先确定非线性恢复力 的形式,是纯粹的非参数识别方法,在系统辨识的过程 中得到较广泛的应用。 恢复力曲面法通过构建恢复内力、速度和位移之 间的三维点集,利用切比雪夫多项式拟合恢复力曲面 或者利用截面法分离出其中的弹性恢复力和阻尼恢复 力。基于希尔伯特变换的辨识方法,利用系统的自由 振动或受迫振动响应,通过解析信号得到待辨识系统 刚度和阻尼函数的表达式,构建响应信号的包络幅值 和待识别系统刚度或阻尼函数之间的关系,达到辨识 系统非线性刚度或阻尼函数的目的。然而该方法在辨

相关主题
文本预览
相关文档 最新文档