当前位置:文档之家› 车辆工程毕业设计221重型卡车主减速器及差速器的设计正文

车辆工程毕业设计221重型卡车主减速器及差速器的设计正文

车辆工程毕业设计221重型卡车主减速器及差速器的设计正文
车辆工程毕业设计221重型卡车主减速器及差速器的设计正文

摘要

本设计是重型卡车主减速器及差速器的设计。主减速器设计时根据给定的基本参数计算出主减速比,根据计算得到的主减速比选取主减速器类型为双级主减速器;与单级主减速器相比,在保证离地间隙相同时还得到很大的传动比,并且还拥有结构紧凑,噪声小,使用寿命长等优点。差速器根据主减速器的设计和以往的经验借鉴选取为结构简单、工作性能平稳、制造方便的对称式圆锥行星齿轮差速器。本设计主要内容包括:双级主减速器和对称式圆锥行星齿轮差速器各个零件参数的设计和校核过程。主减速器结构的选择、主、从动锥齿轮的设计、轴承的校核;差速器结构的选择、行星齿轮、半轴齿轮的设计和校核。

关键词:重型载货汽车;双级主减速器;差速器;齿轮;校核

ABSTRACT

This design is designs a structure to the truck to be reasonable, work related reliable two-stage main gear box. This two-stage main gear box is composed of two level of gear reductions. Compares with the single stage main gear box, when the guarantee ground clearance is the same may obtain the very great velocity ratio, and also has the structure to be compact, the noise is small, service life long and so on merits. This article elaborated the two-stage main gear box each components parameter computation and the selection process, and through computation examination. The design mainly includes: Main gear box structure choice, host, driven bevel gear's design, bearing's examination.The main reducer in the transmission lines used to reduce vehicle speed, increased the torque , it is less dependent on the bevel of more gear drive of less bevel gear . Purchase of the longitudinal engine automobiles, the main bevel gear reducer also used to change the driving force for the direction of transmission.

Key words: Truck;Two-stage Main Reduction Gear;compensating gear;Gear;Check

目录

摘要.................................................................... I Abstract.............................................................. II 第1章绪论.. (1)

1.1概述 (1)

1.2主减速器及差速器的结构形势分析 (2)

1.2.1主减速器的减速形式与齿轮类型 (2)

1.2.2主减速器主、从动锥齿轮的支承方案 (3)

1.2.3差速器的结构形式 (5)

1.3设计内容 (5)

第2章主减速器的结构设计 (6)

2.1主减速器传动比的计算 (6)

2.2主减速齿轮计算载荷的确定 (7)

2.3主减速器齿轮基本参数的选择 (10)

2.4主减速器螺旋锥齿轮的几何尺寸计算与强度计算 (12)

2.4.1主减速器螺旋锥齿轮的几何尺寸计算 (12)

2.4.2主减速器螺旋锥齿轮的强度校核 (13)

2.5二级圆柱齿轮模数的确定 (15)

2.6双级主减速器的圆柱齿轮基本参数的选择 (17)

2.7齿轮的校核 (18)

2.8本章小结 (19)

第3章轴承的选择和校核 (20)

3.1主减速器齿轮上作用力的计算 (20)

3.2轴和轴承的设计计算 (22)

3.3主减速器齿轮轴承的校核 (23)

3.4本章小结 (26)

第4章轴的设计 (27)

4.1主动圆锥齿轮轴的结构设计 (27)

4.2中间轴的结构设计 (28)

4.3主动锥齿轮轴的校核 (28)

4.4中间轴的校核 (30)

4.5本章小结 (32)

第5章差速器的设计 (33)

5.1差速器的结构形式及选择 (33)

5.2差速器齿轮基本参数选择 (33)

5.3差速器齿轮强度计算 (36)

5.4本章小结 (36)

结论 (37)

致谢 (38)

参考文献 (39)

附录................................................... 错误!未定义书签。

第1章绪论

1.1 概述

1、主减速器及差速器的概述

汽车正常行驶时,发动机的转速通常在2000至3000r/min左右,如果将这么高的转速只靠变速箱来降低下来,那么变速箱内齿轮副的传动比则需很大,而齿轮副的传动比越大,两齿轮的半径比也越大,换句话说,也就是变速箱的尺寸会越大。主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动齿数多的锥齿轮。对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变动力方向。由于汽车在各种道路上行使时,其驱动轮上要求必须具有一定的驱动力矩和转速,在动力向左右驱动轮分流的差速器之前设置一个主减速器后,便可使主减速器前面的传动部件如变速器、万向传动装置等所传递的扭矩减小,从而可使其尺寸及质量减小、操纵省力[1]。

对于载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而主减速器在传动系统中起着非常重要的作用。

随着目前国际上石油价格的上涨,汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于重型载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在十吨以上的载货汽车的发动机,最大功率在140KW以上,最大转矩也在700N m以上,百公里油耗是一般都在34L左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。

主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动齿数多的锥齿轮。对于重型卡车来说,要传递的转矩较乘用车、客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而主减速器在传动系统中起着非常重要的作用。

因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的传动系便成了有效节油的措施之一。所以设计新型的主减速器已成为了新的课题。

根据汽车行驶运动学的要求和实际的车轮、道路以及他们之间的相互关系表明:汽车在行驶过程中左右车轮在同一时间内所滚过的形成往往是由差别的。例如,转弯时外侧的车轮的行程总要比内侧的长。在左右车轮行程不等的情况下,如果采用一根整体的驱动车轮轴将动力传给左右车轮,则会由于左右驱动车轮的转速虽相等而行程却又不同的这一运动学上的矛盾,引起某一驱动车轮产生滑移或滑转。

为了消除由于左右车轮在运动学上的不协调而产生的这些弊病,汽车左右驱动轮间都装由差速器,后者保证了汽车驱动桥两侧车轮在行程不等时具有以不同速度旋转的特性,从而满足了汽车行驶运动学的要求。

同样情况也发生在多驱动桥中,前、后驱动桥之间,中、后驱动桥之间等会因车轮滚动半径不同而导致驱动桥间的功率循环,从而使传动系的载荷增大,损伤其零件,增加轮胎的磨损和燃料的消耗等,因此一些多驱动桥的汽车上也装了轴间差速器。

差速器的结构型使选择,应从所设计汽车的类型及其使用条件出嘎,以满足该型汽车在给定的使用条件下的使用性能要求。

2、主减速器及差速器设计的要求

驱动桥中主减速器的设计应满足如下基本要求[1]:

1、所选择的主减速比应能保证汽车既有最佳的动力性和燃料经济性。

2、外型尺寸要小,保证有必要的离地间隙;齿轮其它传动件工作平稳,噪音小。

3、在各种转速和载荷下具有高的传动效率;与悬架导向机构与动协调。

4、在保证足够的强度、刚度条件下,应力求质量小,以改善汽车平顺性。

5、结构简单,加工工艺性好,制造容易,拆装、调整方便。

驱动桥中差速器的设计应满足:

1、所选择的差速器在能保证工作性能的要求下,尽量的结构简单。

2、与主减速器配合时结构要紧凑。

1.2 主减速器及差速器的结构形势分析

1.2.1主减速器的减速形式与齿轮类型

为了满足不同的使用要求,主减速器的结构形式也是不同的。

主减速器的减速型式分为单级减速、双级减速、双速减速、单级贯通、双级贯通、主减速及轮边减速等。减速型式的选择与汽车的使用类型及使用条件有关有时也与制造厂已有的产品系列及制造条件有关,但它主要取决于动力性、经经济性等整车能所要求的主减速比的大小及驱动桥下的离地间隙、驱动桥的数目及布置型式等。

根据主减速器的使用目的和要求的不同,其结构形式也有很大差异。按主减速器所处的位置可分为中央主减速器和轮边减速器,按参加减速传动的齿轮副可分为单级

式主减速器和双级式主减速器。按主减速器速比的变化可分为单速主减速器和双速主减速器两种。单级式主减速器应用于轿车和一般轻、中型载货汽车。双级式主减速器应用于大传动比的中、重型汽车上,若其第二级减速器齿轮有两副,并分置于两侧车轮附近,实际上成为独立部件,则称轮边减速器。

由于本设计是重型卡车主减速器,由于它的主传动比比较大,故选用二级主减速器。

现代汽车的主减速器,广泛采用螺旋锥齿轮和双曲面齿轮。螺旋锥齿轮传动的主、从动齿轮轴线垂直相交于一点,齿轮并不同时在全长上啮合,而是逐渐从一端连续平稳地转向另一端。另外,由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合,所以它工作平稳、能承受较大的负荷、制造也简单。但是在工作中噪声大,对啮合精度很敏感,齿轮副锥顶稍有不吻合便会使工作条件急剧变坏,并伴随磨损增大和噪声增大。为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增大壳体刚度。根据啮合面上法向力相等,可求出主、从动齿轮圆周力之比。一般情况下,当要求传动比大于4.5而轮廓尺寸又有限时,采用双曲面齿轮传动更合理。这是因为如果保持主动齿轮轴径不变,则双曲面从动齿轮直径比螺旋锥齿轮小。当传动比小于2时,双曲面主动齿轮相对螺旋锥齿轮主动齿轮显得过大,占据了过多空间,这时可选用螺旋锥齿轮传动,因为后者具有较大的差速器可利用空间。对于中等传动比,两种齿轮传动均可采用。圆柱齿轮传动一般采用斜齿轮,广泛应用于发动机横置且前置前驱动的轿车驱动桥和双级主减速器贯通式驱动桥。

本设计的双级主减速器第一级选取螺旋锥齿轮,第二级选取圆柱齿轮。

1.2.2主减速器主、从动锥齿轮的支承方案

在壳体结构及轴承型式已定的情况下,主减速器主动齿轮的支承型式及安置方法,对其支承刚度影响很大,这是齿轮能否正确啮合并具有较高使用寿命的重要元素之一。

1、主动锥齿轮的支承

主动锥齿轮的支承形式可分为悬臂式支承和骑马式支承两种。查阅资料、文献,经方案论证,采用悬臂式支承结构(如图1.1(a)所示)。

2、从动锥齿轮的支承

主减速器从动锥齿轮的支承刚度依轴承的型式,支承间的距离和载荷在轴承之间

的分布即载荷离两端轴承支承中心间的距离c 和d (如图1.2)之比例而定。为了增强支承刚度,支承间的距离应尽量缩小。但为了使从动锥齿轮背面的支承突缘有足够的位置设置加强筋及增强支承的稳定性,距离c+d 应不小于从动锥齿轮节园直径的70%.两端支承多采用圆锥滚子轴承,安装时应使它们的圆锥滚子大端相向超内朝内,而小端相背朝外。为了使载荷能尽量均匀分在两个轴承上,并且让出位置来加强从动齿轮连接突缘的刚性,应尽量使尺寸c 等于或大于d 。为了防止从动齿轮在轴向载荷作用下的偏移,圆锥滚子轴承也应预紧。由于从动锥齿轮轴承是装在差速器壳上,尺寸较大,足以保证刚度。

图1.2从动锥齿轮的支承型式

1—调整垫片 2—调整垫圈 (a )悬臂式支承 (b )骑马式支承 图1.1 主动锥齿轮的支承型式

1.2.3 差速器的结构形式

差速器的结构形式由多种,主要分为普通对称式圆锥行星齿轮差速器和防滑差速器。其中,防滑式差速器右分为自锁式和强制锁止式。

普通的对称式圆锥行星齿轮差速器由差速器左、右壳、2个半轴齿轮,4个行星齿轮,行星齿轮轴,半轴齿轮及行星齿轮垫片等组成。由于其结构简单、工作平稳、制造方便、用在公路汽车上也很可靠等有点,最广泛地用在轿车、客车和各种公路用载货汽车上。有些越野车也采用了这种结构。

由于差速器壳是装在主减速器从动齿轮上,故在确定主减速器从动齿轮尺寸时,应考虑差速器的安装。差速器壳的轮廓尺寸也受到从动齿轮及主动齿轮导向轴承支座的限制。

1.3 设计内容

设计主要内容包括:双级主减速器和对称式圆锥行星齿轮差速器各个零件参数的设计和校核过程。主减速器结构的选择、主、从动锥齿轮的设计、轴承的校核;差速器结构的选择、行星齿轮、半轴齿轮的设计和校核。

第2章 主减速器的结构设计

2.1 主减速器传动比的计算

1、轮胎滚动半径的确定 基本参数如下表2.1:

表2.1基本参数表

由上表可知载货汽车的轮胎型号为11.0-20-16,查表可知

r d =1085mm R=F r d /2PI m (2.1)

根据轮胎型号已知为斜交轮胎F 取2.99,PI 取3.1415926,求得: R=0.516m

2、主减速比的确定

主减速比对主减速器的结构型式、轮廓尺寸、质量大小以及当变速器处于最高档位时汽车的动力性和燃料经济性都有直接影响。0i 的选择应在汽车总体设计时和传动系的总传动比T i 一起由整车动力计算来确定。可利用在不同0i 下的功率平衡图来研究

0i 对汽车动力性的影响。对发动机与传动系参数作最佳匹配的方法来选择0i 可使汽车获得最佳的动力性和燃料经济性[2]。

对于具有很大功率储备的轿车、长途公共汽车尤其是竞赛车来说,在给定发动机最大功率P max e 及其转速p n 的情况下,所选择的0i 值应能保证这些汽车有尽可能高的最高车速max a v 。这时0i 值应按下式来确定: gh

a p r i v n r i max 0377.0==8.337 (2.2)

式中 r r ——车轮的滚动半径; gh i ——变速器最高档传动比; max a v ——最高车速;

p n ——发动机最大功率时的转速。

对于其他汽车来说,为了得到足够的功率储备而最高车速稍有下降,0i 一般选得比上式求得的大10%~25%.0i 范围(9.170~10.421)初取0i =10.

因为7.6<0i <12,因此选用双级主减速器。 3、双级主减速器传动比分配

一般情况下第二级减速比02i 与第一级减速比01i 之比值(02i /01i )约在1.4~2.0范围内,而且趋于采用较大的值,以减小从动锥齿轮的半径及负荷并适应当增多主动锥齿轮的齿数,使后者的轴径适当增大以提高其支承刚度[6][7];这样也可降低从动圆柱齿轮以前各零件的负荷从而可适当减小其尺寸及质量,所以 02i /01i 在这里取2.0.得:

01i =

=0.20i 2.236, 02i =010i i =

236

.210

=4.472。 2.2 主减速齿轮计算载荷的确定

通常是将发动机最大转矩配以传动系最低档传动比时和驱动车轮打滑时两种情况下作用于主减速器从动齿轮上的转矩(je T 、?j T )的最小者,作为载货汽车和越野汽车在强度计算中用以验算主减速器从动齿轮最大应力的计算载荷。即

je T =T Tl e K i T η???0max /n (2.3)

?j T =

LB

LB r

i r G ???η?2 (2.4)

式中 max e T ——发动机最大转矩,m N ?

TL i ——由发动机到所计算的主减速器从动齿轮之间的传动系最低档传动比, TL i =0i 1i =2.2?7.034;

T η——上述传动部分的效率,取T η=0.9; 0K ——超载系数,对于一般载货汽车、矿用汽车和越野车以及液力传动的各类

汽车取0K =1;

n ——该车的驱动桥数目,

2G ——汽车满载时一个驱动桥给水平地面的最大负荷,N ;对后桥来说应该考虑

到汽车加速时的负荷增大;

?——轮胎对路面的附着系数,对于安装一般轮胎的公路用汽车,取?=0.85,对

于越野汽车取?=1.0,对于安装专门的防滑宽轮胎的高级轿车取?=1.25;

r r ——车轮的滚动半径,m ;

LB LB i ,η——分别为由所计算的主减速器从动齿轮到驱动轮之间的传动效率和减

速比(例如轮边减速器等),在这里取1=LB η,1=LB i 。

由表2.1中可知,把max e T =800(N m ?)代入式(2.3)得: je T =T TL e K i T η???0max /n je T =800m N ??2.2?7.034?0.9/1

je T =11141.856(m N ?) (2.5)

各类汽车轴荷分配范围如下表:

表2.2 驱动桥质量分配系数

本文设计车型为42?后轮双胎,满载时前轴的负荷在32%~35%,取34%;后轴为65%~68%,取66%。该车满载时的总质量为G =17.26t ,则可求得前后轴的轴荷1G 和2G

1G =0.34G ?=0.34?17.26t =5.868t (2.6) 2G =0.66?G =0.66?17.26t =11.391t

(2.7)

把已知值代入式(2.4),可得 ?j T =

LB

LB r

i r G ???η?2

?j T =

1

1516.085.08.910391.113?????m

N

?j T =48960.918(m N ?)

(2.8)

取)(min 较小者、?j je j T T T ,即=m in j T 11141.856 (m N ?)为强度计算中用以验算主减速器从动齿轮最大应力的计算载荷。

对于公路车辆来说,使用条件较非公路车俩稳定,其正常持转矩是根据所谓平均牵引力的值来确定的,即主加速器的平均计算转矩为

jm T =)()(P H R LB LB r

T a f f f n

i r G G ++???+η (2.9)

式中:a G ——汽车满载总重;

T G ——所牵引的挂车满载总重,N ,仅用于牵引车取T G =0;

R f ——道路滚动阻力系数,载货汽车的系数在0.015~0.020;初选R f =0.015; H f ——汽车正常使用时的平均爬坡能力系数。货车和城市公共汽车通常取

0.05~0.09,可初取H f =0.05;

P f ——汽车性能系数

])(195.016[1001

max

e T a P T G G

f +-=

(2.10) 当

max

)

(195.0e T a T G G +=32.98>16时,取P f =0。

r r ,LB i ,LB η,n ,max e T 等见式(2.3)(2.4)下的说明。 把上面的已知数代入式(2.9)可得: jm T =

)()(P H R LB LB r

T a f f f n

i r G G ++???+η=5673.22(m N ?) (2.11)

主动齿轮计算转矩为:

48.506401

=i T je ()m N ?

2.3 主减速器齿轮基本参数的选择

1、齿数的选择

对于普通双级主减速器,由于第一级减速比01i 比第二级的02i 小一些(通常

0.2~4.1/0201≈i i )

,这时第一级主动锥齿轮的齿数1z 可选得较大些,约在9~15范围内。第二级圆柱齿轮的传动齿数和可选在6810±的范围内。在这里我们选择1z =15。则0112i z z ?==15=?236.233.54取.332=z ,修正第一级的传动比1

2

01z z i =

=2.2;106843±=+z z 。取68。472.43402==

z z i ,所以133=z ,554=z ,修正2.43

402==z z

i 2、节圆直径的选择

节圆直径的选择可根据从动锥齿轮的计算转矩(见式2.3,式2.4中取两者中较小的一个为计算依据)按经验公式选出:

3

22

j d T K d ?= (2.12)

式中:2d K ——直径系数,取2d K =13~16;

j T ——计算转矩,m N ?,取?j T ,je T 中较小的,第一级所承受的转矩:

j T =11141.856(m N ?) (2.13)

把式(2.13)代进式(2.12)中得到354.2902=d ~357.359mm ;取2d =330mm 。

3、齿轮端面模数的选择

根据公式22/z d m t =可算出从动齿轮大端模数,10=t m mm 。 4、齿面宽的选择

汽车主减速器螺旋锥齿轮齿面宽度为:

F=0.1552d =51.15mm 。

5、螺旋锥齿轮螺旋方向

螺旋锥齿轮在传动时所产生的轴向力,其方向决定于齿轮的螺旋方向和旋转方向。判断齿轮的旋转方向是顺时针还是逆时针时,要向齿轮的背面看去。而判断轴向力的方向时,可以用手势法则。

一般情况下主动齿轮为左旋,从动齿轮为右旋,以使二齿轮的轴向力有互相斥离的趋势[3]。

6、螺旋角的选择 螺旋角 35=β。

7、齿轮法向压力角的选择

根据格里森规定载货汽车和重型汽车则应分别选用20 、22 03'的法向压力角。则在这里选择的压力角为

20。

2.4 主减速器螺旋锥齿轮的几何尺寸计算与强度计算

2.4.1主减速器螺旋锥齿轮的几何尺寸计算

主减速器圆弧齿螺旋锥齿轮的几何尺寸的计算

表2.3 双级主减速器一级齿轮的几何尺寸计算用表

2.4.2 主减速器螺旋锥齿轮的强度校核

1、主减速器螺旋锥齿轮的强度计算 单位齿长上的圆周力:

F

P

p =

(2.14) 式中:p ——单位齿长上的圆周力,N/mm ;

P ——作用在齿轮上的圆周力,N ,按发动机最大转矩max e T 和最大附着力矩两

种载荷工况进行计算;

F ——从动齿轮齿宽,及F =15.51=b mm 。

按发动机最大转矩计算时:

F d i T p g e ???=2

101

3

max =1466.84m N (2.15)

按最大附着力矩计算时:

F d r

G p r ????=2

102

3

2?=5801.22m N (2.16)

式中:2G ——后轮承载的重量,单位N ;

?——轮胎与地面的附着系数,查刘惟信版《汽车设计》表9-13,?=0.85;

r r ——轮胎的滚动半径,m ; 2d ——从动轮的直径,mm 。

在现代汽车中,由于材质及加工工艺等制造质量的提高,计算所得的p 值有时高出标准值10%~25%。(1571m N /~1756m N /)由于发动机最大转矩的限制,计算转矩1466.84m N 在允许范围内,因此校核成功。

2、轮齿的弯曲强度计算

汽车主减速器螺旋锥齿轮轮齿的计算弯曲应力)/(2mm N w σ为

J

m z F K K K K T v m

S j w ?????????=

203102σ (2.17)

式中:0K ——超载系数1.0;

s K ——尺寸系数(6.1≥m 时 s K =

4

4

.25m

=0.792); m K ——载荷分配系数,当一个齿轮用骑马式支承型式时,m K =1.10~1.25;

取m K =1.1;

v K ——质量系数,对于汽车驱动桥齿轮,档齿轮接触良好、节及径向跳动精

度高时,取1;

m ——端面模数,mm 。m =10mm ;

F ——齿面宽度,mm ;

z ——齿轮齿数;

T ——齿轮所受的转矩,m N ?;主动锥齿轮2

.2je T T =

J ——计算弯曲应力用的综合系数。

小齿轮系数=1J 0.235,大齿轮系数=2J 0.27;把这些已知数代入式(2.17)可得:

1

2

031

102J m z F K K K K T v m S w ?????????=σ=235.0101515.5111

.1792.00.148.506410223????????? =489.4152mm N

2

2

032

102J m z F K K K K T v m S w ?????????=σ=27.0103315.5111.1792.00.1856.1114110223????????? =425.9722mm N

汽车驱动桥的齿轮,承受的是交变负荷,其主要损坏形式是疲劳。其表现是齿根疲劳折断和由表面点蚀引起的剥落。按je j T T ,?中最小的计算时,汽车主减速器齿轮的许用应力为700a MP 。根据上面计算出来的21,w w σσ分别为474.302mm N (474.30a MP )、586.482mm N (586.48a MP ),它们都小于700a MP ,所以校核成功。

3、轮齿的接触强度计算

螺旋锥齿轮齿面的计算接触应力j σ(MPa )为:

J

F K K K K K T d C v f m s j p j ????????=

3

011

102σ (2.18)

式中:p C ——材料的弹性系数,对于钢制齿轮副取232.6m m N /2

1;

0K ,m K ,v K ——见式(2.17)下的说明,即0K =1,m K =1.1,v K =1; s K ——尺寸系数,它考虑了齿轮的尺寸对其淬透性的影响,在缺乏经验的情况

下,可取1;

f K ——表面质量系数,对于制造精确的齿轮可取1; j T 1——主动齿轮的计算转矩;

J —— 计算应力的综合系数,如下图所示,可查的11.0=J

图2.1 接触强度计算综合系数J

将已知带入式(2.18)可得:

J

F K K K K K T d C v f m s j p je ????????=

3

011

102σ=150

6.23211

.015.5111011.11148.506423

????????

=2182.177a MP

主、从动齿轮的接触应力是相同的汽车主减速器齿轮的许用接触应力为:当按式(2.3),(2.4)中较小者计算时许用接触应力为2800a MP ,je σ小于2800a MP ,所以校核成功。

2.5二级圆柱齿轮模数的确定

1、材料的选择及许用应力的确定

齿轮所采用的钢为20CrMnTi 号钢,用渗碳淬火处理,齿面硬度为56~62HRC ,

a HLim MP 1500=σ,a FE MP 860=σ[9] [查马秋生主编《机械设计基础》图5-28]。斜齿圆

柱齿轮的螺旋角β可选择在16°~20°这里取β=16°,法向压力角α=?20。

由1

2

02z z i ==4.472,21z z +=6810±=58~78 取21z z +=68得1z =13,2z =55,修正传动比2.413

55

02==

i ,其二级从动齿轮所受的转矩m N T 816.212702.448.50642=?=。取1,25.1==H F S S ;取8.189,5.2==E H Z Z [查马秋生主编《机械设计基础》图5-25]得:

MPa MP S a F FE

F F 68825.1860

][][21==

=

=σσσ M P a

MP S a H

HLim

H H 15001

1500

][][21==

=

=σσσ 2、齿轮的弯曲强度设计计算 ][2F Sa Fa n

F Y Y Y Y bdm KT

σσβε≤=

(2.19)

式中:K ——载荷系数,齿轮按8级精度制造取3.1=K ; T ——所计算齿轮受的转矩; b ——齿宽;

d ——计算齿轮的分度圆直径; n m ——模数;

Fa Y ——齿型系数,由当量齿数β3

1cos z z v =

= 16

cos 133=15,β3

2cos z

z v =

=6216

cos 553= 可得1Fa Y =2.91;24.22=Fa Y [查马秋生主编《机械设计基础》表5-6得];

Sa Y ——应力修正系数,可得1Sa Y =1.53,75.12=Sa Y [查马秋生主编《机械设计基础》表5-6得]。

βY ——取0.6[查马秋生主编《机械设计基础》图5-39得 因

00647.068853.191..2][111=?=F Sa Fa Y Y σ﹥00569.0688

75

.124.2][222=?=F Sa Fa Y Y σ

故应对小齿轮进行弯曲强度计算: 法向模数 3

2

1112

11c o s ]

[2βσφεβY Y Y Y Z KT m F Sa Fa d n ?≥ 式中:d φ——齿宽系数,d φ=0.8。

车辆工程毕业论文选题

毕业论文(设计) 题目 学院学院 专业 学生姓名 学号年级级指导教师 教务处制表 二〇一三年三月二十日

车辆工程毕业论文选题 本团队专业从事论文写作与论文发表服务,擅长案例分析、仿真编程、数据统计、图表绘制以及相关理论分析等。 车辆工程毕业论文选题: 某轿车机械式紧急制动辅助装置设计与仿真研究 宽轨机车运输车转向架设计及动力学分析 工程车辆联网系统及软件平台设计 叠经中空结构机织复合材料的结构设计及力学性能研究 地铁土建工程投资控制研究 基于6-σ的某轻型车制动跑偏的分析与改进 基于数据仓库的汽车故障统计分析软件研究与应用 基于道路自识别的智能汽车控制系统设计 旋转冲压转子气流激振力作用下的动力学响应 基于稳健性优化的乘员约束系统性能改进 汽车侧向防撞预警系统的研究 汽车驱动轮电子差速控制方法研究 基于分形插值函数的路面不平度的模拟研究 运动型多功能汽车防侧翻控制与评价方法研究 两类复合弹簧系统的运动复杂性分析 生态城市规划下的现代轨道交通系统设计研究 面向城市工况的LPG公交车用发动机动力性能研究 微型纯电动车车架结构性能分析与优化

基于多维模糊控制的汽车半主动悬架仿真及研究 空间网壳结构主动抗震控制理论与试验研究 四轮独立驱动电动汽车控制策略的研究 智能车视觉导航中路径识别技术的研究 华瑞汽车制造执行信息系统分析与设计 道路自动识别与控制的智能车系统的研究 某轿车悬架运动特性分析及线性区操纵稳定性客观评价基于模糊控制的汽车ABS在环仿真实验平台研究 输出假设对大学生英语分词状语短语习得影响的实证研究乘员约束系统仿真模型的建立及参数分析与优化 模拟驾驶视景系统设计与实现 基于无刷直流电动机的电动汽车差速控制设计 基于变刚度的车辆悬架减振系统设计研究 配戴近视镜驾驶者的驾驶疲劳检测 基于DSP的电动高尔夫球车数字化驱动系统的研究 超限治理对汽车产品的影响 平行泊车方法研究与仿真 智能车定向天线跟踪系统的研究与开发 金属带式无级变速器电控单元硬件在环仿真研究 轻型电子机械制动汽车横摆与侧偏控制研究 驱动与制动工况轮胎模型研究 汽车底盘集成及其控制技术研究 智能车载红外视觉预警系统关键问题研究 道路模拟试验台CMAC与PID复合控制仿真研究 基于ARM7的双驱电动车控制系统设计 基于视觉导航的智能车系统研究 山西农村客运车辆发展研究 高压低噪恒流量离心泵动力学研究 城市道路车道变换微观模型及仿真研究

汽车单级主减速器及差速器的结构设计与强度分析毕业论文

汽车单级主减速器及差速器的结构设计 与强度分析毕业论文 第一章绪论 1.1 选题的背景与意义 通过学校的实习我对汽车的构造及各总成的原理有了一定的了解,同时结合以前课堂学习的理论知识,对于进行汽车一些总成的设计有了一定的理论基础,现选择课题内容为对BJ2022汽车的使用性能的驱动桥(主减速器及差速器)进行设计。通过本课题可以进一步加深对汽车构造、汽车设计及汽车各总成的工作原理,特别是本课题驱动桥中的主减速器及差速器与半轴的认识和了解;同时经过设计过程,了解学习一些现代汽车工业的新设计方法及新技术,对于即将从事汽车行业工作的我也是一种锻炼,为即将的工作做铺垫。 1.2 研究的基本内容 1.2.1 主减速器的作用 汽车传动系的总任务是传递发动机的动力,使之适应于汽车行驶的需要。在一般汽车的机械式传动中,有了变速器还不能解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。而主减速器是在汽车传动系中起降低转速,增大转矩作用的主要部件。当发动机纵置时还具有改变转矩旋转方向的作用。它是依靠齿数少的齿轮带齿数多的齿轮来实现减速的,采用圆锥齿轮传动则可以改变转矩旋转方向。汽车正常行驶时,发动机的转速通常比较高,如果将很高的转速只靠变速箱来降低下来,那么变速箱内齿轮副的传动比则需要很大,齿轮的半径也相应加大,也就是说变速箱的尺寸会加大。另外,转速下降,扭矩必然增加,也加大了变速箱与变速箱后一级传动机构的传动负荷。所以,在动力向左右驱动轮分流的差速器之前设置一个主减速器,可以使主减速器前面的传动部件,如变速箱、

分动器、万向传动装置等传递的扭矩减小,同时也减小了变速箱的尺寸和质量,而且操控灵敏省力。 1.2.2 主减速器的工作原理 从变速器或分动器经万向传动装置输入驱动桥的转矩首先传到主减速器,主减速器的一对齿轮增大转矩并相应降低转速,以及当发动机纵置时还具有改变转矩的旋转方向。 1.2.3 国内主减速器的状况 现在国家大力发展高速公路网,环保、舒适、快捷成为汽车市场的主旋律。对整车主要总成之一的驱动桥而言,小速比、大扭矩、传动效率高、成本低逐渐成为汽车主减速器技术的发展趋势。 在产品上,国内汽车市场用户主要以承载能力强、齿轮疲劳寿命高、结构先进、易维护等特点的产品为首选。目前己开发的产品,如陕西汉德引进德国撇N 公司技术的485单级减速驱动桥,一汽集团和东风公司的13吨级系列车桥为代表的主减速器技术,都是在有效吸收国外同类产品新技术的基础上,针对国内市场需求开发出来的高性能、高可靠性、高品质的车桥产品。这些产品基本代表了国内车用减速器发展的方向。通过整合和平台化开发,目前国内市场形成了457、460、480、500等众多成型稳定产品,并被用户广泛认可和使用。设计开发上,CAD、CAE等计算机应用技术,以及AUT优AD、UG16、CATIA、proE等设计软件先后应用于主减速器的结构设计和齿轮加工中,有限元分析、数模建立、虚拟试验分析等也被采用;齿轮设计也初步实现了计算机编程的电算化。新一代减速器设计开发的突出特点是:不仅在产品性能参数上进一步进设计上完全遵从模块化设计原则,产品配套实现车型的平台化,造型和结构更加合理,更宜于组织批量生产,更适应现代工业不断发展,更能应对频繁的车型换代和产品系列化的特点,这些都对基础件产品提出愈来愈高的配套要求,需要在产品设计上不断地进行二次开发和持续改进,以满足快速多变的市场需求。

差速器毕业设计

目录 摘要 .............................................................................................................................................. I Abstract........................................................................................................................................... II 1 引言 (3) 1.1 差速器的作用 (3) 1.2 差速器的工作原理 (3) 1.3 差速器的方案选择及结构分析 (7) 1.3.1 差速器的方案选择 (7) 1.3.2差速器的结构分析 (7) 2 差速器的设计 (8) 2.1 差速器设计初始数据的来源与依据 (8) 2.2 差速器齿轮的基本参数的选择 (8) 2.3 差速器齿轮的几何尺寸计算 (12) 2.3.1 差速器直齿锥齿轮的几何参数 (12) 2.3.2 差速器齿轮的材料选用 (13) 2.3.3 差速器齿轮的强度计算 (14) 3 差速器行星齿轮轴的设计计算 (15) 3.1 行星齿轮轴的分类及选用 (15) 3.2 行星齿轮轴的尺寸设计 (16) 3.3 行星齿轮轴材料的选择 (16) 3.4 差速器垫圈的设计计算 (16) 3.4.1 半轴齿轮平垫圈的尺寸设计 (17) 3.4.2 行星齿轮球面垫圈的尺寸设计 (17) 4 差速器标准零件的选用 (17) 4.1 螺栓的选用和螺栓的材料 (17) 4.2 螺母的选用和螺母的材料 (18) 4.3 差速器轴承的选用 (18) 4.4 十字轴键的选用 (18) 5 半轴的设计 (18) 5.1 半轴的选型 (18) 5.2 半轴的设计计算 (19) 5.2.1 半轴的受力分析 (19) 5.2.2 半轴计算载荷的确定 (20) 5.2.3 半轴杆部直径初选 (21) 5.2.4 半轴的强度计算 (21) 5.2.5 半轴的材料 (22) 6 差速器总成的装配和调整 (23) 6.1 差速器总成的装配 (23) 6.2 差速器总成的装配 (23)

1127最终车辆工程专业毕业设计一览表

车辆工程专业12届毕业设计(论文)一览表 编号选题名称选题来源 选题类型名称 (本专业分类) 学生 姓名 指导教 师姓名 职称 1 多片湿式离合器及其试验装置 设计 生产实践底盘王俊 郭新民 荆崇波 教授 副教授 2 柴油机冷EGR系统文丘里管的 设计计算 科学研究发动机李亚慧 郭新民 尹旭峰 教授 讲师 3 轻型客车493发动机过热问题 的分析改进 生产实践发动机梁大伟 郭新民 尹旭峰 教授 讲师 4 公交车后置发动机冷却系统性 能改进研究 生产实践发动机冯燕华 郭新民 尹旭峰 教授 讲师 5 DA471QA发动机可变式配气机 构的改进方案 生产实践发动机刘洋 郭新民 尹旭峰 教授 讲师 6 车用发动机冷却水泵驱动方式 的改进研究 生产实践发动机邹勋冠 郭新民 尹旭峰 教授 讲师 7 柴油机冷EGR与传统EGR的对比 分析研究 科学研究发动机朱鼎 郭新民 尹旭峰 教授 讲师 8 无轨有线电动轿车自动变线装 置研究 生产实践新能源邓宗云 郭新民 吴维 教授 讲师 9 车用冷EGR自控冷却系统的研 究 科学研究发动机董志强 郭新民 吴维 教授 讲师 10 轻型货车制动系统性能的改进 研究 生产实践底盘陈迪 郭新民 吴维 教授 讲师 11 汽车修理厂气动抽油机的改进 研究 生产实践发动机施旭东 郭新民 吴维 教授 讲师 12 比亚迪F3汽车制动系统的改进 研究 生产实践底盘彭泽明 郭新民 吴维 教授 讲师 13 比亚迪双模混合动力车汽油机 的选配研究 科学研究发动机麦嘉锋 郭新民 吴维 教授 讲师 14 EQ1044轻型货车前悬架的选配 研究 科学研究底盘旋楚平 郭新民 吴维 教授 讲师 15 装载机冷却系统过热问题的改 进研究 生产实践发动机雷军军 郭新民 吴维 教授 讲师 16 基于CATIA的汽车座椅调节机 构的设计 生产实践车身电器肖茂清 陈思忠 杨延勇 教授 助教 17 无障碍公交车踏板装置的设计生产实践车身电器彭晓嘉陈思忠 杨延勇 教授 助教 18 汽车前大灯弯道照明调节系统 设计 生产实践车身电器李嘉豪 陈思忠 杨延勇 教授 助教 19 汽车胎压监测与自动加气装置 设计 科学研究底盘黄耀飞 苑士华 宋长森 教授 工程师 20 线控电动四驱模型车的设计与 制作 生产实践底盘杨皓光 苑士华 宋长森 教授 工程师

差速器开题报告

山东科技大学 本科毕业设计(论文)开题报告 题目 学院名称机械电子工程学院 专业班级机械设计制造及其自动化07-4 学生姓名魏循中 学号 200703021225 指导教师李学艺 填表时间: 2011年 3月 21 日 填表说明 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 2.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、相关系主任审查后生效。 3.学生应按照学校统一设计的电子文档标准格式,用a4纸打印。 4.参考文献不少于8篇,其中应有适当的外文资料(一般不少于2篇)。 5.开题报告作为毕业设计(论文)资料,与毕业设计(论文)一同存档。篇二:汽车差速器毕业设计开题报告 轻型载货汽车的差速器设计 2. 课题研究背景和意义 目前国内轻型货车乃至重型货车的差速器产品的技术基本来源于美国、德国、日本等几个传统的工业国家,我国现有的技术基本上是引进国外技术而发展的,在目前看来有了一定的成果和规模,但是们目前我国的差速器没有自己的核心技术产品,开发能力依然很弱、影响了整车新车的开发成本,所以在差速器开发的技术开发上还有很长的路要走。 在汽车行业发展初期,法国雷诺汽车公司的创始人雷诺发明了汽车差速器,汽车差速器作为汽车必不可少的部件之一曾被汽车专家誉为“小零件大功用”。汽车差速器是汽车传动中的最重要的部件之一,它有三大作用:首先是将发动机输出的动力传输到车轮上;其次,将主减速器已经增加的扭矩一分为二的分配给左右两根半轴;然后,它担任汽车主减速齿轮,在动力传输至车轮前将传动系的转速减下来,将动力传到车轮上,同时允许两侧车轮以不同的轮速转动。差速器对提高汽车行驶平稳性和其通过性有着独特的作用,是汽车设计的重点之一。 3. 1国内外发展动态 从目前来看,我国差速器行业已经顺利完成了由小到大的转变,正处于由大到强的发展阶段。由小到大是一个量变的过程,科学发展观对它的影响或许仅限于速度和时间,但由大到强却是一个质变的过程,能否顺利完成这一蜕变,科学发展观起着至关重要的作用。然而,在这个转型和调整的关键时刻,提高汽车车辆差速器的精度、可靠性是中国差速器行业的紧迫任务。近年来年中国汽车差速器市场发展迅速,产品产出持续扩张,国家产业政策鼓励汽车差速器产业向高技术产品方向发展,国内企业新增投资项目投资逐渐增多。投资者对汽车差速器行业的关注越来越密切,这使得汽车差速器行业的发展需求增大。对国外而言,国外的那些差速器生产企业的研究水平已经很高,而且还在不断地进步,年销售额达到18亿美金的伊顿公司汽车集团是全球化的汽车零部件制造供应商,主要产品包括发动机气体管理部分及动力控制系统,其中属于动力控制系统的差速器类产品年销售量达250万只,在同类产品居领导地位。国内的差速器起步较晚,目前的发展主要靠引进消化国外产品来满足需求。 3.2差速器的发展趋势 差速器作为车辆上必不可少的重要传动零件,要使车辆的舒适性以及通过性有所提高,

汽车差速器与主减速器设计毕业设计

摘要 本文介绍了轿车差速器与主减速器的设计建模过程,论述了轿车差速器与主减速器的结构和工作原理,通过对轿车主要参数的分析与计算对差速器和主减速器进行设计,并使用Pro/E对差速器与主减速器进行3D建模,生成2D工程图。完成装配后,对主减速器、差速器进行运动仿真,以论证差速器的差速器原理。 关键词:建模,差速器,主减速器,分析

Abstract This paper discusses the automobile differential design and modeling process of the final drive, and the structure and the principle of automobile differential and the final drive.the car After the analysis and calculation of final drive and differential,to use Pro/E to complete make 3D model of the final drive and differential, then to produce 2D drawings.There is going to analysis the final drive to prove the principle after finishing the composing. Keywords: Modeling, Differential,Final drive,Analysis

目录 摘要........................................................ I Abstract ................................................... II 目录...................................................... III 1绪论 (1) 1.1课题来源 (1) 1.2课题研究现状 (1) 1.2.1国内外汽车行业CAD研究与应用情况 (1) 1.3主减速器的研究现状 (1) 1.4 差速器的研究现状 (2) 1.5 课题研究的主要内容 (3) 2QY7180概念轿车主减速器与差速器总体设计 (4) 2.1QY7180概念轿车主要参数与主减速器、差速器结构选型 (4) 2.1.1QY7180概念轿车的主要参数 (4) 2.1.2QY7180概念轿车主减速器与差速器结构选型 (4) 2.2主减速器与差速器的结构与工作原理 (5) 2.3QY7180概念轿车主减速器主减速比i0的确定 (6) 3主减速器和差速器主要参数选择与计算 (7) 3.1主减速器齿轮计算载荷的确定 (7) 3.1.1按发动机最大转矩和最低档传动比确定从动齿轮的计算转 矩Tce (7) 3.1.2按驱动车轮打滑转矩确定从动齿轮的计算转矩Tcs (7) 3.1.3按日常平均使用转矩来确定从动齿轮的计算转矩 (8) 3.2主减速器齿轮传动设计 (8) 3.2.1按齿面接触强度设计 (8)

车辆工程专业知识试题库

车辆工程系本科毕业答辩题库 说明: 试题内容出自以下15 门专业课:汽车理论、汽车底盘构造、汽车发动机构造、汽车设计、车身设计、发动机原理、内燃机学、内燃机设计、热工基础、汽车实验学、汽车排放与控制技术、汽车电器与电子控制技术、汽车液压与气压传动、汽车安全技术、汽车工程概论。 每门专业课的试题为15 道题或稍多,共232 题。 汽车理论专业题(共16 题) 1. 什么是汽车的比功率? 答:是单位汽车总质量具有的发动机功率。 2. 发动机的外特性曲线是什么? 答:当发动机的节气门全开时,发动机的性能指标如功率、燃油消耗率等性能指标随速度变化的情况为,发动机的外特性曲线。 3. 汽车的制动性是什么? 答:是指汽车行驶时能在短距离内停车且维持行驶方向稳定性和在下长坡时能维持一定车速的能力。 4. 什么是汽车的动力性? 答:指汽车在良好路面上直线行驶时,受到的纵向外力决定的、所能达到的平均行驶速度。 5. 地面制动力是什么? 答:由地面提供的与汽车行驶方向相反的外力 6. 什么是汽车附着率? 答:是指汽车在直线行驶状况下,驱动轮不滑转工况下充分发挥驱动力作用要求的最低附着系数。 7. 什么是最大爬坡度? 答:是指汽车满载时在良好路面上用第一档克服的最大坡度,表征汽车的爬坡能力。 8. 什么是汽车的燃油经济性? 答:在保证动力性的条件下,汽车以尽量少的燃油消耗量经济行驶的能力。 9. 汽车行驶阻力包括哪些? 答:滚动阻力、空气阻力、坡度阻力、加速阻力。 10.什么是汽车的平顺性? 答:是保持汽车在行驶过程中产生的振动和冲击环境对乘员舒适性的影响在一定界限之内,主要根据乘员主观感觉的舒适性来评价,对于载货汽车还包括保持货物完好的性能。 11.什么是汽车的通过性? 答:指汽车能以足够高的平均车速通过各种坏路和无路地带(如松软地面、凹凸不平地面等)及各种障碍(如陡坡、侧坡、壕沟、台阶、灌木丛、水障等)的能力

南京理工大学车辆工程专业毕业实习报告

实 习 报 告 课 程 名 称 实 习 日 期 学 生 专 业 学 生 学 号 学 生 姓 名 教 师 姓 名 成 绩 南京理工大学机械工程学院 毕 业 实 习 2018.02.27-2018.03.07 车辆工程

一.实习目的 本次实习以生产实习为主,生产实习是一项重要的实践性教育环节,旨在开拓我们的视野,增强专业意识,巩固和理解专业课程,是学生理论联系实际的课堂。实习方式主要是以企业技术管理和企业管理人员介绍以及学生参观两种形式进行。同学们下生产车间参观,向企业的现场管理,技术生产工作人员学习请教相关知识。通过交流实习体会方式,加深和巩固实习和专题讲座内容。通过本次实习,我们学到了很多课本上学不到的东西,并对生产管理有了更深的认识。与此同时,还能初步了解企业管理的基本方法和技能,使我们获得基本生产的感性知识,理论联系实际,扩大知识面。同时专业实习又是锻炼和培养我们业务能力及素质的重要渠道,培养我们认识企业、与社会企业沟通的能力。此次通过对南京申华汽车电子有限公司、南京MG汽车有限公司、南京东华汽车转向器有限公司、南京依维柯汽车有限公司发动机分公司等参观了解认识,使我们对车辆的生产设计,制造检修,运营等方面有更全面更直观的了解,加深我们对专业知识的理解,使学习与实践相结合,提高了自己的综合素质,是不可或缺的经历。二.实习地点与时间 2018.02.27:南京依维柯汽车有限公司(发动机分公司); 2018.02.28:南京申华汽车电子有限公司; 2018.03.01:上汽大通南京分公司(跃进总装、车桥); 2018.03.02:南京东华转向器有限公司; 2018.03.06:南京东华力威汽车零部件有限公司; 2018.03.07:上汽大众南京分公司(名爵、荣威总装)。 三.实习内容 2018.02.27:南京依维柯汽车有限公司(发动机分公司)南京依维柯汽车有限公司(简称为NAVECO)成立于1996年3月1日。是由南京汽车集团公司和意大利 IVECO股份公司共同投资建立的中外合资公司。总投资37亿元人民币,合资双方各占50%股份。

车辆工程汽车总布置设计论文之欧阳家百创编

车辆工程专业毕业设计汽车整车论文 欧阳家百(2021.03.07) 摘要 汽车车身总布置设计是车身设计的重要内容。车身总布置设计是在整车总布置的基础上进行的,主要包括汽车车身底版的布置、前围的布置、车身室内人体工程布置、车门布置、发动机舱、行李舱的布置以及其它装备的布置。其中车身室内人体工程布置是主要的内容涉及到人体工程学的知识。可以说车身总布置设计的好坏是决定车身设计和轿车设计好坏的一项重要内容。本次7161轿车车身总布置设计主要是利用已给的数据和人体工程学的基本知识对该车型的车身外形布置和内部布置进行设计,并进行相关的动力性和经济性计算以检验设计的合理性。通过本次毕业设计,充分了解和掌握了对某一轿车车身进行车身总布置设计的步骤和方法,这将为我们以后毕业从事汽车车身设计的工作打下基础。 关键词:车身总布置设计人体工程学车身外形布置设计车身室内布置设计 Abstract Car body general arrangement design is an important constituent of car body design. It is on the basement of car general arrangement design,

includes car floor arrangement、front fender arrangement、interior body ergonomic arrangement、door arrangement、engine module and luggage compartment arrangement and other establishments arrangement. Among them, the interior body ergonomic arrangement is the most important part as it relates to ergonomics. We can say that the quality of car body general arrangement is an important constituent which determines the quality of body design and car design. During this time’s Ao Tuo mini car body general arrangement design, the mainly part of my work is to use data which is given by my guiding teacher and the infrastructural knowledge of ergonomics to design Ao Tuo car body external and interior arrangement, and to conduct some calculation about this car’s power and economy performance. This calculation can check that whether the car body general arrangement design is reasonable or not. Through this graduate design, I fully know and master the steps and methods of body general arrangement design to a specific car body, which will lay the foundation for our car body design work after graduation. Key words:body general arrangement design ergonomics body external arrangement design interior body arrangement design 1.绪论 1.1汽车设计的规律,决策与设计过程 汽车设计尤其是新新车型的设计,是根据社会对该车型的使用要

BJ2022汽车单级主减速器及差速器的结构设计与强度分析-毕业设计说明书

BJ2022汽车单级主减速器及差速器的结构设计与强度分析-毕业设计说明书

毕业设计说明书 BJ2022汽车单级主减速器及差速器的结构设计与强度分析 学生姓名:学号:学院: 专业: 指导教师: 2012年6月0801074117 机电工程学院地面武器机动工程

BJ2022汽车单级主减速器及差速器的结构设计与强度分析 摘要 汽车主减速器及差速器是汽车传动中最重要的部件之一。它能够将万向传动装置传来的发动机转矩传给驱动车轮,以实现降速增扭。 本次设计的是有关BJ2022汽车的主减速器和差速器,并要使其具有通过性。本次设计的内容包括有:方案选择,结构的优化与改进。齿轮与齿轮轴的设计与校核。并且在设计过程中,描述了主减速器的组成和差速器的差速原理和差速过程。 方案确定主要依据原始设计参数,对比同类型的减速器及差速器,确定此轮的传动比,并对其中重要的齿轮进行齿面接触和齿轮弯曲疲劳强度的校核。而对轴的设计过程中着重齿轮的布置,并对其受最大载荷的危险截面进行强度校核。 主减速器及差速器对提高汽车行驶平稳性和其通过性有着独特的作用,是汽车设计的重点之一。 关键词:驱动桥,主减速器,差速器,半轴

BJ2022 car single stage and the structure of the main reducer differential design and strength analysis ABSTRACT Automobil reduction final drive and differential is one of the best impossible parts in automobile gearing. It can chang speed and driving tuist within a big scope . The problem of this design is BJ2022 car differential unit ,it’ s properly in common use . The design of scheme, the better design and improvement of structure ,the design and calibration of gear and gear shiftes , and the select of bearings , and also the design explain the construction of differential action . The ting of the scheme desierment main deside. The drive ratio of gear,according to orginal design parameter and constrasting the same type reduction final drive ang differential assay . It realize planet gear in the design of structure . It put to use alteration better gears transmission in the design of gear , and compare the root contact tired strength of some important gears and the face twirl tired strength . It eraphaize pay attention to the place of gears. Compare the strength of the biggest load dangraes section. It require structure simple and accord with demand in select of bearings . The Lord reducer to improve the car driving and differential stability and its through sex has a unique function, is one of the focal points of automotive design. Key words : Drive axle,Main reducer,Differential,Axle

汽车差速器的设计与分析

摘要 本次毕业设计主要是对安装在驱动桥的两个半轴之间的差速器进行设计,主要涉及到了差速器非标准零件如齿轮结构和标准零件的设计计算,同时也介绍了差速器的发展现状和差速器的种类,对于差速器的方案选择和工作原理也作出了简略的说明。在设计中参考了大量的文献,因此对差速器的结构和作用有了更透彻的了解,通过利用CATIA软件对差速器进行建模工作,也让我在学习方面得到了提高。 关键词:半轴,差速器,齿轮结构

目录 1.引言 (1) 1.1汽车差速器研究的背景及意义 (1) 1.2汽车差速器国内外研究现状 (1) 1.2.1国外差速器生产企业的研究现状 (1) 1.2.2我国差速器行业市场的发展以及研究现状 (2) 1.3汽车差速器的功用及其分类 (3) 1.4毕业设计初始数据的来源与依据 (4) 1.5本章小结 (5) 2.差速器的设计方案 (6) 2.1差速器的方案选择及结构分析 (6) 2.2差速器的工作原理 (7) 2.3本章小结 (9) 3.差速器非标准零件的设计 (10) 3.1对称式行星齿轮的设计计算 (10) 3.1.1对称式差速器齿轮参数的确定 (10) 3.1.2差速器齿轮的几何计算图表 (15) 3.1.3差速器齿轮的强度计算 (17) 3.1.4差速器齿轮材料的选择 (18) 3.1.5差速器齿轮的设计方案 (19) 3.2差速器行星齿轮轴的设计计算 (19) 3.2.1行星齿轮轴的分类及选用 (19) 3.2.2行星齿轮轴的尺寸设计 (20) 3.2.3行星齿轮轴材料的选择 (20) 3.3差速器垫圈的设计计算 (20) 3.3.1半轴齿轮平垫圈的尺寸设计 (21) 3.3.2行星齿轮球面垫圈的尺寸设计 (21) 3.4本章小结 (21) 4.差速器标准零件的选用 (22)

机械学院车辆工程毕业实习报告

机械工程学院 实习报bao 生产实习报告 本学期前三周我们到中兴特汽和奇瑞鄂尔多斯分公司进行了实习,主要是了解车辆企业的生产情况,与本专业有关的各种知识,以及工人的工作情况等。第一次亲身感受了所学知识与实际的应用,特别是车辆工程专业知识在实际生产中的重要应用,同时也让我们意识到学好本专业知识的重要。本次实习以生产实习参观为主,生产实习是我们学习车辆工程专业的一项重要的实践性教学环节,旨在开拓我们的视野,增强专业意识,巩固和理解专业课程。同学们下生产车间参观,向企业的现场管理,技术生产工作人员学习请教相关知识;通过交流实习体会方式,加深和巩固实习所学知识。通过本次实习,我们学到了很多课本上学不到的东西,并对生产管理有了更深的认识。具体的实习报告如下: 生产实习是我们车辆工程专业知识结构中不可缺少的组成部分,并作为一个独立的项目列入专业教学计划中的。其目的在于通过实习使学生获得基本生产的感性知识,理论联系实际,扩大知识面;同时专业实习又是锻炼和培养学生业务能力及素质的重要渠道,培养当代大学生具有吃苦耐劳的精神,也是学生接触社会、了解产业状况、了解国情的一个重要途径,逐步实现由学生到社会的转变,培养我们初步担任技术工作的能力、初步了解企业管理的基本方法和技能;体验企业工作的内容和方法;参观与本专业相关的企业,初步了解企业管理的基本方法和技能,以及在生产现场将本专业的知识结合起来,增加感性认识。这些实际知识,

对我们学习后面的课程乃至以后的工作,都是十分必要的基础。此次通过对清华大学车辆实验室和北汽福田汽车股份有限公司的实地实习了解认识,使我们对车辆的生产设计,制造检修,运营等方面有更全面更直观的了解,加深我们对专业知识的理解,使学习与实践相结合。我们的实习的第一站,我们选择奇瑞鄂尔多斯分公司。首先由奇瑞的工作人员给我们讲解了奇瑞鄂尔多斯分公司光辉历史,使我们顿生崇敬之意。瑞汽车股份有限公司于1997年1月8日注册成立,现注册资本为37.8亿元。公司于1997年3月18日动工建设,1999年12月18日,第一辆奇瑞轿车下线;以2007年8月22日第100万辆汽车下线为标志,奇瑞实现了从“通过自主创新打造自主品牌”第一阶段向“通过开放创新打造自主国际名牌”第二阶段的转变,进入全面国际化的新时期。目前,奇瑞公司已具备年产65万辆整车、65万台发动机和40万套变速箱的生产能力。奇瑞公司旗下现有奇瑞、瑞麒、威麟、开瑞四个子品牌,产品覆盖乘用车、商用车、微型车领域。目前,奇瑞已有15个系列数十款车型投放市场,另有数十款储备车型将相继上市。奇瑞以“更安全、更节能、更环保”为产品诉求,先后通过ISO9001、德国莱茵公司ISO/TS16949等国际质量体系认证。多年来,以“零缺陷”为目标的奇瑞产品受到消费者青睐,2009年实现整车销售超过50万辆,连续9年蝉联中国自主品牌销量冠军,是中国最大的乘用车出口企业。 威麟品牌作为奇瑞公司下属四大子品牌之一,定位为中高端全能商务品牌;它以“先见、进取、掌控”为核心,通过生产实用可靠、经济环保的SUV、MPV、轻客等一系列优质产品,满足消费者多种多样的商务车需求。为了促进威麟品牌的建设和发展,专门成立了奇瑞汽车股份有限公司鄂尔多斯分公司进行威麟品牌产品的生产。 奇瑞鄂尔多斯分公司开工仪式在内蒙古鄂尔多斯市东胜区装备制造基地举行。这是公司发展中的又一重大举措。鄂尔多斯项目规划从零部件起步,逐步开始整车改装,最终形成年产30万辆SUV、皮卡、商务车、改装车的生产能力。公司及合作伙伴将向该项目分期投入资金最终将达200亿元,计划“十二五”期间完成投资。自2009年开始,奇瑞公司就为新一轮发展加紧布局。公司目前正在建设的大连基地主要以乘用车为主,覆盖东北区域和承担海外销售的任务;开封项目主要以微车和轻型货车为主,立足中原,辐射全国;鄂尔多斯所在的西部地区则是SUV、皮卡等车型的最重要市场,占有全国20%以上的市场份额。因此,选择鄂尔多斯建立SUV、皮卡、商务车项目是公司市场发展的需要。 鄂尔多斯项目开工建设标志着公司正在抓住国内汽车产业高速发展的历史机遇,从高端品牌和产品、到基地和市场进行全面布局,为做大做强打下坚实基础。

车辆工程课程设计

本科专业课程设计 题目新能源汽车动力与驱动系统总体的设计 学院: 汽车与交通工程学院 专业: 车辆工程 学号: 201223079026 学生姓名: 杨曼华 指导教师: 郑安文 日期: 2016.01

摘要 日益严重的环境污染和能源危机对汽车工业的发展提出了极为严峻的挑战。为了汽车工业的可持续发展,以使用电能的电动机作为驱动设备的电动汽车能真正实现“零污染”,现已成为各国汽车研发的一个重点。 纯电动汽车是指利用动力电池作为储能动力源,通过电池向电机提供电能,驱动电机运转,从而推动车辆前进。而在电动汽车研究的众多技术选型中,依靠轮边驱动的电动汽车逐渐成为一种新颖的电动汽车选型方向。 本文设计了一种新型双电机独立驱动桥,该方案采用锂离子动力电池作为动力源,两台永磁直流无刷电机作为驱动装置,依靠两套减速齿轮组分别进行减速,用短半轴带动车轮旋转。在系统构型设计的基础上,进行了包括电动机、电池在内的动力系统参数匹配。 关键词:纯电动汽车;锂离子;双电机系统

Abstract Increasingly serious environmental pollution and energy crisis put forward on the development of the auto industry is extremely severe challenges. In order to the sustainable development of automobile industry, to use the power of the motor as driving device of the electric car can truly realize "zero pollution", has become a national automobile research and development of a key. So-called pure electric vehicles is the use of power battery as energy storage power source, through the battery power to the motor, drive motor running, pushing forward vehicle. In the electric car research, technology selection, depending on the round edge drive electric cars gradually become a new direction of the electric car type selection. This paper designs a new type of double motor drive axle independently, the scheme adopts the lithium ion power battery as a power source, two permanent magnet brushless dc motor as drive device, rely on two sets of gear group respectively for slowing down, with a short half shaft drives the wheels. On the basis of the system configuration design, the power system parameters, including electric motors, batteries, matching. Key words:Electric vehicles;Li+;Dual motor system

车辆工程专业毕业论文_

变速器 所有变速箱技术中,手动变速器的效益最高,输出功率可达到输入功率的96%,但并不是所有的人都能驾驭手动变速箱,也不是所有人愿意用它。因为用手动变速器需要踩离合器,这是在交通繁忙的时候很不舒服,驾驶员容易疲劳,而由扭矩中断导致的“点头”效应也会使乘客很难受。 由驾驶员操纵离合器而产生的扭矩中断是手动变速器主要的缺点。在换档加速时,驾驶员都必须通过松开油门并踩下离合器来使扭矩中断,完成整个过程大概需要一秒,但在这段时间里车辆会暂时停止加速,速度也会降低。 与此截然不同的是自动变速箱,到目前为止现代汽车自动变速器是汽车上最复杂的元件。它是一种可以自己换挡的变速器。力矩转换器或流体联合器被用来代替手动离合器连接发动机。 汽车上变后轮驱动或前轮驱动是车辆自动变速器的两种基本类型。在一个后轮驱动的速器通常放在发动机后面凸起后长板旁边气体踏板下方的位置。驾驶杆连接变速器后端,最终驾驶的准确位置在后轴,用操纵力控制后轮。发动机的动力简单连续的在这个系统中循环,在通过变速器时改变力矩,通过传动轴后在主减速器分流到两后轮。 在前轮驱动汽车中,变速器常常兼有最终驱动叫做变速驱动桥。前轮驱动汽车通常在发动机的后下方安装有横向变速驱动桥。前桥直接连接在发动机的变速驱动桥上为前轮提供动力,动力从发动机出发转过一个大链条后经180°转变传给变速器。从而,将主动力通过变速器后分流传到驱动轴再送到两前轮。 也有一些其他方式的前轮驱动车辆,车架前方代替另一边的其他系统驱动四轮,但在这儿仅对其中的两个系统进行说明。相对于前轮驱动来说最流行的是后轮驱动,在发动机上连接一个输出轴,将改变后的力矩传给后驱动轮。这个系统是探寻前后轴实施改进的新的节能动力平衡装置。另一个驱动系统是把所有的驱动零件都按在后轮上。这种排列方式发动机通常后置。 现代自动变速器由许多的部件和系统组成,它们有行星齿轮组、液压系统、密封圈和密封衬垫、变矩器、油压调节器、调制器、节气门拉线、电子

差速器毕业设计-论文

目录 摘要.................................... I Abstract .................................... II 1 引言 (3) 1.1 差速器的作用. (3) 1.2 差速器的工作原理. (3) 1.3 差速器的方案选择及结构分析. (7) 1.3.1 差速器的方案选择. (7) 1.3.2 差速器的结构分析 (7) 2 差速器的设计. (8) 2.1 差速器设计初始数据的来源与依据. (8) 2.2 差速器齿轮的基本参数的选择. (8) 2.3 差速器齿轮的几何尺寸计算. (12) 2.3.1 差速器直齿锥齿轮的几何参数. (12) 2.3.2 差速器齿轮的材料选用. (13) 2.3.3 差速器齿轮的强度计算. (14) 3 差速器行星齿轮轴的设计计算. (15) 3.1 行星齿轮轴的分类及选用. (15) 3.2 行星齿轮轴的尺寸设计. (16) 3.3 行星齿轮轴材料的选择. (16) 3.4 差速器垫圈的设计计算. (16) 3.4.1 半轴齿轮平垫圈的尺寸设计. (17) 3.4.2 行星齿轮球面垫圈的尺寸设计. (17) 4 差速器标准零件的选用. (17) 4.1 螺栓的选用和螺栓的材料. (17) 4.2 螺母的选用和螺母的材料. (18) 4.3 差速器轴承的选用. (18) 4.4 十字轴键的选用. (18) 5 半轴的设计. (18) 5.1 半轴的选型. (18) 5.2 半轴的设计计算. (19) 5.2.1 半轴的受力分析. (19) 5.2.2 半轴计算载荷的确定. (20) 5.2.3 半轴杆部直径初选. (21) 5.2.4 半轴的强度计算. (21) 5.2.5 半轴的材料. (22) 6 差速器总成的装配和调整. (23) 6.1 差速器总成的装配. (23) 6.2 差速器总成的装配. (23)

相关主题
相关文档 最新文档