当前位置:文档之家› 应用力学教案

应用力学教案

应用力学教案
应用力学教案

教案用纸

教案用纸

教案用纸

教案用纸

教案用纸

教案用纸

教案用纸

精选-理论力学试题及答案

理论力学试题及答案 (一) 单项选择题(每题2分,共4分) 1. 物块重P ,与水面的摩擦角o 20m ?=,其上作用一力Q ,且已知P =Q ,方向如图,则物块的状态为( )。 A 静止(非临界平衡)状态 B 临界平衡状态 C 滑动状态 第1题图 第2题图 2. 图(a)、(b)为两种结构,则( )。 A 图(a)为静不定的,图(b)为为静定的 B 图(a)、(b)均为静不定的 C 图(a)、(b)均为静定的 D 图(a)为静不定的,图(b)为为静定的 (二) 填空题(每题3分,共12分) 1. 沿边长为m a 2=的正方形各边分别作用有1F ,2F ,3F ,4F ,且1F =2F =3F =4F =4kN ,该力系向B 点简化的结果为: 主矢大小为R F '=____________,主矩大小为B M =____________ 向D 点简化的结果是什么? ____________。 第1题图 第2题图 2. 图示滚轮,已知2m R =,1m r =,ο30=θ,作用于B 点的力4kN F =,求力F 对A 点之矩A M =____________。 3. 平面力系向O 点简化,主矢R F '与主矩M 10kN F '=,20kN m O M =g ,求合力大小及作用线位置,并画在图上。 D C A B F 1 F 2 F 3 F 4

第3题图 第4题图 4. 机构如图,A O 1与B O 2均位于铅直位置,已知13m O A =,25m O B =,2 3rad s O B ω=,则 杆A O 1的角速度A O 1ω=____________,C 点的速度C υ=____________。 (三) 简单计算题(每小题8分,共24分) 1. 梁的尺寸及荷载如图,求A 、B 2. 丁字杆ABC 的A 端固定,尺寸及荷载如图。求A 端支座反力。 3. 在图示机构中,已知m r B O A O 4.021===,AB O O =21,A O 1杆的角速度4rad ω=,角加速度22rad α=,求三角板C 点的加速度,并画出其方向。 F O R ' O M

高中物理专题七实验(力学实验)教案

专题七、实验(力学实验) 【典型例题】 一、基本仪器的使用: 1.用某精密仪器测量一物件的长度,得其长度为1.63812cm.如果用最小刻度为mm的米尺来测量,则其长度应读为________cm,如果用50分度的卡尺来测量,则其长度应读为________cm,如果用千分尺(螺旋测微计)来测量,则其长度应读为________cm. 2.图1甲为20分度游标卡尺的部分示意图,其读数为__________ mm ;图乙为螺旋测微器的示意图,其读数为________ mm. 3.在某一力学实验中,打出的纸带如图1所示,相邻计数点的时间间隔是T .测出纸带各计数点之间的距离分别为x 1、x 2、x 3、x 4,为了使由实验数据计算的结果更精确些,加速度的平均值为a =___ ___;打下C 点时的速度v C =__ ____. 二、验证性实验: 4.“验证机械能守恒定律”的实验可以采用如图1甲或乙方案来进行。 (1)比较这两种方案, (填“甲”或“乙”)方案好些,理由是: 。 (2)如图2是该实验中得到的一条纸带,测得每两个计数点间的距离如图中所示,已知每两个计数点间的时间间隔T = 0.1s 。物体运动的加速度a = ;该纸带是采用 (填“甲”或“乙”)实验方案得到的。简要写出判断依据 。 三、探究性实验: 5.某实验小组利用拉力传感器和速度传感器探究“动能定理”,如图1所示,他们将拉力传感器固定在小车上,用不可伸长的细线将其通过一个定滑轮与钩码相连,用拉力传感器记录小车受到拉力的大小。在水平桌面上相距50.0cm 的A 、B 两点各安装一个速度传感器记录小车通过A 、B 时的速度大小。小车中可以放置砝码。 (1)实验主要步骤如下: ①测量________和拉力传感器的总质量M 1;把细线的一端固定在拉力传感器上另一端通过定滑轮与钩码相连;正确连接所需电路; ②将小车停在C 点,______,小车在细线拉动下运动,记录细线拉力及小车通过A 、B 时的速度。 ③在小车中增加砝码,或_______,重复②的操作。 (2)右表是他们测得的一组数据,其中M 是M 1与小车中砝码质量m 之和,|v 22-v 2 1| 是两个速度传感器记录速度的平方差,可以据此计算出动能变化量△E ,F 是拉力传感器受到的拉力,W 是F 在A 、B 间所作的功。表格中△E 3=____,W 3=____.(结果保留三位有效数字) (3)根据上表中的数据,请在图2中的方格纸上作出△E-W 图线。 四、设计性实验: 6.如图6所示,水平桌面有斜面体A ,小铁块B ,斜面体的斜面是曲面,下端切线是水平。现提供的实验工具只有:天平、直尺。其他的实验器材可根据实验需要自选。设计一个实验,测出小铁块B 自斜面顶端由静止下滑到底端的过程中,摩擦力对小铁块B 做的功。要求: (1)请在原图中补充画出简要实验装置图。 (2)简要说明实验要测的物理量。 (3)简要说明实验步骤。 (4)写出实验结果的表达式(重力加速度g 已知) 五、创新型实验: 7.某同学想利用DIS 测电风扇的转速和叶片长度,他设计的实验装置如左下图所示.他先在某一叶片边缘粘上一小条弧长为△l 的反光材料,当该叶片转到某一位置时,用光传感器接收反光材料反射的激光束,并在计算机屏幕上显示出矩形波,如右下图所示,屏幕横向每大格表示的时间为5.00×10-2s .则矩形波的“宽度”所表示的物理意义是___________________;电风扇的转速为______转/s ;若△l 为10cm ,则叶片长度为________m . 图6 图1

理论力学授课教案

《理论力学》教案 使用教材:《理论力学》 (哈工大主编) 第一篇静力学 第一章静力学 一、目的要求 1.深入地理解力、刚体、平衡和约束等重要概念。 2.静力学公理(或力的基本性质)是静力学的理论基础,要求深入理解。 3.明确和掌握约束的基本特征及约束反力的画法。 4.熟练而正确地对单个物体与物体系统进行受力分析,画出受力图。 5.掌握力多边形法则及平面汇交力系合成与平衡的几何条件。 二、基本内容 1.重要概念 1)平衡:物体机械运动的一种特殊状态。在静力学中,若物体相对于地面保持静止或作匀速直线平动,则称物体处于平衡。 2)刚体:在力作用下不变形的物体。刚体是静力学中的理想化力学模型。 3)约束:对非自由体的运动所加的限制条件。在刚体静力学中指限制研究对象运动的物体。约束对非自由体施加的力称为约束反力。约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反。 4)力:物体之间的相互机械作用。其作用效果可使物体的运动状态发生改变和使物体产生变形。前者称为力的运动效应或外效应,后者称为力的变形效应或内效应,理论力学只研究力的外效应。力对物体作用的效应取决于力的大小、方向、作用点这三个要素,且满足平行四边形法则,故力是定位矢量。 5)力的分类: 集中力、分布力 主动力、约束反力 6)力系:同时作用于物体上的一群力称为力系。按其作用线所在的位置,力系可以分为平面力系和空间力系,按其作用线的相互关系,力系分为共线力系、平行力系、汇交力系和任意力系等等。 7)等效力系:分别作用于同一刚体上的两组力系,如果它们对该刚体的作用效果完全相同,则此两组力系互为等效力系。 8)平衡力系:若物体在某力系作用下保持平衡,则称此力系为平衡力系。 9)力的合成与分解:若力系与一个力F R等效,则力F R称为力系的合力,而力系中的各力称为合力F R的分力。力系用其合力F R代替,称为力的合成;反之,一个力F R用其分力代替,称为力的分解。 2.静力学公理及其推论 公理1:二力平衡条件 指出了作用于刚体上最简单力系的平衡条件。对刚体而言,这个条件既必要又充分,但对非刚体而言,这个条件并不充分。 公理2:加减平衡力系公理 此公理是研究力系等效变换的依据,同样也只适用于刚体而不适用于变形体。 推论1:力的可传性 表明作用于刚体上的力是滑动矢量。

高考物理二轮 压轴突破 专题5第11讲力学实验中常考的3个问题教案

第11讲力学实验中常考的3个问题 一、误差和有效数字 1.误差 误差产生原因大小特点减小方法 系统误差实验仪器不精确、实验原理不完善、实验 方法粗略 总是偏大 或偏小 更新仪器完善实验 原理 偶然误差测量、读数不准确忽大忽小画图象或取平均值 (1)定义:带有一位不可靠数字的近似数字.有效数字的最后一位是测量者估读出来的,是误差的来源. (2)从数字左边第一个不为零的数字算起,如0.012 5为三位有效数字. 二、长度的测量 1.毫米刻度尺的读数:精确到毫米,毫米后再估读一位. 2.游标卡尺的读数:测量值=主尺上的读数+m×n(其中m为游标卡尺的精确度,n为游标尺上与主尺上某刻度线对齐的格数). 3.螺旋测微器的读数 测量值=固定刻度+可动刻度×0.01 mm. 三、验证性实验 1.实验名称:验证力的平行四边形定则、验证牛顿运动定律、验证机械能守恒定律. 2.实验方法 (1)对于现象直观明显或者只需讨论的验证性实验问题,常常通过观察分析进行证实; (2)对有测量数值且实验要求根据数据分析验证结果的,一般要进行分析归纳,通过作图、计算、测量进行比较验证. 3.实验拓展 随着高考改革逐步深入,验证性实验试题逐渐减少,往往将验证性实验变化为设计性、探究性、研究性实验,对于这种实验题型的变化,我们复习时要引起足够的重视. 四、探究性实验 1.实验名称:探究弹力和弹簧伸长的关系、探究动能定理、研究匀变速直线运动. 2.实验方法:按照题目要求设计实验方案,探究某种规律或研究物理量之间的关系,根据实验数据得出实验结论,题目一般以教材基本实验为原型或以学过的知识为基础,新颖灵活,具有开放性.3.实验过程的比较 类型探究性实验验证性实验

工程力学试题库(学生用)电子教案

工程力学试题库(学生 用)

收集于网络,如有侵权请联系管理员删除 工程力学复习题 一、选择题 1、刚度指构件( )的能力。 A. 抵抗运动 B. 抵抗破坏 C. 抵抗变质 D. 抵抗变形 2、决定力对物体作用效果的三要素不包括( )。 A. 力的大小 B. 力的方向 C. 力的单位 D. 力的作用点 3、力矩是力的大小与( )的乘积。 A.距离 B.长度 C.力臂 D.力偶臂 4、题4图所示AB 杆的B 端受大小为F 的力作用,则杆内截面上的内力大小为 ( )。 A 、F B 、F/2 C 、0 D 、不能确定 5、如题5图所示,重物G 置于水平地面上,接触面间的静摩擦因数为f ,在物体上施 加一力F 则最大静摩擦力最大的图是( B )。 (C) (B)(A) 题4图 题5图 6、材料破坏时的应力,称为( )。 A. 比例极限 B. 极限应力 C. 屈服极限 D. 强度极限

7、脆性材料拉伸时不会出现()。 A. 伸长 B. 弹性变形 C. 断裂 D. 屈服现象 8、杆件被拉伸时,轴力的符号规定为正,称为()。 A.切应力 B. 正应力 C. 拉力 D. 压力 9、下列不是应力单位的是()。 A. Pa B. MPa C. N/m2 D. N/m3 10、构件承载能力的大小主要由()方面来衡量。 A. 足够的强度 B. 足够的刚度 C. 足够的稳定性 D. 以上三项都是 11、关于力偶性质的下列说法中,表达有错误的是()。 A.力偶无合力 B.力偶对其作用面上任意点之矩均相等,与矩心位置无关 C.若力偶矩的大小和转动方向不变,可同时改变力的大小和力偶臂的长度,作用效果不变 D.改变力偶在其作用面内的位置,将改变它对物体的作用效果。 12、无论实际挤压面为何种形状,构件的计算挤压面皆应视为() A.圆柱面 B.原有形状 C.平面 D.圆平面 13、静力学中的作用与反作用公理在材料力学中()。 A.仍然适用 B.已不适用。 14、梁剪切弯曲时,其横截面上()。A A.只有正应力,无剪应力 B. 只有剪应力,无正应力 C. 既有正应力,又有剪应力 D. 既无正应力,也无剪应力 收集于网络,如有侵权请联系管理员删除

应用弹塑性力学李同林第四章

应用弹塑性力学李同林第四章 这是变形理论。这个理论首先由亨斯基提出,然后由前苏联的伊留申进一步完善。问题提出得更清楚了,并且给出了使用条件。因此,这个理论也被称为亨奇-伊柳辛理论。伊柳欣的变形理论应该满足几个条件: (1)外载荷(包括体力)成比例增加,变形体处于主动变形过程中(即应力强度无中间卸载); (2)材料所用体积不可压缩,采用泊松比μ = 1/2进行计算;(3)材料的应力-应变曲线具有幂强化形式,即 或者 ; 在变形过程中 (4)满足小弹塑性变形的各种条件,塑性变形和弹性变形大小相同。满足上述条件后,变形理论将给出正确的结果。如果负载没有成比例地增加,则外部负载成比例地增加是简单负载的必要条件。这样不仅不能保证物体内部的简单加载状态,而且物体表面也不能满足简单加载条件。体积不可压缩性和泊松比μ=1/2的假设不仅简化了具体计算,而且与实验结果基本一致,因此变形理论的物理关系主要表现为应力挠度和应变挠度之间的关系,这是令人满意的。 法律。 使用幂强化模型可以避免区分弹性区和塑性区,但实际上该模型对不同材料的限制很小,因为各种材料都可以通过选择公式中常数a的指

数m来拟合拉伸曲线。采用小变形条件是因为平衡方程和几何方程是在小变形条件下推导出来的,物理关系也是小变形条件下的关系。伊柳辛不仅明确规定了亨奇变形理论的适用条件,而且证明了简单加载定理。他提出,在小的弹塑性变形条件下,总应变与应力挠度成正比,即: 如果使用主应力,有 等效应变的表达式为: 从这里 因此,Hench-Ilyushin理论的应力-应变关系可以写成如下: 展开等式(4-84): 根据胡克定律(4-33),弹性应变为: 因为塑性应变是总应变和弹性应变之间的差,所以它由方程(4-85)和(1)获得: 公式(4-86)可以缩写为: 实施例4-3众所周知,具有封闭端的薄壁圆筒的平均半径为R,平均直径为D,壁厚为T,圆筒长度为L,并且承受内压P以产生塑性变形。材料是各向同性的。尝试找到: (1)如果忽略弹性应变,周向、轴向和径向应变之比在圆筒壁上的一点处增加; (2)如果材料是不可压缩的,即μ=1/2,圆柱壁上一点的周向、轴向和径向应变总量之比。 因为t/r1是解,所以可以近似地考虑圆柱壁中每个点的径向应力ζr=0。

理论力学教案3

2.7 Couples 1. Definition: Two parallel, noncollinear forces that are equal in magnitude and opposite in direction are known as a couple. 2. Moment of a couple about a point: (a). Scalar calculation M O = F(a+d) –F(a) = Fd Characteristics: · A couple has no resultant force (ΣF = 0). · The moment of a couple is the same about any point in the plane of the couple. (b). Vector calculation The moment of the couple about point O is given by: M O= r OA ×F + r OB × (–F) = (r OA – r OB) × F = r BA × F Conclusion: · The moment of a couple is the same about every point. · So, the moment of a couple is a free vector. · But the moment of a force about a point is a fixed vector! 3. Equivalent couples: The following four operations can be performed on a couple to produce its equivalent couples. (a) Changing the magnitude F of each force and the perpendicular distance d while keeping the product Fd constant; (b) Rotating the couple in its plane; (c) Moving the couple to a parallel position in its plane; (d) Moving the couple to a parallel plane. 4. The addition and resolution of couples (1) The addition of couples (a) By the usual rule of vector addition. (b) Bing free vectors, concurrency is not required. (c) To minimize the possibility of confusion, we use M to denote moment of forces and reserve C for couples. (2) The resolution of couples The resolution of couples is the same as the resolution of moments of forces. For example, the moment of a couple about an axis AB can be written as M AB= C·λ Sample Problem 2.7 For the couple shown in the figure, determine (1) the corresponding couple-vector and (2) the moment of the couple about the axis GH. Solution: (1) The magnitude of the couple is: C = Fd = 100 × 0.6 = 60 kN·m The sense of the couple is counterclockwise. Let λ be the unit vector along the direction of the couple. Then it can be written as λ = (3j + 4k)/5 Therefore the couple-vector is C = Cλ = 60λ = 36j + 48k kN·m

弹塑性力学理论及其在工程上的应用

弹塑性力学理论及其在工程上的应用 摘要:弹塑性力学理论在工程中应用十分的广泛,是工程中分析问题的一个重要手段,本文首先是对弹塑性力学理论进行了阐述,然后讨论了它在工程上面的应用。 关键词:弹塑性力学;工程;应用 第一章 弹塑性力学的基本理论 (一)应力理论 1、 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作 用的物体用一平面A 分成A 和B 两部分(图1.1)。如 将B 部分移去,则B 对A 的作用应代之以B 部分对A 部分的作用力。这种力在B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面上点P 处取出一包括P 点在内的微小面积元素S ?,而S ?上 的内力矢量为F ?,则内力的平均集度为F ?/S ?, 如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于一定的极限σo ,即 σ=??→?S F S 0lim 2、二维应力状态与平面问题的平衡微分方程式 上节中讨论应力概念时,是从三维受力物体出发的,其中点P 是从一个三维空间中取出来约点。为简单起见,首先讨论平面问题。掌提了平面问题以后.再讨论空间问题就比较容易了。

当受载物体所受的面力和体力以及其应力都与某—个坐标轴(例如z 轴)无 关。平面问题又分为平面应力问题与平面应变问题。 (1) 平面应力问题 如果考虑如图所示物体是一个很薄的 平板,荷载只作用在板边,且平行于板面,即 xy 平面,z 方向的体力分量Z 及面力分量z F 均 为零,则板面上(2/δ±=z 处)应力分量为 0) (2=±=δσz z 0)()(22==±=±=δ δ ττz zy z zx 图2.2平面应力问题 因板的厚度很小,外荷载又沿厚度均匀分布, 所以可以近似地认为应力沿厚度均匀分布。由此, 在垂直于z 轴的任一微小面积上均有 0=z σ, 0==zy zx ττ 根据切应力互等定理,即应力张量的对称性,必然有0==xz yx ττ。因而对于平面应力状态的应力张量为 ???? ??????=00000y yx xy x ij σττσσ 如果z 方向的尺寸为有限量,仍假设0=z σ,0==zy zx ττ,且认为x σ,y σ和xy τ(yx τ)为沿厚度的平均值,则这类问题称为广义平面应力问题。 (2)平面应变问题 如果物体纵轴方向(oz 坐标方向)的尺寸很长,外荷载及体力为沿z 轴均匀分 布地作用在垂直于oz 方向,如图1.4所示的水坝是这类问题的典型例子。忽略端部效应,则因外载沿z 轴方向为一常数,因而可以认为,沿纵轴方向各点的位

材料力学实验教案

L i L o 100% 材料力学实验教案 实验一 低碳钢的拉伸实验 一、 实验名称 低碳钢的拉伸实验。 二、 实验目的 1 ?测定低碳钢的屈服极限C S 、强度极限C b 、伸长率S 和断面收缩率W ; 2 ?观察低碳钢拉伸过程中的弹性变形、屈服、强化和缩颈等物理现象; 3. 熟悉材料试验机和游标卡尺的使用。 三、 实验设备 1 ?手动数显材料试验机 2. MaxTC22(试验机测试仪 3 ?游标卡尺 四、 试样制备 低碳钢试样如图所示,直径 d=10m m ,测量并记录试样的原始标距 L o 五、实验原理 1. 材料达到屈服时,应力基本不变而应变增加,材料暂时失去了抵抗变形的能 力,此时的应力即为屈服极限C s o 2. 材料在拉断前所能承受的最大应力,即为强度极限C b o 3. 试样的原始标距为L o ,拉断后将两段试样紧密对接在一起。量出拉断后的长 度L i ,伸长率 为拉断后标距的伸长量与原始标距的百分比,即

4. 拉断后,断面处横截面积的缩减量与原始横截面积的百分比为断面收缩率,

L i L o 100% A o A i ioo% 即 A ° Ai go % A o 式中A o —试样原始横截面积;A i —试样拉断后断口处最小横截面积。 六、 实验步骤 1 ?调零。打开力仪开关,待示力仪自检停后,按清零按钮,使显示屏上的按钮 显示为零。 2 ?加载。用手握住手柄,顺时针转动施力使动轴通过传动装置带动千斤顶的丝 杠上升,使试样受力,直至断裂。 3?示力。在试样受力的同时,装在螺旋千斤顶和顶梁之间的压力传感器受压产 生压力信号,通过回蕊电缆传给电子示力仪,电子示力仪的显示屏上即用数字显 示出力值。 4?关机。实验完毕,卸下试样,操作定载升降装置使移动挂梁降到最低时关闭 力仪开关,断开电源。 七、 数据处理 1?记录相关数据 2.计算伸长率S 和断面收缩率屮 3. 在应力应变图中标出屈服极限c s 和强度极限c b 八、应力应变图分析 低碳钢的拉伸过程分为四个阶段,分别为弹性变形阶段、屈服阶段、强化阶 段和缩颈阶段。 1. 弹性变形阶段:在拉伸的初始阶段,应力和应变的关系为直线,此阶段符合 胡克定律,即应力和应变成正比; 2. 屈服阶段:超过弹性极限后,应力增加到某一数值时,应力应变曲线上出现 接近水平线的小锯齿形线段,此时,应力基本保持不变,而应变显著增加,材料 失去了抵抗变形的能力,锯齿线段对应的应力为屈服极限; 3. 强化阶段:经屈服阶段后, 材料又恢复了抵抗变形的能力, 要使它继续变形, 必须增加拉

材料力学电子教案

材料力学是固体力学的一个基础分支,是工科重要的技术基础课,只有学好材料力学才能学好与本专业有关的后续课程(例如:机械零件等)。 材料力学与工程的关系:材料力学广泛应用于各个工程领域中,如众所周知的飞机、飞船、火箭、火车、汽车、轮船、水轮机、气轮机、压缩机、挖掘机、拖拉机、车床、铇机、铣机、磨床、杆塔、井架、锅炉、贮罐、房屋、桥梁、水闸、船闸等数以万计的机器和设备、结构物和建筑物,在工程设计中都必须用到材料力学的基本知识。对于某些工程如化学工程,由于客观条件的苛刻,如:高温、高压、低温、低压、易燃、易爆、腐蚀、毒性对于机器和设备的力学设计将提出更高的要求。因此对于各类高等工业大学的学生和实际工程中的工程师们都必须具备扎实的材料力学知识。 第一章绪论 §1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法和应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式 §1.1 材料力学的任务 材料力学主要研究固体材料的宏观力学性能,构件的应力、变形状

态和破坏准则,以解决杆件或类似杆件的物件的强度、刚度和稳定性等问题,为工程设计选用材料和构件尺寸提供依据。 材料的力学性能:如材料的比例极限、屈服极限、强度极限、延伸率、断面收缩率、弹性模量、横向变形因数、硬度、冲击韧性、疲劳极限等各种设计指标。它们都需要用实验测定。 构件的承载能力:强度、刚度、稳定性。 构件:机械或设备,建筑物或结构物的每一组成部分。 强度:构件抵抗破坏(断裂或塑性变形)的能力。 所有的机械或结构物在运行或使用中,其构件都将受到一定的力作用,通常称为构件承受一定的载荷,但是对于构件所承受的载荷都有一定的限制,不允许过大,如果过大,构件就会发生断裂或产生塑性变形而使构件不能正常工作,称为失效或破坏,严重者将发生工程事故。如飞机坠毁、轮船沉没、锅炉爆炸、曲轴断裂、桥梁折断、房屋坍塌、水闸被冲垮,轻者毁坏机械设备、停工停产、重者造成工程事故,人身伤亡,甚至带来严重灾难。工程中的事故屡见不鲜,有些触目惊心,惨不忍睹……因此必须研究受载构件抵抗破坏的能力——强度,进行强度计算,以保证构件有足够的强度。 刚度——构件抵抗变形的能力。 当构件受载时,其形状和尺寸都要发生变化,称为变形。工程中要求构件的变形不允许过大,如果过大构件就不能正常工作。如机床的齿轮轴,变形过大就会造成齿轮啮合不良,轴与轴承产生不均匀磨损,降低加工精度,产生噪音;再如吊车大梁变形过大,会使跑车出现爬坡,

应用弹塑性力学习题解答

应用弹塑性力学习题解答 目录 第二章习题答案 设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解求出后,可求出及,再利用关系

可求得。 最终的结果为 已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,, ,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,,

已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得 对,,代入得 对,,代入得 对,,代入得 当时,证明成立。 解 由,移项之得 证得 第三章习题答案 取为弹性常数,,是用应变不变量表示应力不变量。

解:由,可得, 由,得 物体内部的位移场由坐标的函数给出,为, ,,求点处微单元的应变张量、转动张量和转动矢量。 解:首先求出点的位移梯度张量 将它分解成对称张量和反对称张量之和 转动矢量的分量为 ,, 该点处微单元体的转动角度为 电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,,,,求该点的主应变和主方向。 解:根据式先求出剪应变。考察方向线元的线应变,将,,,,,代入其 中,可得 则主应变有 解得主应变,,。由最大主应变可得上式只有1个方程式独立的,可解得与轴的夹角为 于是有,同理,可解得与轴的夹角为。 物体内部一点的应变张量为 试求:在方向上的正应变。

理论力学(静力学)

大学 《理论力学》课程 教案 2005版 机械、土木等多学时各专业用 2005年8月

使用教材:《理论力学》,祥东主编,大学2002年 《理论力学》,工业大学,高等教育2004年 《Engineering Mechanics理论力学》,昌棋等缩编, 大学2005年 参考文献 [1]同济大学理论力学教研室,理论力学,同济大学,2001年 [2]乔宏洲,理论力学,中国建筑工业,1997年 [3]华东水利学院工程力学教研室,理论力学,高等教育,1984年 [4]理论力学(第六版)工业大学理力教研室编. 普通高等教育“十五”国家级规划教材高等教育.2002年8月 [5]理论力学(第3版)郝桐生编.教育科学“十五”国家规划课题研究成果高等教育.2003年9月 [6]理论力学(第1版)武清玺奇主编. 教育科学“十五”国家规划课题研究成果高等教育.2003年8月

第1篇静力学 第1章静力学基本知识与物体的受力分析 一、目的要求 1.深入地理解力、刚体、平衡和约束等基本概念。 2.深入地理解静力学公理(或力的基本性质)。 3.明确和掌握约束的基本特征及约束反力的画法。 4.熟练而正确地对单个物体与物体系统进行受力分析,画出受力图。 二、基本容 1.重要概念 1)平衡:物体机械运动的一种特殊状态。在静力学中,若物体相对于地面保持静止或作匀速直线平动,则称物体处于平衡。 2)刚体:在力作用下或运动过程中不变形的物体。刚体是理论力学中的理想化力学模型。 3)约束:对非自由体的运动预加的限制条件。在刚体静力学中指限制研究对象运动的物体。约束对非自由体施加的力称为约束反力。约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反。 4)力:物体之间的一种相互机械作用。其作用效果可使物体的运动状态发生改变和使物体产生变形。前者称为力的运动效应或外效应,后者称为力的变形效应或效应,理论力学只研究力的外效应。力对物体作用的效应取决于力的大小、方向、作用点这三个要素,且满足平行四边形法则,故力是定位矢量。 5)力的分类: 集中力、分布力(体分布力、面分布力、线分布力) 主动力、约束反力 6)力系:同时作用于物体上的一群力称为力系。按其作用线所在的位置,力系可以分为平面力系和空间力系;按其作用线的相互关系,力系分为共线力系、平行力系、汇交力系和任意力系等等。 7)等效力系:分别作用于同一刚体上的两组力系,如果它们对该刚体的作用效果完全相同,则此两组力系互为等效力系。 8)平衡力系:若物体在某力系作用下保持平衡,则称此力系为平衡力系。

材料力学实验教案

材料力学实验教案 学生实验守则 1、学生应按照课程教学计划,准时上实验课,不得迟到早退。 2、实验前应认真阅读实验教程,明确实验目的、步骤、原理,预习有关的理论知识,并接受实验教师的提问和检查。 3、进入实验室必须遵守实验室的规章制度。不得高声喧哗和打闹,不准抽烟、随地吐痰和乱丢纸屑杂物。 4、做实验时必须严格遵守仪器设备的操作规程,爱护仪器设备,节约使用材料,服从实验教师的指导。未经许可不得动用与本实验无关的仪器设备及其物品。 5、实验中要细心观察,认真记录各种实验数据。不准敷衍,不准抄袭别组数据,不得擅自离开操作岗位。 6、实验时必须注意安全,防止人身和设备事故的发生。若出现事故,应立即切断电源,及时向指导教师报告,并保护现场,不得自行处理。 7、实验完毕,应清理实验现场。经指导教师检查仪器设备、工具、材料和实验记录后方可离开。 8、实验后要认真完成实验报告,包括分析结果、处理数据、绘制曲线及图表。在规定的时间内交指导教师批改。 9、在实验过程中,由于不慎造成仪器设备、工具损坏者,应写出损坏情况报告,并接受检查,由领导根据情况进行处理。 10、凡违反操作规程、擅自动用与本实验无关的仪器设备、私自拆卸仪器而造成事故和损失的,肇事者必须写出书面检查,视情节轻重和认识程度,按章予以赔偿。

实验一低碳钢和铸铁的拉伸实验一、实验目的 1、测定低碳钢的弹性模量E、屈服极限σ s 、强度极限σ b 、延伸率δ和断面 收缩率ψ; 2、测定铸铁的抗拉强度σ b ; 3、观察、比较塑性材料和脆性材料在拉伸过程中的各种物理现象(包括弹性、屈服、强化和颈缩、断裂等现象); 4、学习、掌握电子万能试验机和相关仪器的使用方法。 二、实验设备 1、WDW—100C型微机控制电子万能试验机 2、游标卡尺 三、实验试件 试件的尺寸和形状对实验结果会有所影响。为了避免这种影响,便于各种材料机械性质的相互比较,国家对试件的尺寸和形状有统一规定[中华人民共和国国家标准《金属材料室温拉伸试验法》(GB/T228-2002)]。本实验的试件采用国家标准GB/T228-2002所规定的常用的圆形横截面比例试件,直径尺寸d=10mm, 试验段长度(标距)l =100mm(见图1)。 图1 图2 四、实验原理及方法 低碳钢是指含碳量在0.3%以下的碳素钢,这类钢材在工程中使用较广,在 拉伸试验中表现出的力学性能也最为典型。本次实验主要测定它的屈服极限σ s 、

工程力学电子教案

工程力学电子教案教材:张定华高等教育出版社 教材类别:教育部高职高专规划教材教师: 班级: 时间:

绪论 1.工程力学的研究对象: 机械运动规律及机械构件强度、刚度、稳定性 2.工程力学的主要内容: 静力学、材料力学、运动学和动力学(静力学是基础) 3.学习工程力学的目的: 为专业设备的机械运动分析和强度分析提供必要的理论基础 4.工程力学的学习方法: 1)理解工程力学的基本概念和基本理论; 2)掌握并能应用所学的定理和公式; 3)演算一定量的习题。 第一章静力学的基本概念 刚体:在力的作用下不变形的物体。 平衡:物体相对于地球处于静止状态或匀速直线运动状态的一种特殊状态。 力系:作用于被研究物体上的一组力。(平衡力系) 等效力系:若两力系分别作用于同一物体而效应相同,则二者互称等效力系。 合力:若力系与一力等效,则称此力为该力系的合力。 力系的简化:用简单力系等效替代复杂的力系。 第一节力的概念 一、力的定义 力:物体之间的相互机械作用。 力对物体的效应:外效应或运动效应(机械运动状态的变化);内效应或变形效应(物体的变形)。 二、力的三要素 力的大小、方向和作用点。 三、力的单位(N或KN) 四、力的表示方法 1.力的作用线:图1-1(略) (长度--大小;方位和箭头--方向;起点或终点--作用点。)与线段重合的直线称为力的作用线。

2.力F 在坐标轴的投影:图1-2(略) 力的正负:由起点a 到终点b (或a '至b ')的指向与坐标轴正向相同时为正。 力F 在X 轴和Y 轴的投影公式 α αsin cos F F F F y x -== 力F 的大小及方向公式: x y y x F F F F F = +=αtan 22 五、力的性质 1.二力平衡条件 两力必须等值、反向和共线;二力构件。 2.加减平衡力系原理 加或减去任一平衡力系时,作用效应不变。 证明:三力共线大小相等,图1-4(略) *力的可传性:刚体,力可沿其作用线滑移至刚体上的任一位置。 3.力的平行四边形定则 1)平行四边形法则 作用于物体上同一点的两个力的合力也作用于该点,且合力的大小和方向可用这两个国邻边所作的平行四边形的对角线来确定。(作用点:同点;合力线:平行四边形对角线) 图1-5: 21F F F R += 2)平面汇交力系 作用线共面且汇交于同一点之力系。 平面汇交力系的合力矢量等于力系各分力的矢量和。 3)合力投影定律 力系的合力在某轴上的投影等于力系中各分力在同轴上投影的代数和。 4)三力平衡汇交定律 刚体受三个共面但相互不平行的力作用而平衡时,三力必汇交于一点。 证明:先移两力并得一合力,由平衡知第三力必与合力在同一直线上。 5)作用与反作用定律

理论力学教案--运动学

第六章 点的运动学 第一、二节 矢量法 直角坐标法 重点:点的曲线运动的直角坐标法,点的运动方程、点的速度和加速度在直角坐标轴上的投影 难点:点的曲线运动的直角坐标法 一、运动学引言 运动学是研究物体运动的几何性质的科学。也就是从几何学方面来研究物体的机械运动。运动学的内容包括:运动方程、轨迹、速度和加速度。 学习运动学的意义:首先是为学习动力学打下必要的基础。其次运动学本身也有独立的应用。 由于物体运动的描述是相对的。将观察者所在的物体称为参考体,固结于参考体上的坐标系称为参考坐标系。只有明确参考系来分析物体的运动才有意义。 时间概念要明确:瞬时和时间间隔。 运动学所研究的力学模型为:点和刚体。 二、点的运动学 本章将介绍研究点的运动的三种方法,即:矢径法、直角坐标法和自然法。 点运动时,在空间所占的位置随时间连续变化而形成的曲线,称为点的运动轨迹。点的运动可按轨迹形状分为直线运动和曲线运动。当轨迹为圆时称为圆周运动。 表示点的位置随时间变化的规律的数学方程称为点的运动方程。 本章研究的内容为点的运动方程、轨迹、速度和加速度,以及它们之间的关系。 三﹑矢量法 1、点的运动方程 如图,动点M 沿其轨迹运动,在瞬时t ,M 点在图示位置。 由参考点O 向动点M 作一矢量 r =OM ,则称 r 为矢径。 于是动点矢径形式的运动方程为 显然,矢径的矢端曲线就是点运动的轨迹。 用矢径法描述点的运动有简洁、直观的优点。 2、点的速度 ) (t r r ) ()(t r t t r r M M

如图,动点M 在时间间隔 △t 内的位移为 则 表示动点在时间间隔△t 内运动的平均快慢和方向,称 为点的平均速度。 当 △t →0时,平均速度的极限矢量称为动点在t 瞬时的速度。即 即:点的速度等于它的矢径对时间的一阶导数。方向沿轨迹的切线方向。 3、点的加速度 如图,动点M 在时间间隔△t 内速度矢量的改变量为 v v v 则t v a 表示动点的速度在时间间隔△t 内的平均变化率,称为平均加速度。 当△t →0时,平均加速度的极限矢量称为动点在t 瞬时的加速度。即 r v dt v d t v a a t t 00lim lim 即:点的加速度等于它的速度对时间的一阶导数,也等于它的矢径对时间的二阶导数。 四、直角坐标法 1、点的运动方程 A t r v r dt r d t r v v t t 00lim lim

大学物理实验教案-牛顿第二定律的验证-修订

大学物理实验教案实验名称牛顿第二定律的验证教学时数2学时 教学目的和要求1.熟悉气垫导轨的构造,掌握正确的使用方法。 2.熟悉光电计时系统的工作原理,学会用光电计时系统测量短暂时间的方法。3.学会测量物体的速度和加速度。 4.学习在气垫导轨上验证牛顿第二定律。 教学重点1、气垫导轨和光电计时系统的调节和使用。 2、速度和加速度的测量方法。 3、验证牛顿第二定律。 教学难点1、气垫导轨和光电计时系统的调节和使用。 2、速度和加速度的测量方法。 教学内容1、光电计时系统的工作原理和使用方法 2、气垫导轨的检查和调平法(静态调平法和动态调平法) 3、测量粘性阻尼系数 4、测量加不同砝码时的加速度 5、验证牛顿第二定律 教学方法先讲授,然后实际演示操作要点。 教学手段 学生操作,随堂检查操作情况。根据学生的操作情况将容易犯错的问题做重点提示,学生可以根据操作中遇到的具体问题个别提问。 时间分配讲授30分钟,学生操作70分钟。板书设计实验目的、测量关系式、数据记录表格。 主要参考资料1、杨述武等,《普通物理实验》(第四版)[M]. 北京:高等教育出版社,2007. 2、郑庚兴,《大学物理实验》[M]. 上海:上海科学技术文献出版社,2004. 3、黄水平,《大学物理实验》[M]. 北京:机械工业出版社,2012. 4、徐扬子,丁益民,《大学物理实验》[M]. 北京:科学出版社,2006. 5、李蓉,《基础物理实验教程》[M]. 北京:北京师范大学出版社,2008.

实验名称:牛顿第二定律的验证 实验目的: 1.熟悉气垫导轨的构造,掌握正确的使用方法。 2.熟悉光电计时系统的工作原理,学会用光电计时系统测量短暂时间的方法。 3.学会测量物体的速度和加速度。 4.学习在气垫导轨上验证牛顿第二定律。 实验仪器: 气垫导轨(L-QG-T-1500/5.8)滑块 电脑通用计数器(MUJ-ⅡB)电子天平 游标卡尺气源 砝码 实验原理: 力学实验最困难的问题就是摩擦力对测量的影响。气垫导轨就是为消除摩擦而设计的力学实验的装置,它使物体在气垫上运动,避免物体与导轨表面的直接接触,从而消除运动物体与导轨表面的摩擦,让物体只受到几乎可以忽略的摩擦阻力。利用气垫导轨可以进行许多力学实验,如测定速度、加速度、验证牛顿第二定律、动量守恒定律、研究简谐振动等。 根据牛顿第二定律,对于一定质量的物体,其所受的合外力和物体所获得的加速 度之间存在如下关系: (1) 此实验就是测量在不同的作用下,运动系统的加速度,检验二者之间是否符合上述关系。 在调平导轨的基础上,测出阻尼系数后,如下图所示,将细线的一端结在滑块上,另 一端绕过滑轮挂上砝码。此时运动系统(将滑块、滑轮和砝码作为运动系统)所受到的合外力为: A门B门 细线 滑轮 砝码 (2) 式中平均速度(单位用)与粘性阻尼常量之积为滑块与导轨间的粘性阻力,为滑轮的摩擦阻力,暂时不考虑这项。 在此方法中运动系统的质量,应是滑块质量,全部砝码质量(包括砝码托)以

应用弹塑性力学 李同林 第四章

第四章弹性变形·塑性变形·本构方程 当我们要确定物体变形时其内部的应力分布和变形规律时,单从静力平衡条件去研究是解决不了问题的。因此,弹塑性力学研究的问题大多是静不定问题。要使静不定问题得到解答,就必须从静力平衡、几何变形和物性关系三个方面来进行研究。考虑这三个方面,就可以构成三类方程,即力学方程、几何方程和物性方程。综合求解这三类方程,同时再满足具体问题的边界条件,从理论上讲就可使问题得到解答。 在第二、三两章中,我们已经分别从静力学和几何学两方面研究了受力物体所应满足的各种方程,即平衡微分方程式(2-44)和几何方程式(3-2)等。所以,现在的问题是,必须考虑物体的物性,也即考虑物体变形时应力和应变间的关系。应力应变关系在力学中常称之为本构关系或本构方程。本章将介绍物体产生变形时的弹性和塑性应力应变关系。 大量实验证实,应力和应变之间的关系是相辅相成的,有应力就会有应变,而有应变就会有应力。对于每一种具体的固体材料,在一定条件下,应力和应变之间有着确定的关系,这种关系反映了材料客观固有的特性。下面我们以在材料力学所熟知的典型塑性金属材料低碳钢轴向拉伸试验所得的应力应变曲线(如图4-1所示)为例来说明和总结固体材料产生弹性变形和塑性变形的特点,并由此说明塑性应力应变关系比弹性应力应变关系要复杂的多。 在图4-1中,OA段为比例变形阶段。在这一阶段中,应力和应变之间的关系是线性的,即可用虎克定律来表示: ζ=Eε(4-1) 式中E为弹性模量,在弹性变形过程中,E为常数。A点对应的应力称为比例极限,记作ζP。由A点到B 点,已经不能用线性关系来表示,但变形仍是弹性的。B点对应的应力称为弹性极限,记作ζr。对于许多材料,A点到B点的间距很小,也即ζP与ζr数值非常接近,通常并不加以区分,而均以ζr表示,并认为当应力小于ζr时,应力和应变之间的关系满足式(4-1)。在当应力小于ζr时,逐渐卸去载荷,随着应力的减小,应变也渐渐消失,最终物体变形完全得以恢复。若重新加载则应力应变关系将沿由O到B的原路径重现。BF段称为屈服阶段。C点和D点对应的应力分别称为材料的上屈服极限和下屈服极限。应力到达D点时,材料开始屈服。一般来说,上屈服极限受外界因素的影响较大,如试件截面形状、大小、加载速率等,都对它有影响。因此在实际应用中一般都采用下屈服极限作为材料的屈服极限,并记作ζs。有些材料的屈服流动阶段是很长的,应变值可以达到0.01。由E点开始,材料出现了强化现象,即试件只有在应力增加时,应变才能增加。如果在材料的屈服阶段或强化阶段内卸去载荷,则应力应变不会顺原路径返回,而是沿着一条平行于OA线的MO'''(或HO'、KO'')路径返回。这说明材料虽然产生了塑性变形,但它的弹性性质却并没有变化。如果在点O'''(或O'、O'')重新再加载,则应力应变曲线仍将沿着O'''MFG (或O'HEFG、O''KFG)变化,在M点(或H点、K点)材料重新进入塑性变形阶段。显然,这就相当于提高了材料的屈服极限。经过卸载又加载,使材料的屈服极限升高,塑性降低,增加了材料抵抗变形能力的现象,称为强化(或硬化)。

相关主题
文本预览
相关文档 最新文档