当前位置:文档之家› 原子的组成与结构

原子的组成与结构

原子的组成与结构
原子的组成与结构

第一章原子的组成与结构

“原子”一词最早来源于古希腊语,意思为“不可分割”。当时认为原子是构成物质的基本单元。19世纪,人们开始确切地认识到,原子只不过是物质结构的一个层次。导致这一结论的重要发现有:

1806年,法国普鲁斯特(J.L.Prust)发现化合物分子的定组成定律:一种化合物,不论是天然存在的还是人工合成的,不论是用哪种方法制备的,它的化学组成总是确定的。

1807年,英国道尔顿(J.Dalton)发现倍比定律,并第一次明确提出原子论。如果甲、乙两元素能相互化合生成几种不同的化合物,则与一定量甲元素相化合的乙元素的质量互成简单整数比。这是人们承认原子学说的重要依据。

1808年,法国盖·吕萨克(J.L.Gay-Lussac)发现气体化合时,各气体的体积成简比的定律,并由之认为元素气体在相等体积中的重量应正比于它的原子量。

1811年,意大利化学家阿伏伽德罗(A.Avogadro)提出阿佛伽德罗假说:同体积气体在同温同压下含有同数目的分子。进而指出阿伏伽德罗数是1摩尔物质所含的分子数,其数值是 6.0221367×1023,是自然科学的重要的基本常数之一。

1833年,英国法拉第(M.Faraday)提出电解定律,是基本电荷存在的有力证据。电解第一定律:在电极上析出(或溶解)的物质的质量同通过电解液的总电量(即电流强度与通电时间的乘积)成正比。电解第二定律:当通过各电解液的总电量相同时,在电极上析出(或溶解)的物质的质量同各物质的化学当量(即原子量与原子价之比值)成正比。电解第二定律也可表述为物质的电化学当量同其化学当量成正比。

1869年,俄国门捷列夫提出元素周期律。指明元素的化学和物理性质随原子序数周期性变化, 原子表现为电中性,最小的原子为氢原子。

1.1原子的质量和大小

由于原子的质量非常小,一般在10-23克量级,故化学和物理学上都采用它们质量的相对值:即把碳在自然界中含量最丰富的一种同位素(C12)的质量定为12个单位作为原子量的标准,其他原子的质量同碳12比较,定出质量值,称为原子量。原子的绝对质量可以用质谱仪精确测定。

原子的大小可以从下述几个方法加以估计:

(1)在晶体中原子是按一定的规律排列的。从晶体的密度和一个原子的质量,可以求出单位体积中的原子数。假设晶体中的原子是互相接触的球体、并已知共排列情况,就可以算出每个原子的大小。即使不知排列情况、也可以求得原于大小的数量级。

(2)从气体分子运动论也可以估计原于的大小。关于气体分子的平均自由程,即:2241

r N πλ= (1)

式中λ是分子平均自由路程,N 是单位体积中分子数,r 是分子的半径(假定为球形)。如果λ和N 由实验求得,r 可以由上式算出。

(3)从范德瓦尔斯方程也可以测定原子的大小。在方程

()RT b V V a p =-??? ??+2 (2)

中,b 值按理论应等于分子所占体积的四倍。由实验定出b ,就可以算出分子的半径,其数量级和原子半径相同。

从不同方法求一种原子的半径,所得数值是有些出入的,但数量级是相同的,都近似为十几埃(10-9米)。各种原于的半径是不同的,但都具有刚才所说的数量级。

1.2原子的组成与结构

英国物理学家汤姆孙对阴极射线进行了深入研究,他观测了阴极射线在磁场和静电场作用下的偏转,测定了阴极射线中粒子的荷质比(电荷与质量之比)。1897年,他做出结论:阴极射线是由比氢原子小得多的带负电的粒子所组成。由于一系列成功的实验,他被科学界公认是电子的发现者。“电子”这个名词,是1881年斯托尼(G ..J.Stony)提出来的。他依据法拉第电解定律,认为任何电荷都由基元电荷组成,并给该电荷基元取名为电子。电子的发现揭示了原子具有内部结构,打破了千百年来认为原子是组成物质的最小单元的学说。

1909年前后,密立根(https://www.doczj.com/doc/d77527556.html,likan)和他的学生对单个电子的电荷进行了精密的测量,被称为密立根油滴实验。

目前最精密的实验给出电子的电荷和质量分别为:

e =1.60217733(49)×10-19C;m e =9.1093897(54) ×10-31kg

由于电子的发现,使人们认识到,电中性的原子内部还存在带正电的部分,因而,人们不禁要问原子中带正电和带负电的部分在大小为埃的范围内是如何分布的、有怎样运动呢?

在汤姆逊发现电子之后,对原子中正、负电荷如何分布的问题,出现了许多见解。其中比较引人注意的是汤姆孙本人提出的枣糕模型,它出现于1898年,后在1903、1907年又进一步被完善。汤姆逊认为,原子中的正电荷均匀分布在整个原子球体内,而电子则嵌在其中。

1903年,林纳(P.Lenard)在研究阴极射线被物质吸收的实验里发现“原子是十分空虚的”。在此实验基础上,长冈半太郎(Hantaro Nagaoka)于1904年提出原子的行星模型,认为原子内的正电荷集中于中心,电子绕中心运动,但他没有深入下去。直到1909年,卢瑟福的学生盖革(H.Geiger)和马斯顿(E.Marsden)在用α粒子轰击Au 膜的实验中,发现α粒子在轰击原子时有大约八千分之一的几率被反射回来了。对于这样的实验事实,卢瑟福感到很惊奇,他说:“就象一枚15英寸的炮弹打在一张纸上又被反射回来一样”,简直不可理解。按照汤姆逊模型,绝对得不出这样的实验结果。

1.2.1汤姆孙模型对粒子的散射

由汤姆孙模型,最大的作用力发生于掠射,其作用力为:

2042R eZe F πε= (3)

α粒子由于散射引起的动量变化等于作用力乘上粒子在原子附近的度过时间,故:

rad E Z v m R Ze v m v FR P P αααπε52

0210321)4/(2/2-?≈==? (4)

对于电子的贡献,只有当对头碰撞时最大:

rad m m P P e 410~4000

1~2-≈?α (5) 由(4)和(5)结合近似估计,粒子的偏角为:

rad E Z αθ410-< (6)

对于5MeV 的α粒子对金(Au ,Z=79)膜的散射,每次碰撞的最大偏角小于10-3rad 。故,发生1/8000的反射是不可思议的。由于该模型和实验结果相矛盾,很快就被放弃了。为了解释实验现象,卢瑟福经过严谨的理论推理之后,于1911年提出了“核式结构模型”,对盖革(H.Geiger)和马斯顿(E.Marsden)的实验结果给与了很好的描述。

1.2.2卢瑟福模型对粒子散射的解释

在推导卢瑟福散射公式前我们作下列假设:(1)只发生单次散射;(2)只有库仑相互作用;(3)核外电子的影响忽略不计;(4)靶核静止。则两体问题便简化为单

体问题(详细参见《理论力学》蒋德瀚编p115-195)。有牛顿第二定律,散射过程可表示为:

a m F = (7)

把力和加速度的具体形式带入后得:

dt v d m r r e Z Z =0202214πε (8)

由于中心力满足角动量守恒,即:

)(2const L dt

d mr =Φ (9) 把9式代入8式中消去时间因子得:

Φ=ΦΦ=d v d r L dt d d v d m r r e Z Z 202

02214πε (10) 即:

002214r d L e Z Z v d Φ=πε (11)

对(11)是两边积分,左边为:

u i f e v v v v d ??? ??=-=?2sin 2θ (12)

对(11)是右边积分时,将单位矢量r 变换为单位矢量i ,j 后再进行,即:

()??

? ??+??? ??=ΦΦ+Φ=Φ??-2cos 2sin 2cos 2sin cos 00θθθθπj i d j i d r (13) 由于:u e j i =+2

cos 2sin θθ (14)

故,由(11)-(14)式可得: 2cos 412sin 2210θπεθmvb e Z Z v = (15)

化简的:

E e Z Z a ctg a b 2

2104122πεθ==其中 (16)

考虑到靶核并非静止,则上式修正后转换成质心系形式为:

L c c c

E m M M E E e Z Z a ctg a b +===2

2104122πεθ其中 (17)

由(17)式可以看出,θ与b 的对应关系:b 大θ就小;b 小,θ就大;对某已确定的b ,就有一确定的θ。由此可知,瞄准距离在b 到b+db 范围内的粒子,经散射后比定向θ到θ+d θ之间的角度出射。当入射粒子束的束斑面积为A ,膜厚

为t ,则粒子打到环b+db 上的几率为:

??? ??=2sin 16sin 2242c c c A d a A bdb θθθππ (18)

由于空心锥的立体角与θc 的关系为:c c c c c d r rd r d θθπθθπsin 2sin 22==

Ω 代入(18),便有:??? ??Ω=2sin 16242c c A d a A bdb θπ (19)

在束斑大小的范围内,膜上的粒子数为(设膜单位体积内的原子数为n )nAt ,假设粒子前后不遮挡,粒子的散射几率为:

nAt A d a dp c c c ??? ??Ω=2sin 16)(42θθ (20)

若N 个粒子打到膜上,则在d Ωc 上记录到的散射粒子数为:

nAt A d a N dN c c ??? ??Ω=2sin 1642θ (21)

定义质心系微分截面:()()c

c c Nnt

d dN d d Ω=Ω=θσθσ他代表单位面积每个靶核,单位入射粒子,单位立体角内散射的粒子数。

()??? ??=2sin 144142210c c c c E e Z Z θπεθσ (22)

在实验室系,卢瑟福截面公式可改写为:

()() +++?????? ????? ??=422122221012sin 441γγθπεθσb b E e Z Z L L L L (23)

简化为:

()()

sr m b b b b E Z Z L L L L /12sin 295.16342212221 ++++?????? ????? ???=γγγθθσ (24) 其中,γ=m/M ,b i 是角度的函数。对于179度,b 1= -1.9997;b 2=0.9993;b 3=0.0003(取

自文献NIMB2(1984)307),这就是著名的卢瑟福散射截面公式。

从该公式(22-24)中可得出如下关系:(1)在同一离子源和同一散射物的情况下,(dN/d Ω)sin 4(θ/2)=常数;(2) 同一离子源和同一散射物,在同一散射角,(dN/d

Ω)与散射体厚度t 成正比;(3) 同一散射物,在同一散射角,(dN/d Ω)E 2=常数;

(4) 同一离子源和同一散射物,在同一散射角,(dN/d Ω)与Z 22成正比。1913年,盖革和马斯顿有进行了α离子的散射实验,所得结果完全证实了前三项关系,由于实验的精度,第四项为能测定,但在稍后的几年也证实了。

卢瑟福依据实验事实并从经典力学概念出发提出的原子的核式结构模型,已由无数的实验证明了其正确性,甚至经受住了量子力学的考验,即纯粹量子力学的计算与卢瑟福散射公式完全相同。

1.3.3核式结构模型的意义及困难

(1)意义:在理论上,核式结构模型把原子分为核内和核外两个部分,并大胆承认高密度原子核的存在。该模型为原子物理的进一步发展奠定了基础,并使人们为进一步研究亚原子结构提供了理论上的指导。在应用上,卢瑟福散射已成为材料分析的一种重要手段,即卢瑟福背散射分析(RBS),直接推动了材料科学和微电子科学的发展。

(2)困难:①无法解释原子的稳定性。任何带电粒子在作加速运动的过程中都要以发射电磁波的方式放出能量。这样,电子就不能永远绕着原子核转下去。因为电子绕核转动的运动是加速运动,电子本身带有负电荷,在加速运动中应不断向外发射电磁波而不断失去自己的能量,以致绕转的轨道半径越来越小,形成电子向着核作螺旋形的运动。最后在非常短的时间内(10-9s 的数量级)掉到核内去,从而使正负电荷中和,原子全部崩溃(原子坍缩)。然而,在现实世界中原子相当稳定,金历经亿万年仍旧是金;②无法解释原子的同一性。来自美国的、英国的铁、甚至在月球上的铁,同中国的铁在原子结构上并没有丝毫差异。这种原子的同一性按经典的核式结构模型是无法理解的;③无法解释原子的再生性。一个原子在同外来粒子相互作用后,一旦这外来客体远离,这个原子便马上又恢复到原来的状态,就像未曾发生过任何事情一样。原子的这种再生性,又是卢瑟福模型所无法说明的。

1.4原子核大小的估计

在两体中心力作用下的碰撞中,假设为对头碰撞,当入射离子最接近靶核时,动能全部转化为势能,即:

a E e Z Z r r e Z Z mv E ≡=?==2

210min min 22102414121πεπε (25)

由上式可得,210Po 的α粒子(5.3MeV )对29Cu 散射,则a=15.8fm ,故铜的原子核半径应小于该值,从而可知,原子核的半径一般在十几费米量级。

1.5综述

通过本章的学习,我们知道原子的质量(~10-23克)、大小(十几埃的量级)、结构(核式结构);以及原子由带负电的电子和带正电的原子核组成。原子几乎所有的质量都集中于原子核(半径为十几费米量级),而原子核在原子中所占据的体积却相当的小(~1/1012)。以上对原子的认识,仅仅局限于经典物理学的范畴,可以说大部分是定性的,但他却能给我们一个简单而又清楚的物理图像。同样,这种认识还存在一定的缺陷,这需要进一步的理论(即量子力学)介入才能得以解决。

高中物理原子结构、原子核检测题

高中物理原子结构、原子核检测题 1.下列说法正确的是( ) A.γ射线比α射线的贯穿本领强 B.外界环境温度升高,原子核的半衰期变大 C.太阳辐射的能量主要来自太阳内部的重核裂变反应 D.原子核发生一次β衰变,该原子外层就失去一个电子 解析:选A γ射线比α射线的贯穿本领强,选项A正确;外界环境不影响原子核的半衰期,选项B 错误;太阳辐射的能量主要来自太阳内部的轻核聚变反应,选项C错误;β衰变是原子核内的中子转化为质子时放出的负电子,与原子的外层电子无关,选项D错误。 2.232 90Th经过一系列α衰变和β衰变后变成208 82Pb,则208 82Pb比232 90Th少( ) A.16个中子,8个质子B.8个中子,16个质子 C.24个中子,8个质子D.8个中子,24个质子 解析:选A 208 82Pb比232 90Th质子数少(90-82)=8个,核子数少(232-208)=24个,所以中子数少(24- 8)=16个,故A正确,B、C、D错误。 3.下列说法正确的是( ) A.光子像其他粒子一样,不但具有能量,也具有动量 B.比结合能越大,原子核越不稳定 C.将由放射性元素组成的化合物进行高温分解,会改变放射性元素的半衰期 D.原子核的质量大于组成它的核子的质量之和,这个现象叫做质量亏损 解析:选 A 光子像其他粒子一样,不但具有粒子性,而且也有波动性,则不但具有能量,也具有动量,故A正确;比结合能越大,原子核越稳定,B错误;放射性元素的半衰期与外界因素没有任何关系,只和本身性质有关,C错误;原子核的质量小于组成它的核子的质量之和,这个现象叫做质量亏损,故D错误。 4.[多选](2019·天津高考)我国核聚变反应研究大科学装置“人造太阳” 2018年获得重大突破,等离子体中心电子温度首次达到1亿度,为人 类开发利用核聚变能源奠定了重要的技术基础。下列关于聚变的说法 正确的是( ) A.核聚变比核裂变更为安全、清洁 B.任何两个原子核都可以发生聚变 C.两个轻核结合成质量较大的核,总质量较聚变前增加 D.两个轻核结合成质量较大的核,核子的比结合能增加 解析:选AD 与核裂变相比,轻核聚变没有放射性污染,安全、清洁,A正确;只有原子序数小的轻核才能发生聚变,B错误;轻核聚变成质量较大的原子核,比结合能增加、总质量减小,故C错误,D正确。

物质的组成、结构和分类题目

物质的组成、构成和分类 1,现有C、H、O、Na、Cu、S六种元素,从中选出相关元素组成下列类别物质的化学式:(每一类各写两例) ?单质_____________ ?酸_____________ ?碱_____________ ?盐_____________ ?氧化物____________?有机物_____________ 2、构成氧气的分子和构成液氧的分子具有( ) A、相同的性质 B、不同的性质 C、相同化学性质 D、不同化学性质 3、钾的相对原子质量较氩的相对原子质量小1,而核电荷数大1,由此可推断,一个钾原 子和一个氩原子所含中子数的关系是( ) A、钾的中子数比氩的中子数少1个 B、钾的中子数比氩的中子数少2个 C、钾的中子数等于氩的中子数 D、钾的中子数比氩的中子数多1个 4、下列关于物质组成的说法中正确的是( ) A、任何纯净物都是由一种元素组成的 B、一种元素只能组成一种单质 C、任何一种化合物都是由不同种元素组成的 D、任何物质都是由分子构成 5、有下列四组物质,每组均有一种与其它物质所属类别不同,请在下面的横线上填写这种 物质的名称: ①食醋、牛奶、加碘盐、水;②冰、干冰、氧化铁、铜绿; ③蛋白质、油脂、维生素、煤气;④纯碱、烧碱、食盐、石灰石 ①__________②__________③__________④__________ 6、进入21世纪,化合物已超过2000万种,其些物质由碳、氢、氧、钠中某些元素组成, 用上述元素,按要求各写出一种常见物质化学式: ①用于炼铁的气体且有可燃性的氧化物__________; ②“汽水”“雪碧”中含有的一种酸__________; ③能溶解蛋白质、油脂、纸张的工业原料的碱__________; ④家庭中常用作洗涤剂的纯碱是__________; ⑤可造人工雨雾的一种氧化物是__________; ⑥“西气东输”工程中将要输送的有机物是__________。 综合能力提升 1、下列关于原子、分子、离子的叙述正确的是( ) A、分子是化学变化中的最小微粒 B、离子在化学反应中不能再分 C、原子可以直接构成物质 D、分子中含有离子 2、能保持二氧化碳化学性质的微粒是( ) A、碳元素和氧元素 B、两个氧原子和一个碳原子 C、二氧化碳分子 D、二氧化碳分子中的电子数 3、由原子构成,且常温下呈液态的物质是( ) A、五氧化二磷 B、汞 C、硫酸 D、液氧 4、下列物质中由离子构成的是( ),由原子直接构成的物质是( ) A、铜 B、氯化钠 C、氯化氢 D、氩气 5、下列各组物质中按单质、化合物、混合物顺序排列的是( ) A、氧气、氧化镁、液态氧 B、铁、二氧化硫、石油 C、铜、二氧化锰、甲烷 D、磷、二氧化碳、水银 6、下列几组物质中,元素组成完全相同的是( )

高中物理有关原子的核式结构原子核的教学建议

第一节原子的核式结构原子核教学建议 本节教学主要包括两部分内容: 一.在α粒子散射实验的基础上提出原子的核式结构模型; 二.原子核的组成。 (1)原子的核式结构的发现的教学,共三层意思:电子的发现→汤姆生提出了枣糕模型→α粒子散射实验的结果否定了汤姆生模型,卢瑟福提出了核式结构。这节教材的重点内容是α粒子散射实验和卢瑟福的核式结构学说。要着重说明:α粒子具有相当大的质量和很大的动能,电子不可能使α粒子发生大角度的偏转,只有原子的全部正电荷和几乎全部质量集中在狭小的空间里(形成原子核),并且α粒子十分接近它时,才能发生大角度的偏转。本节末了讲到了由实验的数据还可以估计出原子核的大小,由于数据没介绍,估计也就不必详细补充了。可告诉学生现在一般公认的数量级是多少。学习原子结构,对原子的大小、原子核的大小,原子内部空虚到什么地步,应该有个大体的印象。这也是中学生不可缺少的文化素养的一部分。 因为教材内容的理论性比较严密,教学中要注意问题交代的层次和条理性。比如,根据汤姆生模型计算的结果,α粒子偏角应是很小的。这是从电子的质量很小和正电荷的均匀分布这两方面分析得出的结论。实验结果是:①绝大多数α粒子不偏转;②少数α粒子发生了较大的偏转;③极少数α粒子出现大角度的偏转(甚至被反弹回来)。讲卢瑟福模型时,就必须前后呼应清楚地说明这“绝大多数、少数、极少数”之类表现的“所以然”,这对于训练学生读书和思考的能力,培养认真严谨的学风,都是有好处的。 教学中要注意不能把科学上的发现讲得过于简单,给学生造成这样的印象:科学家凭空一想,做个什么实验,就能有所发现了,要注意使学生领悟科学家发现新的规律,要有一定的客观条件,而且要进行创造性的思维,突破前人留下的错误观念的束缚,做出开拓性的实际努力,才能有所发现。这一点,在以后各节的教学中也是应该注意的。 (2)原子核的组成的教学,可在复习初中已学的知识,知道原子核是由质子和中子组成的基础上提出。质子和中子是怎样发现的问题让学生思考。然后开始介绍卢瑟福用α粒子轰击氮原子核的实验。在教学中要注意把卢瑟福的实验装置、实验是怎样进行的以及得到了怎样的结果交代清楚。 还可以让学生了解,由于原子内部十分空虚,如果把原子比做半径为100m的大球,那么原子核是球中心半径仅1mm 的小沙粒,因此,用α粒子去轰击原子核,命中的机会是很少的(平均五万分之一)。可见做轰击原子核的实验也是不容易的。 还可以举一些用α粒子轰击原子核产生质子的例子让学生熟悉,如: 关于中子的发现,如果时间容许,可以介绍一些中子发现的历史,让学生认识到能量守恒和动量守恒定律在核物理研究中的重要作用。人们对中子的认识,经历了一个曲折的过程。X射线的发现,几乎在一个晚上就完成了。而当中子这个不速之客闯入物理学家的实验室时,人们用了两年的时间才认识了它。这是因为中子跟以前发现的γ射线都具有穿透力强的特性,使人们暂时迷惑了。应用了动量守恒和能量守恒这两个有力的武器,人们终于认清了中子的本来面目。 还应该使学生了解,中子的发现是物理学史上的一件大事。由于中子不带电,跟其他粒子不会发生静电作用,比较容易打进原子核里去,是轰击原子核的好“炮弹”,特别是用它轰击重元素的原子核后,给原子核物理学带来了飞跃的发展。中子的贯穿本领强,但电离本领极弱,在云室中见不到它的径迹。 在实验中发现质子和中子后,人们提出原子核是由质子和中子组成的。它们统称为核子,然后讲清原子核的质量数、电荷数、核子数和同位素等的物理含义及这些数之间的数量关系。并介绍核符号的写法及其表示的物理意义。

2017_2018学年高中物理第三章原子核第1节原子核的组成与核力教学案教科版

第1节原子核的组成与核力 (对应学生用书页码P32) 一、原子核的组成 1.质子的发现 为了探测原子核的结构,1919年,卢瑟福做了用α粒子轰击氮原子核的实验,发现了质子。实验表明质子是原子核的组成部分。 2.中子的发现 卢瑟福发现质子后,预想核内还有一种不带电的中性粒子。1932年,查德威克利用α粒子轰击铍时,证明了中子的存在。 3.原子核的组成 (1)组成:原子核由质子和中子组成,质子和中子统称为核子。 (2)原子核的符号:A Z X,其中X表示元素,A表示质量数,Z表示核电荷数。 (3)基本关系:核电荷数=质子数=原子序数 质量数=质子数+中子数=核子数 (4)同位素:具有相同质子数、不同中子数的原子核互称同位素。如氢的三种同位素氕、氘、氚。 二、核力 1.定义 原子核内相邻核子之间的相互作用力,也称强力。 2.特点 (1)在原子核的线度内,核力比库仑力大得多。 (2)核力是短程力,当两核子中心距离大于核子本身线度时,核力几乎完全消失。 (3)核力与电荷无关,质子与质子、中子与中子、质子与中子之间的核力是相等的。 [特别提醒] 质子越多的原子核需要更多的中子来维持核的稳定,在大而稳定的原子核中,中子数大于质子数。 三、核反应 1.核反应 用一定能量的粒子轰击原子核,改变原子核结构的过程。 2.核反应方程 用原子核符号描述核反应过程的式子。 3.书写方程式的原则 核反应方程必须满足反应前、后质量数和核电荷数都守恒。

1.判断: (1)卢瑟福发现了中子。( ) (2)具有相同质子数而中子数不同的原子核称为同位素。( ) (3)核反应只改变核外电子数,不会改变原子核的结构。( ) 答案:(1)×(2)√(3)× 2.思考:一个铅原子质量数为207,原子序数为82,其核外电子有多少个?中子数又是多少? 提示:铅的原子序数为82,即一个铅原子中有82个质子,由于原子是电中性的,质子与电子电性相反、电量相同,故核外电子数与核内质子数相同为82个,根据质量数等于质子数与中子数之和的关系,铅原子核的中子数为207-82=125(个)。 (对应学生用书页码P32) 原子核的结构 1.原子核的组成 (1)原子核是由质子、中子组成的,质子带正电,电荷量e=+1.6×10-19 C,质量m=1.6726231×10-27kg。中子不带电,质量m n=1.6749286×10-27kg。不同的原子核内质子和中子的个数并不一定相同。 (2)质量数:原子核的质量等于核内的质子和中子质量之和,原子核的质量近似等于质子(或中子)质量的整数倍,通常用这个整数代表原子核的相对质量,叫做原子核的质量数。原子核的质量数等于质子数和中子数之和。 2.同位素 (1)定义:具有相同质子数而中子数不同的原子核,在元素周期表中处于同一位置。 (2)化学性质的决定因素:原子核内的质子数决定了核外电子的数目,也决定了电子在核外分布的情况,进而决定了这种元素的化学性质。 (3)氢的同位素:氕(11H),氘(21H),氚(31H)。 元素的化学性质是由原子核外面的电子数决定的,所以同位素具有相同的化学性质,但其物理性质一般是不同的。 1.某种元素的原子核用A Z X表示,下列说法正确的是( ) A.原子核的质子数为Z,中子数为A B.原子核的质子数为Z,中子数为A-Z

高中物理-原子核的组成课后练习

高中物理-原子核的组成课后练习 基础达标 1.使人类首次认识到原子核可变可分的事实依据是( ) A.电子的发现 B.α粒子散射实验 C.天然放射现象 D.原子核的人工转变 解析:电子的发现使人类认识到原子可分;α粒子散射实验确定了原子的核式结构模型;天然放射现象使人类首次认识到原子核是可变可分的;原子核的人工转变使人类开始掌握核变化. 答案:C 2.锶原子核的符号是Sr 95 38,那么它的原子( ) A.核外有38个电子、核内有95个质子 B.核外有38个电子、核内有57个中子 C.核外有57个电子、核内有57个质子 D.核外有57个电子、核内有38个质子 解析:元素符号的左下角表示的是质子数,原子核的电荷数就是核内的质子数;左上角表示的是核子数,中子数等于质量数(核子数)减质子数. 答案:B 3.下列关于α、β、γ射线的叙述中,正确的是…( ) A.α、β、γ射线都是电磁波 B.α射线由高速氦原子核组成 C.高速运动的电子流就是β射线 D.γ射线射入磁场时会发生偏转 解析:α射线是由氦核构成,β射线是高速电子流,γ射线是波长极短的电磁波. 答案:B 4.如图19-1-2所示,x 为未知放射源,若将磁铁移开后,计数器所得的计数率保持不变,其后将薄铝片L 移开,计数率大幅上升,则( ) 图19-1-2 A.纯β放射源 B.纯γ放射源 C.α、β混合放射源 D.α、γ混合放射源 解析:α射线是由氦核构成的,β射线是高速电子流,γ射线是波长极短的电磁波.α射线贯穿物质的本领最弱,不能透过薄铝片. 答案:D 5.下面的事实揭示出原子核具有复杂结构的是( ) A.α粒子散射实验 B.氢光谱实验 C.X 光的发现 D.天然放射现象 答案:D 6.下列说法中正确的是( ) A.氦4核中有4个质子,2个中子 B.氦4核与氦3核不是互为同位素 C.Be 10 4中的质子数比中子数少6 D.Si 30 14中的质子数比中子数少2

《原子核的组成》教案1

《原子核的组成》教案 第一课时 一、教学目标 1.在物理知识方面要求. (1)了解原子核的人工转变.了解它的方法和物理过程. (2)了解质子和中子是如何被发现的. (3)会写核反应方程式. (4)了解原子核的组成,知道核子和同位素的概念. 2.掌握利用能量和动量守恒的思想来分析核反应过程.从而培养学生运用已知规律来分析和解决问题的能力. 3.通过发现质子和中子的历史过程,使学生认识通过物理实验研究和探索微观结构的研究方法及体会科学研究的艰巨性和严谨性. 二、重点、难点分析 1.重点是使学生了解原子核的人工转变和原子核的组成.在原子核的人工转变中发现了质子和中子,它是确定原子核组成的实验基础. 2.用已经学过的能量和动量守恒以及有关的知识来分析核反应过程,是本节的难点.三、教具 1.分析卢瑟福做的“α粒子轰击氮原子核的实验”. 2.讲解约里奥·居里和伊丽芙·居里夫妇做的“用来自铍的射线去轰击石蜡的实验”. 用投影幻灯、投影片. 四、主要教学过程 (一)引入新课 复习提问: 1.什么是天然放射现象?天然放射性元素放射出哪几种射线?这些射线的成分是什么? 天然放射现象说明原子核存在着复杂的内部结构,为了了解原子核的组成,人们开始寻找研究原子核组成的有效方法,那就是原子核的人工转变. (二)教学过程设计 1.质子的发现. (1)原子核的人工转变. 是指为了了解原子核的组成,人们有目的的用高速粒子去轰击某些元素的原子核,通过对核反应过程及其产生的新粒子的研究,了解原子核的内部结构和粒子的本质及特点.

(2)α粒子轰击氮原子核的实验. 1919年,卢瑟福做了用α粒子轰击氮原子核的实验,第一次实现了原子核的人工转变,有了很重要的发现. 实验装置如图1所示(用投影幻灯打出装置的示意图),容器C中放有放射性物质A,从A射出的α粒子射到铝箔F上,适当选取铝箔的厚度,使α粒子恰好被它完全吸收而不能透过,在F 后面放一荧光屏S,用显微镜M观察荧光屏. 实验现象:当在荧光屏上恰好观察不到闪光后,通过阀门T往容器C里通入氮气,此时卢瑟福从荧光屏S上又观察到了闪光. 实验结论:实验表明,闪光一定是α粒子击中氮核后产生的新粒子透过铝箔引起的. (3)质子的发现. 讨论提问:引导学生用已经学过的知识分析怎样知道新粒子的性质. ①若想知道新粒子的性质,必须测出粒子的什么有关物理量? 归纳得到:测出粒子的电性、电量、质量和速度等. ②用什么方法可以知道新粒子的电性? 归纳得到:可将粒子引入电场或磁场中,观察粒子的偏转轨迹. 如图2所示,在匀强电场中粒子的轨道是抛物线,若粒子向下偏转,说明粒子带正电;若向上偏转,说明粒子带负电. 如图3所示,在匀强磁场中粒子的轨道是圆,若粒子向上做圆运动,说明粒子带正电,若粒子向下做圆运动,说明粒子带负电. 实验证明:这个新粒子带正电. ③用什么方法可测出粒子的速度? 归纳得到:使粒子通过一个正交的电磁场,如图4所示,调节B或E的值,使粒子在正交场中,沿入射方向做匀速直线运动,则可知此时

原子结构与原子核

课时跟踪检测(三十八) 原子结构与原子核 对点训练:原子的核式结构 1.卢瑟福通过对α粒子散射实验结果的分析,提出了原子内部存在( ) A .电子 B .中子 C .质子 D .原子核 2.如图所示是α粒子(氦原子核)被重金属原子核散射的运动轨迹,M 、N 、P 、Q 是轨迹上的四点,在散射过程中可以认为重金属原子核静止。图中所标出的α粒子在各点处的加速度方向正确的是( ) A .M 点 B .N 点 C .P 点 D .Q 点 3.(多选)物理学家通过对实验的深入观察和研究,获得正确的科学认知,推动物理学的发展。下列说法符合事实的是( ) A .赫兹通过一系列实验,证实了麦克斯韦关于光的电磁理论 B .查德威克用α粒子轰击 714N 获得反冲核 817O ,发现了中子 C .贝克勒尔发现的天然放射性现象,说明原子核有复杂结构 D .卢瑟福通过对阴极射线的研究,提出了原子核式结构模型 4.原子从一个能级跃迁到一个较低的能级时,有可能不发射光子。例如在某种条件下,铬原子的n =2能级上的电子跃迁到n =1能级上时并不发射光子,而是将相应的能量转交给n =4能级上的电子,使之脱离原子,这一现象叫做俄歇效应,以这种方式脱离了原子的电 子叫做俄歇电子,已知铬原子的能级公式可简化表示为E n =-A n 2,式中n =1,2,3,…表示不同能级,A 是正的已知常数,上述俄歇电子的动能是( ) A.1116 A B.716A C.316A D.1316 A 5.(多选) 19世纪初,爱因斯坦提出光子理论,使得光电效应现象得以完美解释,玻尔的氢原子模型也是在光子概念的启发下提出的。关于光电效应和氢原子模型,下列说法正确的是( ) A .光电效应实验中,入射光足够强就可以有光电流 B .若某金属的逸出功为W 0,该金属的截止频率为W 0h C .保持入射光强度不变,增大入射光频率,金属在单位时间内逸出的光电子数将减小 D .一群处于第四能级的氢原子向基态跃迁时,将向外辐射六种不同频率的光子 6.(多选)已知氢原子的基态能量为E 1,n =2、3能级所对应的能量分别为E 2和E 3,大

2020高考冲刺物理重难点:原子结构和原子核(附答案解析)

重难点10 原子结构和原子核 【知识梳理】 一、氢原子光谱、氢原子的能级、能级公式 1.原子的核式结构 (1)电子的发现:英国物理学家汤姆孙发现了电子。 (2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。 (3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。 2.光谱 (1)光谱 用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。 (2)光谱分类 有些光谱是一条条的亮线,这样的光谱叫做线状谱。 有的光谱是连在一起的光带,这样的光谱叫做连续谱。 (3)氢原子光谱的实验规律 巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R ???? 122-1n 2,(n =3,4,5,…),R 是里德伯常量,R =1.10×107 m -1,n 为量子数。 3.玻尔理论 (1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。 (2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m -E n 。(h 是普朗克常量,h =6.63× 10-34 J·s ) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道也是不连续的。 4.氢原子的能级、能级公式 (1)氢原子的能级 能级图如图所示

道路工程的组成和分类

道路工程的组成与分类 ㈠道路的组成 按所在位置、交通性质及其使用特点,可分为:公路、城市道路、厂矿道路、林区道路及乡村道路等。 1.公路的组成 ⑴线形组成。公路线形是指公路中线的空间几何形状和尺寸。 ⑵结构组成。公路的结构是承受荷载和自然因素影响的结构物,它包括路基、路面、桥涵、隧道、排水系统、防护工程、特殊构造物及交通服务设施等。 2.城市道路的组成 道路工程的主体是路线、路基(包括排水系统及防护工程等)和路面三大部分。 ㈡道路的等级划分 1.公路的等级划分。根据使用任务、功能和适应的交通量分为高速公路、一、二、三、四级5个等级。

⑴高速公路。高速公路是具有4个或4个以上车道,设有中央分隔带,全部立体交叉,全部控制出入,专供汽车分向、分车道高速行驶的公路。 ⑵一级公路。一级公路与高速公路设施基本相同。一级公路只是部分控制出入. ⑶二级公路。二级公路是中等以上城市的干线公路。 ⑷三级公路。三级公路是沟通县、城镇之间的集散公路。 ⑸四级公路。四级公路是沟通乡、村等地的地方公路。 2.城市道路的等级划分 按城市道路系统的地位、交通功能和对沿线建筑物的服务功能分为四类。 ⑴快速路。快速路主要为城市长距离交通服务。 ⑵主干路。主干路是城市道路网的骨架。 ⑶次干路。次干路配合主干路组成城市道路网,它是城市交通干路。

⑷支路。支路是一个地区(如居住区)内的道路,以服务功能为主。 二、路基 路基是按照路线位置和一定技术要求修筑的作为路面基础的带状构造物。 ㈠路基基本构造。是指路基填挖高度、路基宽度、路肩宽度、路基边坡等。 ㈡路基的作用 是路面的基础,是路面的支撑结构物。高于原地面的填方路基称为路堤,低于原地面的挖方路基称为路堑。路面底面以下80cm范围内的路基部分称为路床。 ㈢路基的基本要求 1.路基结构物的整体必须具有足够的稳定性 2.路基必须具有足够的强度、刚度和水温稳定性 水温稳定性是指强度和刚度在自然因素的影响下的变化幅度。 ㈣路基形式

【教学设计】《 核力与结合能》(人教版)

《核力与结合能》 本节教材是在学生已经掌握了原子核是由质子和中子组成的基础上,探究是什么作用使得质子和中子可以有机地组成一个稳定的整体。为此,教材首先安排了“核力与四种基本相互作用”,在教授这部分内容时,注意引导学生《物理必修1》第三章第1节的知识,同时突出

科学家的大胆“猜想”在研究中的作用。再利用核力的性质解释“原子核中质子与中子的比例”时,首先注意读懂教科书图19.5-2所揭示的稳定核中核子的组成情况,再结合核力和电磁里的共同作用,借鉴经典的动力学理论,寻求稳定原子核中核子按不同比例组成的原因。从力的角度认识了原子核后,“结合能”的教学实际上是从能量的角度再次认识原子核,结合能和比结合能的教学,是本节的难点,也是重点,注意结合教科书的例题和教科书图19.5-3讲清楚其物理意义。 【知识与能力目标】 1.知道核力的概念、特点及自然界存在的四种基本相互作用; 2.知道稳定原子核中质子与中子的比例随着原子序数的增大而减小; 3.理解结合能的概念,知道核反应中的质量亏损; 4.知道爱因斯坦的质能方程,理解质量与能量的关系。 【过程与方法目标】 1.会根据质能方程和质量亏损的概念计算核反应中释放的核能; 2.培养学生的理解能力、推理能力、及数学计算能力。 【情感态度价值观目标】 1.使学生树立起实践是检验真理的标准、科学理论对实践有着指导和预见作用的能力;2.认识开发和利用核能对解决人类能源危机的重要意义。 【教学重点】 质量亏损及爱因斯坦的质能方程的理解。 【教学难点】 结合能的概念、爱因斯坦的质能方程、质量与能量的关系 多媒体教学设备一套:可供实物投影、放像、课件播放等。 (一)引入新课 复习提问:氦原子核中有两个质子,质子质量为m p=1.67×10-27kg,带电量为元电荷e=1.6×10-19C,原子核的直径的数量级为10-15m,那么两个质子之间的库仑斥力与万有引力两者相差多少倍?

《原子核的组成》名师教案2

《原子核》教学设计 【新课标要求】 1.内容标准 (1)知道原子核的组成。知道放射性和原子核的衰变。会用半衰期描述衰变速度,知道半衰期的统计意义。 (2)了解放射性同位素的应用。知道射线的危害和防护。 例1 了解放射性在医学和农业中的应用。 例2 调查房屋装修材料和首饰材料中具有的放射性,了解相关的国家标准。(3)知道核力的性质。能简单解释轻核与重核内中子数、质子数具有不同比例的原因。会根据质量数守恒和电荷守恒写出核反应方程。 (4)认识原子核的结合能。知道裂变反应和聚变反应。关注受控聚变反应研究的进展。 (5)知道链式反应的发生条件。了解裂变反应堆的工作原理。了解常用裂变反应堆的类型。知道核电站的工作模式。 (6)通过核能的利用,思考科学技术与社会的关系。 例3 思考核能开发带来的社会问题。 (7)初步了解恒星的演化。初步了解粒子物理学的基础知识。 例4 了解加速器在核物理、粒子物理研究中的作用。 2.活动建议: (1)通过查阅资料,了解常用的射线检测方法。 (2)观看有关核能利用的录像片。 (3)举办有关核能利用的科普讲座。 新课程学习 9.1原子核的组成 ★新课标要求 (一)知识与技能 1.了解天然放射现象及其规律。 2.知道三种射线的本质,以及如何利用磁场区分它们。 3.知道原子核的组成,知道核子和同位素的概念。

(二)过程与方法 1.通过观察,思考,讨论,初步学会探究的方法。 2.通过对知识的理解,培养自学和归纳能力。 (三)情感、态度与价值观 1.树立正确的,严谨的科学研究态度。 2.树立辨证唯物主义的科学观和世界观。 ★教学重点 天然放射现象及其规律,原子核的组成。 ★教学难点 知道三种射线的本质,以及如何利用磁场区分它们。 ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排1 课时 ★教学过程 (一)引入新课 教师:本节课我们来学习新的一章:原子核。本章主要介绍了核物理的一些初步知识,核物理研究的是原子核的组成及其变化规律,是微观世界的现象。让我们走进微观世界,一起探索其中的奥秘! 我们已经知道,原子由什么微粒组成啊? 学生回答:原子由原子核与核外电子组成。 点评:由原来的知识引入新课,对新的一章有一个大致的了解。 教师:那原子核内部又是什么结构呢?原子核是否可以再分呢?它是由什么微粒组成?用什么方法来研究原子核呢? 学生思考讨论。 点评:带着问题学习,激发学习热情

原子的核式结构教学设计

《原子的核式结构》教学设计 一、教材分析 “原子的核式结构”是高中原子物理的重要内容,传统的教学设计虽然也能让学生掌握原子的核式结构内容,但不难看出传统教学模式仍为“师传生受”,学生还是被动地接收知识,即使学会了,也不能算会学,无法让学生体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用。面对新课程改革的要求,为营造一个让学生自主学习的良好环境,本人结合平时的实践,对本节内容采用通过让学生小组讨论:用汤姆生的葡萄干布丁模型能否解释ɑ粒子散射实验现象,一步一步得出卢瑟福的原子核式结构模型,在教学中虽然不能进行真实的实验,但同样处处渗透着新课程理念的科学探究思想,从而利于提高学生的逻辑推理能力,观察能力,有利用培养学生勇于攀登科学高峰,不怕苦、不怕累的科学精神,这种通过让学生自己动眼观察、动脑思考,引导他们自己获取知识,不仅活跃了课堂气氛,还发展了学生的思维能力和创新能力。本节课的设计旨在追寻前人的足迹,通过对粒子散射实验分析,从而否定汤姆孙的原子模型,建立卢瑟福的原子核式结构模型。让学生了解在科学研究中,科学家们通过对实验事实的分析,提出模型或假说,这些模型或假说又在实验中经受检验,正确的被肯定,经不起检验的被否定,在新的基础上再提出新的假说。科学的研究这样螺旋上升和不断深入发展的。 内容分析 粒子散射实验和原子核式结构的内容是本节教学重点。其中粒子散射实验是常用的获取微观世界信息的方法,在原子结构的研究中有非常重要的作用,以后的质子和中子的发现都与粒子散射实验有关。本节对于原子核式结构的建立,粒子散射实验更是起到决定性的作用,所以重点在于对粒子散射实验观察、现象的分析以及从现象中猜测合理的结构。“原子的核式结构”是高中原子物理的重要内容,除了让学生掌握原子的核式结构内容,让学生体会建立模型研究物理问题的方法,理解物理模型的演化也很重要。通过让学生小组讨论:用汤姆生的枣糕模型能否解释ɑ粒子散射实验现象,一步一步得出卢瑟福的原子核式结构模型,在教学中虽然不能进行真实的实验,但同样处处渗透着新课程理念的科学探究思想,从而利于提高学生的逻辑推理能力和分析能力。 学情分析 对于原子的结构其实学生早已经知道,初中的物理、化学中都已经清楚。所以原子结构如何不是本节课要教授的目的,如何从粒子散射实验现象中得出合理的原子结构模型才是本节要关注的重点。前面光的波动性、光的粒子性的学习使学生对于从现象找本质,建模型或假说的过程已不再陌生,所以对学生进行适当的引导、提问即可理解原子核式结构模型。前一节学习了电子的发现过程,学生已经知道原子是有结构的,那么结构如何分布呢学生在化学中已经学习了原子核外的电子排布,绝大多数学生都已经知道了原子由原 子核和电子组成但一般都尚未清楚原子大小与原子核大小的比例关系,而这一比例必将对 学生认识微观世界产生巨大的冲击,从而激发学生的学习热情。

第1节 原子核的组成与核力

第1节 原子核的组成与核力 学习目标 核心提炼 1.知道质子、中子的发现。 2个发现——质 子、中子的发现 2个概念——核子、核力 2.知道原子核的组成,知道核子和同位素的概念。 3.会写核反应方程。 4.了解原子核里的核子间存在着相互作用的核力。 一、原子核的组成 1.组成:质子和中子(统称为核子)。 (1)1919年,卢瑟福用α粒子轰击氮核发现了质子。 (2)1932年,查德威克用α粒子轰击铍核发现了中子。 2.原子核的表示方法 3.同位素 原子序数相同而中子数不同的原子核,互称为同位素。 例如:氢有三种同位素,分别是11H 、21H 、3 1H 。 思考判断 (1)质子和中子都不带电,是原子核的组成成分,统称为核子。( ) (2)原子核的电荷数就是核内的质子数,也就是这种元素的原子序数。( ) (3)同位素具有不同的化学性质。( ) (4)原子核内的核子数与它的核电荷数不可能相等。( )

答案(1)×(2)√(3)×(4)× 二、核力 1.定义:核子之间的相互作用力,称为核力,也称强力。 2.核力的特征 (1)在核的线度内,核力比库仑力大得多; (2)核力是短程力,当两核子中心相距大于核子本身线度时,核力几乎完全消失; (3)核力与电荷无关,质子与质子、质子与中子以及中子与中子之间的核力是相等的。 思考判断 (1)原子核中的质子是靠自身的万有引力聚在一起的。() (2)在原子核的线度内,核力比库仑力大得多。() (3)核力与电荷有关,质子与质子、质子与中子之间的核力是不相等的。() (4)只要原子核中的质子数与中子数相等,原子核就可以无限地增大。() 答案(1)×(2)√(3)×(4)× 三、核反应 1.核反应:用一定能量的粒子轰击原子核,改变了核的结构,我们把这样的过程叫做核反应。 2.核反应的实质:以基本粒子(α粒子、质子、中子等)为“炮弹”去轰击原子核(靶核X),从而促使原子核发生变化,生成了新原子核(Y),并放出某种粒子。 3.常见的人工转变的核反应有 (1)卢瑟福发现质子:14 7N+42He―→17 8O+11H (2)查德威克发现中子:94Be+42He―→12 6C+10n (3)居里夫妇人工制造同位素:42He+2713Al―→10n+3015P 30 P具有放射性:3015P―→3014Si+0+1e。 15 4.遵循规律:质量数守恒,电荷数守恒。 思考判断 (1)在核反应中,质量数守恒,电荷数守恒。() (2)核反应过程是不可逆的,核反应方程中只能用单向箭头表示反应方向。()

物理:新人教版选修3-5 19.1原子核的组成(教案)(2篇)

第十九章原子核 新课标要求 1.内容标准 (1)知道原子核的组成。知道放射性和原子核的衰变。会用半衰期描述衰变速度,知道半衰期的统计意义。 (2)了解放射性同位素的应用。知道射线的危害和防护。 例1 了解放射性在医学和农业中的应用。 例2 调查房屋装修材料和首饰材料中具有的放射性,了解相关的国家标准。 (3)知道核力的性质。能简单解释轻核与重核内中子数、质子数具有不同比例的原因。会根据质量数守恒和电荷守恒写出核反应方程。 (4)认识原子核的结合能。知道裂变反应和聚变反应。关注受控聚变反应研究的进展。 (5)知道链式反应的发生条件。了解裂变反应堆的工作原理。了解常用裂变反应堆的类型。知道核电站的工作模式。 (6)通过核能的利用,思考科学技术与社会的关系。 例3 思考核能开发带来的社会问题。 (7)初步了解恒星的演化。初步了解粒子物理学的基础知识。 例4 了解加速器在核物理、粒子物理研究中的作用。 2.活动建议: (1)通过查阅资料,了解常用的射线检测方法。 (2)观看有关核能利用的录像片。 (3)举办有关核能利用的科普讲座。 新课程学习 19.1 原子核的组成 ★新课标要求 (一)知识与技能 1.了解天然放射现象及其规律。 2.知道三种射线的本质,以及如何利用磁场区分它们。 3.知道原子核的组成,知道核子和同位素的概念。 (二)过程与方法 1.通过观察,思考,讨论,初步学会探究的方法。

2.通过对知识的理解,培养自学和归纳能力。(三)情感、态度与价值观 1.树立正确的,严谨的科学研究态度。 2.树立辨证唯物主义的科学观和世界观。 ★教学重点 天然放射现象及其规律,原子核的组成。 ★教学难点 知道三种射线的本质,以及如何利用磁场区分它们。★教学方法

原子的核式结构 原子核

§22.1原子的核式结构原子核 1.关于α粒子散射实验的下列说法中正确的是 A.在实验中观察到的现象是绝大多数α粒子穿过金箔后,仍沿原来方向前进,少数发生了较大偏转,极少数偏转超过90o,有的甚至被弹回接近180o B.使α粒子发生明显偏转的力是来自带正电的核和核外电子,当α粒子接近核时,是核的斥力使α粒子发生明显偏转,当α粒子接近电子时,是电子的吸引力使之发生明显偏转 C.实验表明原子中心有一个极小的核,它占原子体积的极小部分 D.实验表明原子中心的核带有原子的全部正电及全部质量 2.卢瑟福α粒子散射实验的结果 A.证明了质子的存在 B.证明了原子核是由质子和中了组成的 C.证明了原子的全部正电荷和几乎全部质量都集中在一个很小的核里 D.说明了原子中的电子只能在某些轨道上运动 3.在α粒子散射实验中,我们并没有考虑α粒子跟电子的碰撞,这是由于A.α粒子并不跟电子相互作用 B.α粒子跟电子相碰时,损失的能量很少,可以忽略 C.α粒子跟众多电子相碰撞的效果互相抵消 D.由于电子是均匀分布的,α粒子受电子作用的合力为零 4.下列对原子结构的认识中,错误的是 A.原子中绝大部分是空的,原子核很小 B.电子在核外绕核旋转,向心力为库仑力 C.原子的全部正电荷都集中在原子核里 D.原子核的直径大约为10-10m 5.卢瑟福α粒子散射实验的意义在于 A.说明了原子中正电荷是均匀分布的 B.揭示了原子核也有其本身结构 C.可以估算出原子核大小 D.奠定了原子核式结构的实验基础 6.对α粒子散射实验装置的描述,你认为正确的有 A.实验器材有放射源、金箔、荧光屏、显微镜 B.金箔的厚度对实验无影响 C.如果不用金箔改用铝箔,就不会发生散射现象 D.实验装置放在空气中和真空中都可以

原子核的组成与核力教案

原子核的组成与核力教案 教学目标 1.知道原子核的组成及质子和中子的发现情况,掌握原子核的表示方法及质量数、质子数(核电荷数)、中子数的关系,同位素的概念。 2.知道质子和中子统称为核子,并了解核子间存在核力及核力的性质 3.掌握什么叫核反应并学会书写核反应方程 重点难点 重点:原子核的组成及表示方法、质量数、质子数(核电荷数)、中子数的关系 难点:核反应方程的书写 设计思想 本节主要讲原子核的组成,是这一章的重点,虽然是微观世界的知识,但初中已有了一定的 基础,要求也比较低,所以学生接收起来并不太难,难点主要在核反应方程的书写上。所以这节课主要以识记的思想来设计教学,更多的让学知道是什么。另外通过“实验事实—猜想(预言)—实验验证”的过程,让学生在情感上体验科学家科学探索的艰辛历程。 教学资源多媒体课件 教学设计 【课堂引入】 问题1:前面我们学习了卢瑟福的原子的“核式结构学说”和玻尔的原子模型,知道原子是有结构的,那么组成原子的原子核有没有结构呢? 【课堂学习】 (一)原子核的组成 1.原子核的组成 (1)质子的发现:1919年,卢瑟福用α粒子轰击氮原子核,发现了质子。后来又从许多轻元素中打出了质子,质子是原子核的组成部分。 ★卢瑟福预言中子的存在:卢瑟福发现原子核的质量与质子质量不等,但电荷数相同,由此卢瑟福预言在原子核中还在一种中性的粒子。 (2)中子的发现:1932年,查德威克用α粒子轰击铍原子核得到中子(查德威克用实验验证)。(3)核子:原子核是由质子和中子组成的,它们统称为核子。 (4)电荷数:原子核的电荷数等于核内的质子数。 (5)质量数:原子核的质量数就是核内的质子数和中子数之和。 ★基本关系:核电荷数=质子数(Z)=元素的原子序数=核外电子数 质量数(A)=核子数=质子数+中子数 ★原子核的表示方法:A Z X(X是元素符号;A是“核质量数”;Z是“核电荷数”) 2.同位素 (1)同位素:具有相同的质子数而中子数不同的原子核统称为同位素。 问题2:互称为同位素的两原子核质量数一样吗:(不一样) (2)同位素因质子数相同,具有相同的化学性质,因中子数不同,具有不同的物理性质。 ★氢的三种同位素,叫氕、氘、氚,分别用11H、21H、31H表示。 (二)核力 问题3:核内有大量的质子,而质子带正电且距离很小,因此有很大的库仑斥力,为什么它们还

高中物理人教版选修3-5 19.1《原子核的组成》教案设计

原子核的组成 教学目标 1.在物理知识方面要求. (1)了解原子核的人工转变.了解它的方法和物理过程. (2)了解质子和中子是如何被发现的. (3)会写核反应方程式. (4)了解原子核的组成,知道核子和同位素的概念. 2.掌握利用能量和动量守恒的思想来分析核反应过程.从而培养学生运用已知规律来分析和解决问题的能力. 3.通过发现质子和中子的历史过程,使学生认识通过物理实验研究和探索微观结构的研究方法及体会科学研究的艰巨性和严谨性. 重点、难点分析 1.重点是使学生了解原子核的人工转变和原子核的组成.在原子核的人工转变中发现了质子和中子,它是确定原子核组成的实验基础. 2.用已经学过的能量和动量守恒以及有关的知识来分析核反应过程,是本节的难点.教具准备 1.分析卢瑟福做的“α粒子轰击氮原子核的实验”. 2.讲解约里奥·居里和伊丽芙·居里夫妇做的“用来自铍的射线去轰击石蜡的实验”. 用投影幻灯、投影片. 引入新课 通过上一章的学习,我们已经知道,原子是由电子和原子核组成的,原子核处于原子的中心,体积很小,那么原子核有没有结构,它又是由什么组成的呢?下面我们就来学习这方面的知识. 教学过程 一、天然放射性现象 1.放射性 铀和含铀的矿物质都能够发出看不见的射线,这种射线可以使包在黑纸箱里的照相底片感光.物体放射出射线的性质叫做放射性. 深化升华射线是从原子核内部发出的,说明原子核不是最小结构,原子核可以再分. 2.放射性元素

具有放射性的元素叫做放射性元素. 放射性并不是少数几种元素才有的.研究发现,原子序数大于或等于83的所有元素,都能自发地放出射线,原子序数小于83的元素,有的也具有放射性,元素这种自发地放出射线的现象叫做天然放射现象,现在用人工的方法也可以制造放射性同位素. 记忆要诀原子序数大于等于83的所有元素都有放射性.原子序数小于83的元素,有的也具有放射性. 3.天然放射性元素:能自发地放出射线的元素叫做天然放射性元素. 虽然具有天然放射性元素的种类很多,但它们在地球上的含量很少. 4.天然放射现象发现的意义:原子核具有复杂的结构,实际上人们认识到原子核具有复杂结构就是从天然放射性开始的. 联想发散原子核内部的消息,最早来自天然放射现象.人们从破解天然放射现象入手,一步步揭开了原子核的秘密.如果一种元素具有放射性,那么不论它是以单质的形式存在,还是以某种化合物的形式存在,放射性都不受影响,也就是说,放射性与元素存在的状态无关,放射性仅与原子核有关.因此,原子核不是组成物质的最小微粒,也存在着一定结构. 二、射线到底是什么 1.研究方法:让放射线通过电场或磁场来研究其性质. 把样品放在铅块的窄孔底上,在孔的对面放着照相底片,在没有磁场时,发现在底片上正对孔的位置感光了.若在铅块和底片之间放一对磁极,使磁场方向跟射线方向垂直,结果在底片上有三个地方感光了,说明在磁场作用下,射线分为三束,表明这些射线中有的带电,有的不带电,由三种粒子组成,如图所示. 2.各种射线的本质和特性 (1)α射线:卢瑟福经研究发现,α射线粒子带两个单位正电荷,质量数为4,即α粒子是氦核,其速度是光速的1/10,有较大的动能. 特性:贯穿本领小,但电离作用强,能使沿途中的空气电离. (2)β射线:贝克勒尔证实,β射线是电子流,其速度可达光速的90%. 特征:贯穿本领大,能穿透黑纸,甚至穿透几毫米厚的铝板,但电离作用较弱. (3)γ射线是一种波长很短的电磁波——光子流,是能量很高的电磁波,波长λ<10-10 m.

高中原子的核式结构物理知识点

高中原子的核式结构物理知识点 1、原子的核式结构 1 粒子散射实验结果:绝大多数粒子沿原方向前进,少数粒子发生较大偏转。 2原子的核式结构模型:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部的质量都集中在原子核里,带负电的电子在核外空间绕核旋转. 3原子核的大小:原子的半径大约是10-10米,原子核的半径大约为10-14米~10-15米. 2、玻尔理论有三个要点: 1原子只能处于一系列的不连续的能量状态中,在这些状态中原子是稳定的.电子虽然绕核旋转,但并不向外辐射能量,这些状态叫定态. 2原子从一种定态跃迁到另一定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定.即hν=E2-E1 3原子的不同能量状态对应于电子沿不同圆形轨道运动.原子的定态是不连续的,因而电子的可能轨道是分立的. 在玻尔模型中,原子的可能状态是不连续的,各状态对应的能量也是不连续的,这些不连续的能量值的能量值叫做能级。 3、原子核的组成核力 原子核是由质子和中子组成的.质子和中子统称为核子. 将核子稳固地束缚在一起的力叫核力,这是一种很强的力,而且是短程力,只能在2.0X10-15的距离内起作用,所以只有相邻的核子间才有核力作用. 4、原子核的衰变 1天然放射现象:有些元素自发地放射出看不见的射线,这种现 象叫天然放射现象. 2放射性元素放射的射线有三种:、射线、射线, 这三种射线可以用磁场和电场加以区别,如图15.2-1 所示

3放射性元素的衰变:放射性元素放射出粒子或粒子后,衰变成新的原子核,原子核的这种变化称为衰变. 衰变规律:衰变中的电荷数和质量数都是守恒的. 4半衰期:放射性元素的原子核有半数发生衰变所需要的时间称为半衰期.不同的放射性元素的半衰期是不同的,但对于确定的放射性元素,其半衰期是确定的.它由原子核的内部因素所决定,跟元素的化学状态、温度、压强等因素无关. 5同位素:具有相同质子数,中子数不同的原子在元素周期表中处于同一位置,互称同位素。 感谢您的阅读,祝您生活愉快。

相关主题
文本预览
相关文档 最新文档