当前位置:文档之家› Stellar populations in local star-forming galaxies. I.-Data and modelling procedure

Stellar populations in local star-forming galaxies. I.-Data and modelling procedure

Stellar populations in local star-forming galaxies. I.-Data and modelling procedure
Stellar populations in local star-forming galaxies. I.-Data and modelling procedure

a r X i v :a s t r o -p h /0209396v 2 20 D e c 2002

Mon.Not.R.Astron.Soc.000,1–17(2002)Printed 2February 2008

(MN L A T E X style ?le v2.2)

Stellar populations in local star-forming galaxies.

I.–Data and modelling procedure.

P.G.P′e rez-Gonz′a lez 1,A.Gil de Paz,5,2,1J.Zamorano,1J.Gallego,1

A.Alonso-Herrero 3and A.Arag′o n-Salamanca 4

1

Departamento de Astrof′?sica,Facultad de F′?sicas,Universidad Complutense,E-28040Madrid,Spain

2NASA/IPAC

Extragalactic Database,California Institute of Technology,MS 100-22,Pasadena,CA 91125,USA

3Steward Observatory,The University of Arizona,Tucson AZ 85721,USA

4School of Physics and Astronomy,University of Nottingham,NG72RD,England

5current address:The Observatories of the Carnegie Institution of Washington,813Santa Barbara St.,Pasadena,CA 91101,USA

Received 2February 2008

ABSTRACT

We present an analysis of the integrated properties of the stellar populations in the Universidad Complutense de Madrid (UCM)Survey of H α-selected galaxies.In this paper,the ?rst of a series,we describe in detail the techniques developed to model star-forming galaxies using a mixture of stellar populations,and taking into account the observational uncertainties.We assume a recent burst of star formation superimposed on a more evolved population.The e?ects of the nebular continuum,line emission and dust attenuation are taken into account.We also test di?erent model assumptions including the choice of speci?c evolutionary synthesis model,initial mass function,star formation scenario and the treatment of dust extinction.Quantitative tests are applied to determine how well these models ?t our multi-wavelength obser-vations for the UCM sample.Our observations span the optical and near infrared,including both photometric and spectroscopic data.Our results indicate that extinc-tion plays a key role in this kind of studies,revealing that low-and high-obscured objects may require very di?erent extinction laws and must be treated di?erently.We also demonstrate that the UCM Survey galaxies are best described by a short burst of star formation occurring within a quiescent galaxy,rather than by continu-ous star formation.A detailed discussion on the inferred parameters,such as the age,burst strength,metallicity,star formation rate,extinction and total stellar mass for individual objects,is presented in paper II of this series.

Key words:mthods:data analysis –galaxies:photometry –galaxies:evolution –galaxies:stellar content –infrared:galaxies

1INTRODUCTION

One of the main issues in today’s Astrophysics is how present day galaxies formed and how they have evolved over time.A considerable observational e?ort is being made to study galaxies from the earliest possible times to the present.Our knowledge of the faint galaxy populations over the 0

ences therein).Moreover,new classes of distant objects have been discovered,such as Ultraluminous Infrared Galaxies ,(Schmidt &Green 1983),Extremely Red Objects ,(Yan et al.2000)as well as bright UV galaxies (Lyman Break Galaxies ,LBGs,Steidel et al.1996,1999).The luminosity of these ob-jects,both the reddest and the bluest,is mainly dominated by massive knots of newly-formed stars (starbursts),with di?erent amounts of dust extinction.

A complementary approach to understand how present-day galaxies came into being is to study in detail the proper-ties of local galaxies,and in particular their star-formation histories.In this respect,it is important to quantify the rel-ative importance of the current episode of star formation in comparison to the underlying older stellar populations.In-deed,even in high redshift objects,stars formed before the

2P.G.P′e rez-Gonz′a lez et al.

currently-observed star formation episode must have been present in order to produce the observed metal and dust content.Examples of such high-z objects include SCUBA sources(Hughes et al.1998)and LBGs(see Calzetti2001 and references therein).Moreover,an accurate determina-tion of the total stellar mass in both local and distant galax-ies is a necessary step towards understanding their formation (see,e.g.,Pettini et al.1998,2001).Our group is actively working on the detailed study of galaxies in the Local Uni-verse so that their properties can be compared with distant ones.The techniques developed and tested with local galax-ies will have direct application in high-z studies.

The Universidad Complutense de Madrid(UCM)Sur-vey was carried out in order to perform a comprehen-sive study of star-forming galaxies in the Local Universe (Zamorano et al.1994,1996;see also Alonso et al.1999). This Hα-selected galaxy sample has been extensively studied at optical and near infrared wavelengths(see next section). It has also been used to determine the local Hαluminos-ity function and star formation rate density(Gallego et al. 1995),providing a low-z benchmark for intermediate and high-z studies(see,for example,Iwamuro et al.2000;Moor-wood et al.2000;van der Werf et al.2000;Tresse et al.2001). Recently,the UCM Survey is being extended to higher red-shifts(Pascual et al.2001).

The present series of papers aims at determining the main properties of the stellar populations in the UCM Sur-vey galaxies,accounting both for the newly-formed stars and the underlying evolved populations.We make use of the ex-tensive multi-wavelength data available for the sample.A direct precursor of the current study was presented in Gil de Paz et al.(2000a,hereafter GdP00),where we character-ized the stellar content of a smaller subsample of67UCM galaxies,constraining their ages,metallicities and relative strength of the current star-formation episode.A sophisti-cated statistical technique was developed by GdP00to com-pare measurements and model predictions.We now present results for virtually all the UCM galaxies,increasing the sample by a factor of2.5.We have also included additional photometry in the B-band(P′e rez-Gonz′a lez et al.2000),and use a more elaborated spectral synthesis method.

The present paper will focus on the modelling technique and the observational data used to test it.We will discuss the model input parameters that best describe the observed properties of the UCM galaxies,including the initial mass function(IMF),star formation scenarios and extinction pre-scriptions.We will also study in detail how well our mod-elling techniques are able to reproduce the observations.In P′e rez-Gonz′a lez et al.(2002b,Paper II hereafter),the sec-ond paper of the series,we will present the derived properties of the UCM galaxies using these data and techniques.Pa-per II will discuss the young and newly-formed stars in the galaxies,together with the underlying population of evolved stars,the total stellar masses,etc.

This paper is structured as follows:section2introduces the sample,the observations and the data measurements. Section3describes our modelling techniques,including the main features of the stellar and nebular emission models,the star formation scenarios and the extinction prescriptions. Section4discusses the goodness of the?ts and possible cor-relations with the input data.Finally,Section5summarizes our conclusions.Throughout this paper we use a cosmology with H0=70km s?1Mpc?1,?M=0.3andΛ=0.7.

2DATA

2.1The sample

The UCM Survey galaxy sample contains191galaxies se-lected by their Hαemission at an average redshift of0.026 (Zamorano et al.1994,1996;Gallego et al.1996).Out of these galaxies,15were classi?ed as active galactic nuclei (AGN,including Seyfert1,Seyfert2and LINER types)by Gallego et al.(1996),and will be excluded from the present study.The rest are star-forming galaxies.Eleven of these were observed only in two photometric bands,and compar-ison with the models has not been attempted.Thus,the sample studied here contains163galaxies,i.e.,94%of all the star-forming galaxies in the complete UCM sample.This represents a factor of2.5increase over the sample studied by GdP00.

The sample contains low excitation,high metallicity ob-jects(often with bright and dusty starbursts)and high ex-citation,low metallicity ones with blue star-forming knots which may sometimes dominate the optical luminosity of the whole galaxy,as in the case of Blue Compact Dwarfs—BCDs.These two global spectroscopic types will be called disk-like and HII-like galaxies,respectively.There is also a large spectrum of sizes and masses(from grand-design spi-rals to dwarfs),luminosities,emission-line equivalent widths and star formation rates(SFRs).The data required in the present work are available for94%of the entire UCM sam-ple(excluding AGN).The galaxies studied here are thus a virtually complete sample,with no biases against any of the previously mentioned properties.

The dataset used in this work comprises a great deal of observations,both photometric and spectroscopic.Most of them have already been presented in previous papers.Only near infrared(nIR)data for the whole UCM Survey has not been described before.In the next subsections we will review all these data,with special emphasis on the nIR campaigns.

2.2Imaging

2.2.1Optical:B-and r-bands

Gunn r and Johnson B observations were obtained in several observing runs from1989to2001using1-2metre-class tele-scopes at the German-Spanish Observatory of Calar Alto (CAHA,Almer′?a,Spain)and the Observatorio del Roque de los Muchachos(La Palma,Spain).The observing de-tails as well as the reduction and calibration procedures can be found in Vitores et al.(1996a,b)for the r data, and P′e rez-Gonz′a lez et al.(2000)and P′e rez-Gonz′a lez et al. (2001)for B.Brie?y,the sample has average magnitudes of m B=16.1±1.1(M B=?19.2)and m r=15.5±1.0 (M r=?19.8),with a mean B-band e?ective radius of 2.8kpc.Up to65%of the sample galaxies are classi?ed as Sb or later.

Stellar populations in local star-forming galaxies.I.–Data and modelling procedure.3

2.2.2Near infrared:J-and K-bands

Near infrared observations for a small subsample of67galax-ies were presented in GdP00.The whole sample of191galax-ies has now been observed in the nIR.

A total number of11campaigns were necessary to com-plete the191objects.These runs were carried out from January1996to April2002in1-2metre-class telescopes: the2.2m Telescope at Calar Alto Observatory(Almer′?a, Spain),the1m Telescope at UCO/Lick Observatory(Cali-fornia,USA)and the2.3m Bok Telescope of the University of Arizona on Kitt Peak Observatory(Arizona,USA).Basic information on each observing run are given in Table1.The ?lters used in these runs were J,K,K s and K′.Standard reduction procedures in the nIR were applied,a description of which can be found in Arag′o n-Salamanca et al.(1993). Flux calibration was performed using standard stars from the lists of Elias et al.(1982);Hunt et al.(1998);Hawarden et al.(2001).For each photometric night,appropriate atmo-spheric extinction coe?cients were derived and zero-points for each observing setup determined.Non-photometric data were calibrated using short exposures of the?elds taken dur-ing photometric nights.The magnitudes of the62galaxies observed in K′were transformed into the standard K system by applying the constant o?set K′?K=0.07mag(Wain-scoat&Cowie1992;Arag′o n-Salamanca et al.1993).The correction from K s to K is negligible(Persson et al.1998).

2.3Long-slit optical spectroscopy

We use redshifts,Hα+[NII]equivalent widths(EW), Hα/[NII]and Hα/Hβintensity ratios,and spectroscopic types from Gallego et al.(1996).The EW(Hα+[NII])was transformed into EW(Hα)using the observed Hα/[NII]ra-tios when available.For the20galaxies without measured [NII]/Hαratios we assumed average values for the relevant spectroscopic types.Errors for the Hαequivalent width are estimated to be?20%.

For30objects,the Hα/Hβratio was impossible to mea-sure due to high extinction and/or to stellar absorption lead-ing to the absence of detectable Hβemission.In these cases, the average value of the25%highest ratios for each spec-troscopic type has been assumed.The rationale behind this assumption is that these galaxies must have high extinctions in order to completely obliterate the Hβemission line.

The emission-line data was corrected for underlying stellar population absorption.Kurucz(1992)established that the Hαand Hβequivalent widths are equal within a 30%uncertainty.Thus,we used a typical stellar absorption equivalent width for both Hαand Hβof3?A(Trager et al. 1998;Gonz′a lez Delgado et al.1999).

Although described elsewhere(see Gallego et al.1996 for details),we outline here the main properties of the dif-ferent spectroscopic types that will be used later in the dis-cussion and in Paper II:

SBN—Starburst Nuclei—Originally de?ned by Balzano (1983),they show high extinction values,with very low [NII]/Hαratios and faint[OIII]λ5007emission.Their Hαluminosities are always higher than108L⊙. DANS—Dwarf Amorphous Nuclear Starburst—Intro-duced by Salzer et al.(1989),they show very similar spectro-scopic properties to SBN objects,but with Hαluminosities below5·107L⊙.

HIIH—HII Hotspot—The HII Hotspot class shows similar Hαluminosities to those measured in SBN galaxies but with large[OIII]λ5007/Hβratios,that is,higher ionization. DHIIH—Dwarf HII Hotspot—-This is an HIIH subclass with identical spectroscopic properties but Hαluminosities lower than5·107L⊙.

BCD—Blue Compact Dwarf—The lowest luminosity and highest ionization objects have been classi?ed as Blue Com-pact Dwarf galaxies.They show in all cases Hαluminosities lower than5·107L⊙as well as large[OIII]λ5007/Hβand Hα/[NII]λ6584line ratios and intense[OII]λ3727emission.

All these spectroscopic classes are usually collapsed in two main categories:disk-like and HII-like galaxies(see Guzm′a n et al.1997and Gallego1998).The disk-like class includes SBN and DANS spectroscopic types,whereas the HII-like includes HIIH,DHIIH and BCD galaxies.

2.4Photometry analysis

Standard reduction procedures were applied to each pho-tometric dataset.The sky level was measured using~30 circular apertures of~100pixels2area placed at di?erent positions around each object.The average of all the measure-ments and its standard deviation were used to determine the sky background and the related uncertainty.

In order to study the integrated properties of the galax-ies,aperture photometry was obtained for each bandpass. Aiming at including the majority of the galaxy light,we used apertures with radii equal to three exponential disk scale lengths as determined in the r-band images(Vitores et al.1996b).In the few cases when the r-band bulge-disk decomposition was not available,we used the radius of the24 mag·arcsec2isophote measured in the B-band(r24,P′e rez-Gonz′a lez et al.2001).We inspected each image visually and checked that these apertures were encompassing all the de-tectable galaxy?ux,and that no artifacts were disturbing the data.In a few cases we slightly decreased or increased the aperture radius in order to ensure that the measured?ux was as close as possible to the total?ux.The photometric apertures were centred on the peak of the galaxy light in each band.We checked that the e?ect of possible misalign-ments between the light peaks in the di?erent bands was al-ways below the photometric uncertainty.We estimate that the size of this e?ect is always below0.05mag in B and r and0.1mag in J and K.

Total K-band magnitudes were determined interac-tively as the average of the measurements inside the outer apertures where the curve of growth was?at.These?uxes were converted to absolute magnitudes and corrected for Galactic extinction using the maps published by Schlegel et al.(1998).

Since the model-?tting procedure(explained in Sect.3.5)takes into account the observational errors,we took special care in their determination.The main sources of uncertainty are photon-counting errors(described by Poisson statistics),readout noise,?at-?eld errors(a?ecting mainly the sky determination),and photometric calibration uncertainties.For a given aperture,the uncertainty due to photon-counting errors and readout noise can be written as:

4P.G.P′e rez-Gonz′a lez et al.

Table1.Log of the nIR observation for the UCM sample.

Table1.Observing log for the nIR observations of the UCM Survey galaxies.Columns stand for:(1)Telescope name.(2)Date of the observation.(3)Detector used.(4)Scale of the chip in arcsec·pixel?1.(5)Weather conditions.

σP oisson= G(1) where C g al is the number of counts coming from the galaxy, n g al the number of pixels inside the aperture,C s ky the sky value in counts,and G and RON the gain and readout noise of the detector,measured in electrons/pixel and electrons, respectively.

The error in the total?ux arising from the determina-tion of the sky value is

σs kydet.=σs ky·n g al(2) whereσs ky is the standard deviation of the sky measure-ments mentioned before.

Expressing the previous uncertainties in magnitudes,we get

?m i mage=1.0857· C g al·√

(?m i mage)2+σ2z ero?point(4) Typical total errors are0.04mag in B,0.03mag in r and 0.09mag in J and K.

2.5Archival data

At the time of writing,a total of97galaxies in our sample have been observed in J and K as part of the Two Micron All Sky Survey(2MASS;for details on the source identi?cation and photometry procedures see Jarrett et al.2000).When we compare our total magnitudes with the total magnitudes derived by the2MASS team,we?nd that the2MASS to-tal magnitudes are,on average,0.07mag fainter than ours both in J and K.The largest di?erences are mostly found in objects showing companions or?eld stars.This o?set

is Figure1.Photometry comparison of the K band total magni-tudes for the UCM Survey galaxies included in the2Micron All Sky Survey,Second Incremental Release.

probably due to di?erences in the determination of the to-tal magnitudes.Indeed,when we compare the magnitudes inside the same aperture in both the2MASS images and in ours,we?nd that the average di?erences(weighted with the photometric errors)are0.001±0.052m ags in K and 0.003±0.038m ags in J.Fig.1shows the comparison in the K band.

Among the97galaxies common to both samples,a total of20objects in J and5in K have not been imaged by us or our data are of poor quality.For these galaxies we have used the2MASS images and determined aperture and total mag-nitudes following the procedures described in Section2.4. These magnitudes will be used in our analysis.

Stellar populations in local star-forming galaxies.I.–Data and modelling procedure.5 Table2.Photometric and spectroscopic data for the whole UCM sample.

F HβA

G al

V

MphT SpT M K

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13) 0000+21400.023814.61±0.03?11.71±0.1110.37±0.03103±2113.97.550.15INTER HIIH?24.73 0003+22000.022417.19±0.0216.30±0.0414.65±0.1513.53±0.0838±89.9 5.020.23Sc+DANS?21.47 0003+22150.022315.89±0.02??11.36±0.0325±57.6 5.620.24Sc+SBN?23.62 0003+19550.027814.11±0.13???294±59 6.7 4.610.12?Sy1?0005+18020.018716.40±0.13??12.27±0.0413±3 6.4 3.620.12Sb SBN?22.31 0006+23320.015914.95±0.05?12.69±0.0511.90±0.0658±128.4 4.580.31Sb HIIH?22.37 0013+19420.027217.13±0.0216.60±0.0315.03±0.0714.07±0.06124±2513.2 3.610.13Sc+HIIH?21.34 0014+18290.018216.50±0.0315.91±0.0414.66±0.1513.65±0.18131±26 5.79.800.16Sa HIIH?21.53 0014+17480.018214.83±0.0514.01±0.1411.86±0.1110.82±0.1686±1739.7 5.740.13SBb SBN?23.71 0015+22120.019816.85±0.0216.04±0.0814.30±0.0713.29±0.04120±248.5 3.320.23Sa HIIH?21.56 0017+19420.026015.91±0.0215.38±0.0714.01±0.0813.09±0.07100±2018.7 4.370.17Sc+HIIH?22.29 0017+21480.018916.95±0.05?14.31±0.2413.30±0.0474±15 3.0 4.660.21Sa HIIH?21.43 0018+22160.016916.95±0.0216.15±0.0314.22±0.0713.39±0.0515±3 5.7 2.860.23Sb DANS?21.08 0018+22180.022015.97±0.02?12.17±0.1411.12±0.2016±310.89.390.22Sb SBN?23.81 0019+22010.019116.80±0.0215.82±0.0413.96±0.0412.96±0.0533±710.4 3.700.21Sb DANS?21.69 0022+20490.018515.86±0.0514.65±0.0312.46±0.0811.24±0.0576±1510.2 6.280.30Sb HIIH?23.42 0023+19080.025116.83±0.05?14.66±0.3113.83±0.07121±24 3.2 4.080.19Sc+HIIH?21.39 0034+21190.031515.86±0.03??11.84±0.0719±412.2 3.580.11SBc+SBN?23.91 0037+22260.019514.65±0.05?12.44±0.1311.53±0.0345±97.7 4.190.13SBc+SBN?23.23 0038+22590.046416.39±0.0515.61±0.0413.84±0.2612.99±0.0421±433.8 4.630.09Sb SBN?23.60 0039+00540.019115.22±0.05??11.93±0.0723±58.88.750.07Sc+SBN?22.74 0040+02570.036716.98±0.0516.85±0.04?14.41±0.08119±2412.5 4.140.09Sb DANS?21.64 0040+23120.025415.69±0.03?12.15±0.1411.07±0.0328±612.98.550.12Sc+SBN?24.22 0040+02200.017317.25±0.1516.61±0.0315.16±0.0414.23±0.0377±15 4.4 3.860.07Sc+DANS?20.23 0040?00230.014213.76±0.03?11.15±0.1010.35±0.0718±410.89.200.06Sc+LINER?23.60 0041+01340.016914.42±0.04??11.46±0.0812±213.38.960.08Sc+SBN?22.87 0043+02450.018017.34±0.05??14.30±0.0834±7 2.2 5.070.07Sc+HIIH?20.26 0043?01590.016113.01±0.05?10.79±0.019.70±0.0760±129.88.030.09Sc+SBN?24.53 0044+22460.025316.06±0.1514.90±0.0812.54±0.0711.47±0.0525±533.87.420.12Sb SBN?23.78 0045+22060.020315.06±0.05?12.94±0.0712.04±0.0580±16 5.6 4.140.15INTER HIIH?22.71 0047+20510.057716.98±0.0516.14±0.03?13.13±0.0373±1520.0 4.600.10Sc+SBN?23.96 0047?02130.014415.73±0.0414.97±0.0413.13±0.1312.25±0.0440±810.5 4.940.15S0DHIIH?21.94 0047+24130.034715.88±0.0514.81±0.0312.74±0.0511.63±0.0561±1231.4 5.130.20Sa SBN?24.39 0047+24140.034715.22±0.05?12.66±0.1811.69±0.0378±1610.1 4.690.20Sc+SBN?24.28 0049?00060.037718.68±0.0518.52±0.0417.80±0.0916.62±0.14346±697.4 2.860.08BCD BCD?19.50 0049+00170.014017.19±0.0316.69±0.0915.36±0.0514.50±0.07310±62 6.2 2.860.08Sb DHIIH?19.42 0049?00450.005515.34±0.02?13.05±0.1512.31±0.0773±15 1.6 4.790.13Sb HIIH?19.73 0050+00050.034616.54±0.0316.03±0.03?13.68±0.0794±1913.1 4.500.08Sa HIIH?22.31 0050+21140.024515.56±0.0514.78±0.0312.76±0.0911.59±0.0969±1415.5 5.730.13Sa SBN?23.59 0051+24300.017315.40±0.15?11.94±0.0911.06±0.0434±7 5.7 6.120.15Sa SBN?23.34 0054?01330.051216.00±0.04?12.99±0.1311.80±0.0723±413.48.790.12Sb SBN?25.02 0054+23370.016415.27±0.03?13.27±0.0912.66±0.0962±12 6.2 4.680.16Sc+HIIH?21.67 0056+00440.018316.82±0.0516.52±0.1015.55±0.1514.54±0.16399±8017.7 3.030.09Irr DHIIH?20.04 0056+00430.018916.63±0.0516.20±0.03?13.88±0.0753±11 6.8 3.810.09Sb DHIIH?20.77 0119+21560.058316.66±0.2915.46±0.1013.31±0.0511.93±0.0416±3145.67.890.17Sb Sy2?25.20 0121+21370.034516.02±0.0515.47±0.0613.85±0.0812.90±0.0766±1333.8 4.860.22Sc+SBN?23.05 0129+21090.034415.01±0.04?12.06±0.0711.00±0.0532±614.48.410.19SBc+LINER?24.95 0134+22570.035316.03±0.05?12.76±0.1311.73±0.0326±510.6 4.910.37Sb SBN?24.40 0135+22420.036317.16±0.0516.26±0.0314.40±0.0413.42±0.0546±914.4 6.690.40S0DANS?22.74 0138+22160.059117.71±0.03?14.35±0.2013.18±0.0710±27.4 3.350.39Sc+??24.11 0141+22200.017416.36±0.0515.91±0.0313.72±0.0412.66±0.0237±79.0 4.680.30Sa DANS?21.88 0142+21370.036215.35±0.0514.25±0.05?11.19±0.0429±648.3 3.830.34SBb Sy2?24.98 0144+25190.040915.67±0.0514.98±0.0613.12±0.1112.13±0.1229±638.2 5.660.42SBc+SBN?24.20 0147+23090.019416.88±0.0515.99±0.0414.56±0.0513.62±0.06118±2410.8 4.340.32Sa HIIH?21.05 0148+21240.016917.19±0.0516.49±0.0315.23±0.0414.43±0.06136±27 6.2 3.260.21BCD BCD?20.00 0150+20320.032316.46±0.1516.19±0.1015.07±0.4013.49±0.08171±3429.9 3.340.25Sc+HIIH?22.42 0156+24100.013415.33±0.0414.66±0.0313.02±0.0412.24±0.0540±810.9 4.450.31Sb DANS?21.70 0157+24130.017715.08±0.0913.79±0.0411.08±0.0710.36±0.0325±530.1 5.030.33Sc+Sy2?24.16 0157+21020.010615.01±0.0414.58±0.0313.01±0.0412.31±0.0561±127.6 3.890.29Sb HIIH?21.10 0159+23540.017017.34±0.0516.36±0.0314.50±0.0413.59±0.0563±13 6.6 4.180.33Sb HIIH?20.86 0159+23260.017816.01±0.0514.87±0.0312.78±0.0711.84±0.0528±612.1 6.140.28Sc+DANS?22.82 1246+27270.019915.84±0.21?13.82±0.3512.92±0.0967±13 6.7 4.900.04Irr HIIH?21.85 1247+27010.023116.76±0.0916.12±0.0314.49±0.0313.69±0.0528±612.8 3.210.04Sc+DANS?21.33

6P.G.P′e rez-Gonz′a lez et al. Table2.continued

F HβA

G al

V

MphT SpT M K

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13) 1248+29120.021715.09±0.17??11.55±0.0729±68.0 3.990.06SBb SBN?23.33 1253+27560.016516.09±0.0215.41±0.0313.99±0.0513.12±0.04114±23 6.0 2.860.03Sa HIIH?21.59 1254+27400.016116.25±0.0315.54±0.04??58±1218.5 4.280.04Sa SBN?1254+28020.025316.91±0.0215.88±0.0313.91±0.0312.84±0.0414±314.78.780.04Sc+DANS?22.44 1255+28190.027316.10±0.1215.33±0.0313.63±0.0512.66±0.0547±919.7 4.160.04Sb SBN?23.10 1255+31250.025816.46±0.1315.30±0.0313.44±0.1412.55±0.1764±1312.6 3.920.06Sa HIIH?22.77 1255+27340.023416.97±0.0216.15±0.03?13.33±0.0699±2010.6 5.440.04Sc+SBN?21.74 1256+27170.027317.93±0.13??15.35±0.1462±12 3.6 3.850.03S0DHIIH?20.04 1256+27320.024515.95±0.1815.37±0.0413.90±0.0512.90±0.0779±1631.0 4.710.05INTER SBN?22.26 1256+27010.024716.66±0.0916.27±0.0714.70±0.1013.68±0.11109±2232.5 3.460.03Sc+HIIH?21.49 1256+29100.027916.21±0.0815.28±0.0313.45±0.0312.52±0.0425±519.58.660.03Sb SBN?23.16 1256+28230.031516.14±0.1015.30±0.0313.67±0.1012.50±0.1476±1516.9 4.820.04Sb SBN?23.35 1256+27540.017215.43±0.0714.90±0.0313.18±0.0512.25±0.0549±1014.5 4.120.04Sa SBN?22.44 1256+27220.028717.21±0.0916.21±0.04?12.84±0.0626±514.3 5.100.04Sc+DANS?22.66 1257+28080.017116.38±0.0215.66±0.0314.26±0.3212.91±0.2929±67.2 5.570.03Sb SBN?21.48 1258+27540.025316.02±0.0915.58±0.07?13.22±0.08101±2017.5 6.010.03Sb SBN?22.06 1259+29340.023913.99±0.0912.85±0.0310.78±0.059.78±0.04148±3043.37.750.04Sb Sy2?25.37 1259+30110.030716.25±0.0915.40±0.0313.56±0.1312.57±0.1422±436.5 3.500.04Sa SBN?23.08 1259+27550.024015.57±0.0414.61±0.0313.08±0.1211.97±0.1344±917.2 5.220.03Sa SBN?23.25 1300+29070.021917.27±0.0916.86±0.03?14.75±0.1094±199.7 5.100.04Sa HIIH?20.16 1301+29040.026615.97±0.1015.57±0.0314.07±0.0513.39±0.0669±1416.1 3.130.04Sb HIIH?22.03 1302+28530.023716.50±0.0215.99±0.0314.26±0.1413.43±0.1940±810.1 4.070.04Sb DHIIH?22.24 1302+30320.034216.66±0.07?14.85±0.4513.95±0.0749±10 6.2 4.090.04Sa HIIH?21.97 1303+29080.026116.82±0.1016.28±0.0315.27±0.0614.31±0.08165±3317.5 2.860.04Irr HIIH?20.99 1304+28080.021016.02±0.1115.03±0.0313.37±0.1312.03±0.1424±518.9 2.860.04Sb SBN?22.83 1304+28300.021718.62±0.0418.09±0.03?15.43±0.0956±11 4.7 3.570.04BCD DHIIH?19.45 1304+29070.015915.16±0.2414.61±0.08?12.55±0.108±228.68.960.04Irr??21.64 1304+28180.024415.88±0.0215.06±0.0313.58±0.0612.50±0.0880±1618.5 2.970.05Sc+SBN?22.72 1306+29380.020915.59±0.0315.09±0.0313.60±0.0512.37±0.06100±2010.6 3.930.04SBb SBN?22.73 1306+31110.016816.44±0.0215.54±0.0313.85±0.0813.11±0.0761±127.1 6.520.04Sc+DANS?21.26 1307+29100.018714.25±0.0313.22±0.0511.59±0.3510.33±0.2925±537.7 4.700.03SBb SBN?24.22 1308+29580.021215.36±0.0214.53±0.0412.71±0.0811.94±0.1521±427.1 5.630.04Sc+SBN?22.89 1308+29500.024214.91±0.1313.90±0.0411.83±0.1110.77±0.1837±749.38.840.04SBb SBN?24.36 1310+30270.023416.70±0.0915.80±0.0313.74±0.0712.86±0.0570±1414.67.270.04Sb DANS?22.33 1312+30400.023315.71±0.0914.80±0.0312.94±0.0511.74±0.0753±1116.6 3.820.04Sa SBN?23.36 1312+29540.023016.20±0.0915.24±0.0313.27±0.1412.44±0.3444±919.47.070.04Sc+SBN?22.82 1313+29380.038016.93±0.0916.56±0.0315.45±0.0614.67±0.07311±628.9 2.860.03Sa HIIH?21.74 1314+28270.025316.39±0.0315.72±0.04?13.12±0.0648±1010.1 4.620.04Sa SBN?22.30 1320+27270.024717.51±0.1317.08±0.03?14.86±0.0852±107.9 2.980.06Sb DHIIH?20.39 1324+29260.017218.09±0.1317.24±0.0315.92±0.0315.07±0.05236±47 3.5 2.860.04BCD BCD?19.49 1324+26510.024915.20±0.1314.56±0.0313.01±0.0311.89±0.0475±1519.0 4.740.04INTER SBN?23.37 1331+29000.035619.11±0.1318.62±0.03?17.29±0.26549±110 5.9 2.860.04BCD BCD?18.70 1428+27270.014915.03±0.0214.56±0.0313.73±0.1212.83±0.14182±369.6 3.180.05Irr HIIH?21.59 1429+26450.032817.89±0.0317.12±0.0315.61±0.0614.70±0.0787±1710.3 2.890.06Sb DHIIH?21.24 1430+29470.029016.53±0.1115.92±0.0314.47±0.0613.57±0.09132±2620.9 3.690.06S0HIIH?22.01 1431+28540.031015.76±0.0514.98±0.0313.36±0.0612.45±0.0626±515.38.600.06Sb SBN?23.34 1431+27020.038417.31±0.0216.76±0.0315.10±0.0814.13±0.04134±278.6 3.500.06Sa HIIH?22.18 1431+29470.021917.92±0.0617.53±0.03?15.76±0.17131±269.7 2.860.05BCD BCD?19.16 1431+28140.032017.02±0.0515.95±0.0313.84±0.0412.87±0.0719±416.08.290.07Sb DANS?22.91 1432+26450.030715.40±0.0314.60±0.0312.88±0.1311.78±0.1834±742.2 4.880.09SBb SBN?23.87 1440+2521N0.031516.85±0.0215.85±0.0313.69±0.3212.63±0.2854±1116.7 5.300.11Sb SBN?23.21 1440+25110.033316.80±0.0615.89±0.0414.18±0.0912.84±0.2523±528.7 5.020.12Sb SBN?23.00 1440+2521S0.031417.12±0.0216.37±0.0414.53±0.3313.41±0.2983±1713.4 3.470.11Sb SBN?22.52 1442+28450.011015.53±0.0214.85±0.0312.97±0.1011.90±0.0981±168.2 4.820.07Sb SBN?21.67 1443+27140.029016.15±0.0315.13±0.0613.26±0.0311.93±0.03102±2012.97.220.08Sa Sy2?23.79 1443+28440.030715.71±0.0214.96±0.0313.19±0.0312.19±0.0574±1523.07.950.08SBc+SBN?23.52 1443+25480.035815.88±0.0515.29±0.0313.67±0.3612.62±0.2557±1120.4 5.020.12Sc+SBN?23.45 1444+29230.028116.41±0.0715.74±0.0314.53±0.1513.56±0.2322±449.2 3.900.06S0DANS?21.90 1452+27540.033916.49±0.0315.54±0.0413.09±0.3612.10±0.2577±1518.0 3.800.10Sb SBN?23.90 1506+19220.020516.07±0.0415.01±0.0412.90±0.3711.97±0.2678±1619.5 3.910.14Sb HIIH?23.00 1513+20120.036916.27±0.0315.30±0.0313.56±0.0312.33±0.06109±2214.5 4.560.12Sa SBN?24.05 1537+2506N0.022915.21±0.0214.30±0.0312.24±0.0711.27±0.07113±2227.2 3.900.15SBb HIIH?23.75 1537+2506S0.022916.41±0.0215.66±0.0313.82±0.0612.80±0.06151±309.5 3.460.15SBa HIIH?22.29

Stellar populations in local star-forming galaxies.I.–Data and modelling procedure.7 Table2.continued

F HβA

G al

V

MphT SpT M K

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13) 1557+14230.037516.89±0.0315.91±0.0314.05±0.0812.98±0.0640±816.3 3.580.17Sb SBN?23.20 1612+13080.011418.66±0.0217.75±0.0316.88±0.0615.97±0.18510±102 2.5 2.890.16BCD BCD?17.64 1646+27250.033918.42±0.0317.90±0.0716.32±0.0915.36±0.12214±4311.9 3.700.29Sc+DHIIH?20.81 1647+29500.029015.59±0.0314.88±0.0312.97±0.3212.11±0.2975±1519.4 5.250.16Sc+SBN?23.47 1647+27290.036616.07±0.1115.37±0.0313.45±0.0812.35±0.0545±920.7 5.450.26Sb SBN?23.76 1647+27270.036916.10±0.0516.57±0.0314.91±0.0413.95±0.0656±117.2 4.760.28Sb SBN?22.33 1648+28550.030815.69±0.0315.17±0.0313.95±0.0412.78±0.08203±4112.8 3.380.17Sa HIIH?23.06 1653+26440.034614.88±0.03?11.91±0.0410.93±0.066±114.210.170.24INTER SBN?25.03 1654+28120.034818.25±0.1217.43±0.0415.91±0.1115.07±0.1561±1216.8 3.530.20Sc+DHIIH?20.98 1655+27550.034915.72±0.0314.35±0.0412.22±0.0511.32±0.0646±951.5 4.550.21Sc+Sy2?24.63 1656+27440.033017.73±0.0216.45±0.2014.50±0.1113.25±0.0869±1412.1 4.510.33Sa SBN?22.71 1657+29010.031717.32±0.0216.62±0.0315.00±0.0613.68±0.0659±128.7 4.290.14Sb DANS?22.31 1659+29280.036915.78±0.0514.78±0.0412.80±0.0711.73±0.08154±3171.2 4.230.16SB0Sy1?24.36 1701+31310.034515.33±0.0213.70±0.0312.46±0.0611.48±0.0745±943.79.890.10S0Sy1?24.46 2238+23080.023614.86±0.0513.98±0.0312.10±0.0711.05±0.0650±1028.7 6.420.20Sa(r)SBN?24.05 2239+19590.023715.05±0.0114.26±0.0312.57±0.0711.48±0.04118±2417.8 4.650.16S0HIIH?23.66 2249+21490.046216.03±0.0214.81±0.0312.53±0.0411.71±0.056±145.28.960.28Sb SBN?24.88 2250+24270.042115.40±0.0214.82±0.0312.95±0.0711.67±0.04138±2839.5 5.190.49Sa SBN?24.77 2251+23520.026716.62±0.0115.95±0.0314.40±0.0713.37±0.0468±147.4 3.050.23Sc+DANS?22.18 2253+22190.024216.31±0.0115.61±0.0313.59±0.0712.42±0.0463±139.4 4.250.18Sa SBN?22.82 2255+1930S0.019216.20±0.0115.66±0.0313.80±0.0712.75±0.0447±97.4 3.930.19Sb SBN?21.97 2255+1930N0.018915.92±0.0114.83±0.0312.84±0.0711.68±0.0468±1413.6 5.300.19Sb SBN?22.99 2255+19260.019317.03±0.0216.33±0.0514.82±0.0913.91±0.0834±713.8 3.130.18Sb HIIH?21.03 2255+16540.038816.72±0.0315.32±0.0913.01±0.0811.53±0.0527±537.7 4.050.19Sc+SBN?24.70 2256+20010.019315.69±0.0414.64±0.0412.86±0.0512.05±0.0914±329.69.600.14Sc+DANS?22.58 2257+24380.034515.57±0.0515.82±0.0813.51±0.0512.08±0.05347±6922.5 5.210.51S0Sy1?23.89 2257+16060.033916.49±0.13?13.52±0.0412.43±0.0521±4 5.7 4.050.22S0SBN?23.52 2258+19200.022015.79±0.0315.57±0.0313.51±0.0812.51±0.05144±2912.1 3.420.21Sc+DANS?22.64 2300+20150.034616.83±0.0315.93±0.0313.87±0.0812.75±0.0563±1315.8 5.290.56Sb SBN?23.33 2302+2053W0.032818.04±0.0617.12±0.0515.37±0.0814.34±0.06206±4113.1 4.47 1.15Sb HIIH?21.67 2302+2053E0.032815.85±0.0514.58±0.0312.81±0.0811.64±0.0526±520.2 6.73 1.14Sb SBN?24.39 2303+18560.027616.12±0.0315.06±0.0412.58±0.1111.40±0.0847±915.37.950.42Sa SBN?24.17 2303+17020.042817.35±0.0516.29±0.0314.39±0.2713.35±0.0444±920.1 3.880.32Sc+Sy2?23.12 2304+16400.017917.89±0.0317.31±0.0416.08±0.1115.09±0.10151±30 6.5 3.780.36BCD BCD?19.57 2304+16210.038417.14±0.0315.42±0.0414.04±0.2613.04±0.0448±107.7 3.770.42Sa DANS?23.15 2307+19470.027116.94±0.0315.94±0.0813.77±0.1112.57±0.0830±610.6 3.490.71Sb DANS?23.08 2310+18000.036316.89±0.0315.83±0.0313.55±0.1112.32±0.0841±818.6 5.810.56Sb SBN?23.93 2312+22040.032717.14±0.04??13.10±0.0347±9 5.4 5.510.67Sa SBN?22.83 2313+18410.030017.19±0.0916.25±0.0314.28±0.1113.09±0.1060±1215.8 6.150.42Sb SBN?22.59 2313+25170.027315.00±0.03?11.78±0.0410.51±0.0428±612.9 6.210.28Sa SBN?24.96 2315+19230.038517.55±0.0316.98±0.0315.50±0.0614.65±0.07164±3314.9 4.620.23Sb HIIH?21.54 2316+24570.027714.62±0.0313.63±0.0611.72±0.1110.49±0.0835±724.6 4.850.34SBa SBN?25.05 2316+24590.027416.13±0.0415.13±0.0412.91±0.1111.91±0.0933±726.67.720.34Sc+SBN?23.58 2316+20280.026317.11±0.0316.85±0.0314.08±0.1112.94±0.0982±169.2 5.590.49Sa DANS?22.61 2317+23560.033414.16±0.1013.35±0.0311.43±0.0410.55±0.0528±636.28.540.25Sa SBN?25.35 2319+22340.036416.80±0.0516.55±0.0313.98±0.1112.85±0.0881±1617.6 4.850.20Sb SBN?23.25 2319+22430.031315.82±0.1014.76±0.0312.78±0.0511.77±0.0434±726.38.370.23S0SBN?23.94 2320+24280.032815.89±0.0514.60±0.0312.33±0.0411.08±0.029±228.99.270.21Sa DANS?24.79 2321+21490.037416.66±0.0416.02±0.0314.28±0.1113.30±0.0853±1117.9 4.200.22Sc+SBN?22.91 2321+25060.033115.79±0.0415.33±0.0413.70±0.0512.73±0.0643±925.210.320.17Sc+SBN?23.10 2322+22180.024917.77±0.0216.59±0.0814.39±0.0413.25±0.0241±810.0 5.700.15Sc+SBN?22.02 2324+24480.012313.59±0.0412.80±0.0310.52±0.119.54±0.089±220.3 4.570.23Sb SBN?24.16 2325+23180.011413.28±0.04??10.55±0.0487±178.7 4.210.14INTER HIIH?22.93 2325+22080.011612.59±0.0511.81±0.0410.16±0.089.06±0.0736±747.49.430.16SBc+SBN?24.45 2326+24350.017416.61±0.0216.03±0.0314.61±0.0613.77±0.09211±4212.5 3.660.33Sb DHIIH?20.70 2327+2515N0.020615.79±0.0315.45±0.0314.14±0.1013.24±0.1294±199.1 3.710.20Sb HIIH?21.65 2327+2515S0.020615.80±0.0315.23±0.0313.95±0.1013.06±0.13257±5111.7 4.560.20S0HIIH?21.88 2329+24270.020015.92±0.0514.68±0.0312.62±0.0511.51±0.0313±323.49.870.30Sb DANS?23.23 2329+25000.030516.11±0.0415.28±0.0413.24±0.1812.20±0.04180±3626.5 4.540.22S0(r)Sy1?23.49 2329+25120.013316.88±0.0216.28±0.0314.78±0.0414.08±0.0558±12 4.9 3.810.15Sa DHIIH?19.78 2331+22140.035217.75±0.0416.57±0.0314.67±0.0413.59±0.0460±1212.8 5.820.20Sb SBN?22.38 2333+22480.039916.97±0.0316.31±0.0814.70±0.0613.74±1.23177±3656.6 4.080.22Sc+HIIH?22.51 2333+23590.039517.20±0.0416.02±0.0314.03±0.1412.79±0.0351±1013.3 3.450.26S0a Sy1?23.59

8P.G.P′e rez-Gonz′a lez et al. Table2.continued

F HβA

G al

V

MphT SpT M K

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)

2348+24070.035917.09±0.0416.43±0.0314.61±0.0513.60±0.0556±1121.5 4.100.22Sa SBN?22.46 2351+23210.027317.77±0.0216.44±0.0514.94±0.0713.94±0.0692±1816.6 2.860.31Sb HIIH?21.51 Table2.Photometric and spectroscopic data for the191UCM Survey galaxies.Columns stand for:(1)UCM name established in Zamorano et al.(1994,1996).(2)Redshift(Gallego et al.1996).(3)?(6)Johnson B,Gunn r,J and K magnitudes and errors at three disk?scales measured in r.(7)Hαequivalent width(Gallego et al.1996).(8)Disk scale(as explained in the main text)in kpc.(9) Intensity ratio between the Hαand Hβlines corrected for stellar absorption(see text).(10)Galactic V?band extinction(Schlegel et al. 1998).(11)Morphological type(P′e rez-Gonz′a lez et al.2001).(12)Spectroscopic type(Gallego et al.1996).(13)Absolute K?band magnitude corrected for Galactic extinction.

2.6Summary of available data

Table2contains all the data described in this section.It includes object names,redshifts,magnitudes,and errors in the four photometric bands,together with Hαequivalent widths and uncertainties,radii of the apertures used in the photometric measurements,Hα/Hβintensity ratios,Galac-tic extinction values in the V band,morphological and spec-troscopic types and total absolute K magnitudes.

Before attempting the comparison with the models, the BrJK magnitudes listed in Table2were corrected for Galactic extinction using the maps of Schlegel et al.(1998) and the extinction curve of Cardelli et al.(1989).We also applied k-corrections given by Fioc&Rocca-Volmerange (1999)for BJK and Fukugita et al.(1995)for Gunn-r,tak-ing into account the morphological types.The k-corrections applied are,in any case,small because of the low redshifts of the galaxies in the sample(z<0.045).The k-corrections are(in absolute value)smaller than0.22in B,0.04in r, 0.03in J and0.13in K.Note that the nIR k-corrections are negative.

3MODELS

3.1Underlying stellar population

In our models,we have assumed that our observational data (B?r,r?J,and J?K colours,and EW(Hα))can be repro-duced by an underlying stellar population with colours and mass-to-light ratios in the K-band(M/L K hereafter)similar to those of typical spiral and lenticular galaxies of the same morphological type on top of which a recent burst of star for-mation is superimposed.This assumption represents a sig-ni?cant improvement with respect to GdP00where the same underlying population colours and M/L K were assumed for the entire sample.We have also considered typical values for the EW of the Hαemission-line in‘normal’spirals(Davidge 1992;Kennicutt1983).This fact means that our modelling will refer to the properties of a recent star formation event which takes place in excess of what is typical in a normal spiral or lenticular galaxy.In Table3we give the typical B?r(Fukugita et al.1995),r?J,and J?K colours(Fioc &Rocca-Volmerange1999),EW(Hα),and M/L K for each morphological type.The M/L K values have been derived separately for each galaxy type and IMF using a relation between the B?r color and the M/L K(see Bell&de Jong 2000,2001)for the Bruzual&Charlot(private communi-cation;BC99hereafter)exponential star formation models with di?erentτparameters,a formation age of12Gyr,and a mean attenuation in the V-band ofτV,ISM=0.5m ag.

With regard to the Blue Compact Dwarf galaxies there is a signi?cant lack of studies providing information about the optical and nIR properties of their underlying stellar population.Despite of the recent e?orts,both at optical (Cair′o s et al.2001)and nIR wavelengths(Doublier et al. 2001),very few objects have been studied simultaneously within the wavelength range de?ned by the B and K bands.

A noteworthy exception is the work of Gil de Paz et al. (2000b,c)on the BCD galaxy Mrk86where deep surface photometry was obtained in all BV RJHK bands.It is im-portant to note that this galaxy is a prototype of the iE BCDs(Loose&Thuan1985),the most numerous BCD sub-class(Papaderos et al.1996;Cair′o s et al.2001).Moreover, the B?R and J?K colours of the underlying stellar pop-ulation in Mrk86(B?R=1.2;J?K=1.1;see Table3)are very similar to the average values derived by Cair′o s et al. (2001),B?R=1.1,and Doublier et al.(2001),J?K=1.0. The standard deviations of these mean values are0.2mag in both cases.

Although there are no galaxies in our sample morpho-logically classi?ed as ellipticals,we also give the typical colours of this type for the sake of completeness.These un-derlying population colours are quite similar to our mea-surements in the outer parts of some randomly selected test galaxies(P′e rez-Gonz′a lez et al.2002a).

Because the detection limit in EW(Hα)for the UCM Survey is about20?A(Gallego et al.1995),even late-type spirals galaxies in the sample must have,or have recently had,enhanced star formation compared to their‘relaxed’counterparts in order to have been detected in the UCM Survey photographic plates.The primary goal of this paper will be the characterization of this star formation activity.

3.2Recent star formation

In order to reproduce the observational properties of the sample we have generated a complete set of models that as-sume a recent/ongoing episode of star formation that takes place in galaxies with the underlying stellar population de-scribed above.For the stellar continuum of the newly-formed

Stellar populations in local star-forming galaxies.I.–Data and modelling procedure.9 Table3.Assumed properties of the underlying stellar popula-

tions.

10P.G.P′e rez-Gonz′a lez et al.

the gaseous contribution,mostly at optical wavelengths(for

a more detailed discussion see Kr¨u ger et al.1995).

3.4Dust attenuation

Instead of correcting our observational data for internal ex-tinction,we decided to implement the reddening correction in our models when predicting the optical-nIR colours and EW(Hα).In order to do so we have applied two alterna-tive recipes,the one given by Charlot&Fall(2000,CF00 hereafter),and the one presented by Calzetti et al.(2000, CALZ00from now on).These recipes cope with three dis-tinct problems:(1)the extinction law,i.e.,the wavelength dependence of the attenuation;(2)the di?erences between the attenuation of the gas and the stellar emission;and(3) the translation of these recipes into observables such as the colour excess calculated with the Balmer decrement.

In the case of the CF00recipe we used the attenuation curve parametrized by CALZ00instead of that given by these authors.Although both attenuation curves are able to reproduce the observational properties of starburst galaxies in the UV-optical range,the one used in CF00leads to unrealistically low optical-to-nIR colour excesses.In Fig.3 we show the attenuation curves of CALZ00(solid line),CF00 (dashed-line),and the Galactic extinction curve(Cardelli et al.1989)for total-to-selective extinction ratios(R V)of 3.1(dotted-line)and5.0(dash-dotted).This?gure shows the attenuation law given by CF00for burst ages younger than 107years,i.e.,with power-law index n=?0.7.We have not considered the e?ect of the?nite lifetimes of the birth clouds (explained in CF00)since the bursts in the UCM galaxies are rather young(cf.Paper II).CF00’s law is‘too grey’at wavelengths longer than the r-band.Therefore,we used the CALZ00attenuation curve also for the CF00extinction recipe.This means that both recipes only di?er in how they relate the colour excess to the extinction of the ionized gas, and this to the attenuation of the stellar continuum.Each one of these issues are explained below.

The CF00recipe states that the stars in the burst are embedded in a gaseous cloud with two layers,an internal HII region and a more external HI envelope.This is immersed in the galaxy inter-stellar medium.Given this scenario,CF00 introduce a formulation for the attenuation of the di?erent components.Following their notation,the attenuation of the ionized-gas emission can be written as(1?f)×τBC+τISM, whereτBC is the attenuation in the birth cloud associated with the burst(τBC=τHI+τHII),τISM is the attenuation due to the ISM,and f is the fraction of the attenuation in the birth cloud due to the HII region(i.e.f=τHII/τBC).

Therefore,since the attenuation of the ionized-gas emis-sion is known from the Hα/HβBalmer decrements given by Gallego et al.(1996)we can estimate the burst(τBC+τISM) and underlying stellar populations attenuations(τISM)for a given f andτV,ISM.This method also deals with the extinc-tion of the emission-line?ux.We have assumed f=0.1and τV,ISM=0.5,following CF00.In the cases where the calcu-latedτBC is incompatible with the measured E(B?V)gas, the former was set to zero.

The extinction recipe given in CALZ00is empirical.It is based on the comparison of?uxes in the UV and optical ranges for nearby starburst galaxies.It considers that the stellar continuum?ux is a?ected by an e?ective extinction characterized by E(B?V)continuum,which directly relates to the measurable gas attenuation E(B?V)gas via:

E(B?V)continuum=0.44·E(B?V)gas(5) The recipe also includes the average attenuation law given in Fig.3.

3.5Fitting procedure

In our analysis several‘parameters’must be selected a pri-ori.These are:

–The evolutionary synthesis model:BC99or SB99.

–The star-forming mode of the youngest stellar popula-tion:instantaneous or continuous star formation rate.These modes will be referred to as INST and CONS.

–The IMF:Salpeter(1955),Scalo(1986),or Miller& Scalo(1979).In all cases,we use M low=0.1M⊙and M up=100M⊙for the lower and upper mass limits of the IMF.

–The extinction recipe:CF00or CALZ00.

Once these have been?xed,the method leaves3free parameters describing the newly-formed stars:(1)the age (from0.89to100Myr);(2)metallicity of the burst(1/5Z⊙, 2/5Z⊙,Z⊙,2.5Z⊙,5Z⊙),and(3)the burst strength(from 0.01%to100%).

The best-?tting model for each galaxy in the sample was derived using the method described in Gil de Paz& Madore(2002).Brie?y,this procedure reproduces the Gaus-sian probability distributions associated with the observa-tional errors in B?r,r?J,J?K,and2.5·log[EW(Hα)] using Monte Carlo simulations with a total of1000test‘par-ticles’.Comparing these particles with our models for the range of parameters given above,we obtain a total of1000 solutions.The comparison was carried out using a model grid containing~2·104points in the BC99case and~2·105 for the SB99models.Both a reducedχ2and a Maximum Likelihood estimator were used to measure the goodness of the?t.We included2–3colour terms and an EW(Hα)term. The observational uncertainties were taken into account.We used the following formulae:

L(t,b,Z)= 3?4 n=112π?C n exp ?(c n?C n)2

N

3?4

n=1(c n?C n)2

Stellar populations in local star-forming galaxies.I.–Data and modelling procedure.

11 Figure3.Wavelength dependence of4extinction laws:Calzetti et al.(2000);Charlot&Fall(2000,bursts ages younger than107years

have been assumed)and Cardelli et al.(1989)for R=3.1and R=5.0.The e?ective wavelengths of the bands considered in this work are

shown.

4DISCUSSION

4.1Goodness of the?t

Somewhat surprisingly,we did not?nd signi?cant di?er-

ences in the results obtained with theχ2and the Maximum

Likelihood estimators.Therefore,all the following discussion

(and the results for the?tted parameters given in Paper II)

will refer to the modelling performed with theχ2minimiza-

tion.

Out of the163UCM galaxies(excluding AGNs)with

more than two observed broad-bands,a total of9galax-

ies presentχ2values greater than4.0in all possible models

considered.Thisχ2value corresponds to average di?erences

between the observed and modelled colours of~0.3mag

(~30%in?ux)for typical uncertainties of0.15mag in the

colours and considering the EW term as negligible.Two

of these galaxies(UCM2304+1621and UCM2351+2321)

present best-?ttings which perfectly match the B,J and

K luminosities,but fail to reproduce the r-band magni-

tudes by0.3–0.5mag,indicating that there may be a prob-

lem with their r-band data.Three of the remaining objects

with highχ2values are face-on spirals with resolved struc-

ture(UCM1304+2818,UCM2249+2149and2302+2053E),

and another one(UCM2255+1654)is an edge-on galaxy.

All of them exhibit strong dust lanes,most visible in

the B band,that may indicate a complex extinction be-

haviour(see discussion below).The remaining three galaxies

(UCM1647+2727,UCM1657+2901and UCM2316+2028)

are compact objects that seem to have a burst a?ecting the

whole galaxy(revealed by our Hαimages,P′e rez-Gonz′a lez

et al.2002c).

The minimum number of rejected?ts1(19galaxies)

is achieved for SB99models with an instantaneous burst,

Salpeter IMF and https://www.doczj.com/doc/d99399519.html,ing the same pa-

rameters,20rejected?ts were found for BC99models.In

other model/parameter combinations,the number of re-

jected?ts increases.For example,26?ts are rejected with

SB99,instantaneous burst,Salpeter IMF and the CF00

recipe.Up to74are rejected for continuous SFR models.

All the objects without valid?ts will not be used in the

following discussion.We have kept the two galaxies with

suspect r-band photometry.

Fig.4shows the comparison ofχ2values for several

pairs of input https://www.doczj.com/doc/d99399519.html,rmation on the Hα/Hβemission-

line ratios is also shown since extinction turns out to be

a crucial parameter in the goodness of the model?ts.The

shaded area corresponds the zone of poor?ts.In the top-

left diagram,BC99and SB99models with the same of the

1Fits are rejected ifχ2>4

12P.G.P′e rez-Gonz′a lez et

al.

Figure 4.Plots of the χ2obtained in the best-?ttings comparing several a priori model inputs.Di?erent symbols represent di?erent

H α/H βline ratios (i.e.,di?erent extinctions).The top-left diagram compares the two families of stellar synthesis models (BC99and SB99)for the same values of the other input parameters (i.e.,Salpeter IMF,CF00recipe and instantaneous SFR;see labels in the upper-left corner).Di?erent IMFs are compared in the upper-right diagram,star formation scenarios in the bottom-left one and extinction recipes in the bottom-right plot.

remaining parameters are compared.Both models provide comparable results for most galaxies.

The bottom-left plot compares instantaneous and con-tinuous star-formation SB99models.It is quite clear that better ?ts are obtained for most of the galaxies with short bursts.A large fraction of the continuous star-formation models are rejected by the observations.There are a hand-ful of galaxies with better constant star-formation,but in all cases almost equally good ?ts are obtained for the burst models.The top-right diagram shows that the quality of the ?ts for Miller-Scalo and Salpeter IMFs is indistinguishable.The same is true for the Scalo IMF (not shown).At this point we are not able to establish which of the tested IMFs best reproduces the observed properties of the UCM galaxies.We will return to this issue later.

Finally,the two extinction recipes are compared in the lower-right panel.The CALZ00recipe seems to yield better ?ts than the CF00one for high extinction objects (group of ?lled stars on the right).On the other hand,for some

Stellar populations in local star-forming galaxies.I.–Data and modelling procedure.13

14P.G.P′e rez-Gonz′a lez et al.

Figure6.Di?erences between?tted and measured values for optical and nIR colours,and EW(Hα).Average errors are shown in each panel.Di?erent symbols stand for disk-like,HII-like and AGN galaxies.The data refers to instantaneous SB99models with a Salpeter

Stellar populations in local star-forming galaxies.I.–Data and modelling procedure.15

Figure7.Same as in Fig.6but the symbols represent di?erent values of the Hα/Hβratio,an extinction indicator.

16P.G.P′e rez-Gonz′a lez et al.

used to generate Fig.s6and7.Although this yielded better ?ts,it seems that we are still somewhat short of the real extinction value for some objects.

At this point it is important to remind the reader that we are using EW(Hα)and Hα/Hβvalues measured in the long-slit spectra,and assume that they are representative of the whole galaxy.

Another group of galaxies have optical-nIR colours which are not well-?tted by the models,such as the ob-ject with positive di?erences in the top-right panel.A vi-sual inspection of these objects reveals that a number of them are high-inclination galaxies(ellipticity larger than 0.3),some with clear dust-lanes best observed in the B im-

ages.Examples include UCM0044+2246,UCM2255+1654 and UCM2329+2427.The CF00extinction recipe fails to model these highly-reddened galaxies(see Fig.7),while CALZ00provides better results.Among the15worst?t-ted objects of this kind,50%have EW(Hα)lower than30?A and virtually all of the rest below60?A.The observed

J?K colours for these galaxies are also redder than the model predictions,indicating,perhaps,that the underlying old population is more dominant in them.

The problem with extinction gets obviously worse as we move to shorter wavelengths.Some objects may be so ex-tincted that we may be observing just the‘surface’of the galaxy disks in B while we can see deeper layers in the nIR (see,for example,Corradi et al.1996).Since we are ob-serving fewer stars in the blue bands,the measured colours would be redder than what the models predict.Moreover, signi?cant uncertainties still remain in the extinction recipes when trying to match observations spanning a large wave-length range such as optical-nIR colours.

In the diagrams involving the EW(Hα)we see that the models succeed reasonably well in?tting the observed data, although there seems to be a relatively small tendency to underestimate the observed values.Since the measured HαEW s are based on long-slit spectroscopy,and thus domi-nated by the central values,we could be overestimating them if the star formation is signi?cantly more concentrated than the old stars.

4.2Solution degeneracy

The technique that we have developed to derive the stellar properties of the UCM galaxies is based on the use of the observational errors and a Principal Component Analysis (PCA)study of the solutions.This procedure allows us to obtain information about the degeneracy of the results in the{t,b,Z}parameter space.In GdP00we applied a sin-gle linkage hierarchical clustering method(Murtagh&Heck 1987)in order to study the clustering of solutions achieved in the1000Montecarlo particles?tted for each galaxy.That paper pointed out that the clustering pattern is dominated by the discretization in metallicity of the evolutionary syn-thesis models.Thus,little can be learnt using this clustering method before performing the PCA.Instead,in the present work we have applied the PCA to all the Montecarlo par-ticles and obtained average values and standard deviations for the entire set of solutions of each galaxy.

This method shows that,on average for the complete UCM sample,69±2%of the scatter of the Montecarlo par-ticles is represented by the?rst principal component in

the Figure8.Histograms of the3components of the?rst vector of the PCA for the UCM Survey galaxies.The plot refers to SB99 models,Salpeter IMF,instantaneous burst and CALZ00recipe. PCA.In less than3%of the sample this fraction is less than half of the total scatter.In GdP00the clustering char-acterization removed the scattering of the solutions due to metallicity.The e?ect was that the component of the PCA vector in the Z direction was null in most cases.Now the distribution of this component for the whole sample is some-what?atter,with the strongest peak at?0.5(see Fig.8). This?gure also shows that the age and burst strength com-ponents are similar.This means that both quantities are correlated:if we increase the model age,we need to increase the burst strength in order to keep the same Hαequivalent width.Moreover,since the strongest peak in the metallic-ity direction has opposite sign to the other two,there is an age-metallicity degeneracy(anti-correlation).

5SUMMARY

In this paper,the?rst of a series,we have described a method to derive the properties of the star-formation and the stellar populations in star-forming galaxies using broad-band photometry and spectroscopy.We also present the available data for the UCM Survey galaxies,covering the op-tical and nIR spectral ranges.The technique is based on the assumption that our galaxies have a composite stellar pop-ulation.The evolved component resembles that of a typical quiescent spiral/lenticular galaxy,whereas the young stel-lar population component is generated with an evolutionary synthesis model.This fact means that our modelling refers to the properties of a recent star formation event which takes place in excess of what is typical in a normal spiral or lentic-ular galaxy.The model parameters considered are:(1)stellar evolutionary synthesis(the Bruzual&Charlot1999and Lei-therer et al.1999models);(2)IMFs(Salpeter1955;Scalo 1986;Miller&Scalo1979);(3)star formation modes(instan-taneous and constant);and(4)extinction recipes(Calzetti et al.2000and Charlot&Fall2000).

We have developed a statistical tool that takes into ac-count the observational uncertainties and a careful interpre-tation of the model?ts.The procedure is tested with the UCM sample data,and used to study the dependence of the goodness of the model?ts on several a priori input param-eters.We?nd that our modelling is able to reproduce the

Stellar populations in local star-forming galaxies.I.–Data and modelling procedure.17

photometric and spectroscopic properties of almost all the star-forming galaxies of the UCM Survey.Our test on the a priori model parameter choices,based on ourχ2estimator, reveals that:

?both SB99and BC99models provide reasonable and comparable?ts.The SB99models provide marginally bet-ter results,in particular for redder galaxies with relatively higher Hαequivalent widths.

?UCM galaxies clearly show a preference for instanta-neous bursts of recent star formation rather than constant star-formation rates.

?The models with a Salpeter initial mass function better reproduce the observations for nearly75%of the sample, although a number of galaxies also present best results us-ing the other IMFs and this result must be regarded with caution.

?The extinction description developed by CF00yields satisfactory results for the majority of our sample galaxies (with a variation in the extinction law),but it fails to repro-duce the properties of high extinction objects.

Among all the possible combinations of input param-eters,an important number of galaxies(one third)is best modelled with SB99code,Salpeter IMF,instantaneous SFR and CF00extinction recipe.

In Paper II,we will use the techniques developed here to study,in detail,the properties of the UCM galaxies.

ACKNOWLEDGMENTS

This paper is partially based on data from CAHA,the German-Spanish Astronomical Centre,Calar Alto,oper-ated by the Max-Planck-Institute for Astronomy,Heidel-berg,jointly with the Spanish National Commission for As-tronomy.Also partially based on data obtained with the 2.3m Bok Telescope of the University of Arizona on Kitt Peak National Observatory,National Optical Astronomy Observatory,which is operated by the Association of Uni-versities for Research in Astronomy,Inc.(AURA)under co-operative agreement with the National Science Foundation. Also partially based on observations made with the Isaac Newton and Jacobus Kapteyn Telescopes,operated on the island of La Palma by the Isaac Newton Group in the Span-ish Observatorio del Roque de los Muchachos of the Instituto de Astrof′?sica de Canarias.

This research has made use of the NASA/IPAC Ex-tragalactic Database(NED)and the NASA/IPAC Infrared Science Archive which are operated by the Jet Propulsion Laboratory,California Institute of Technology,under con-tract with the National Aeronautics and Space Administra-tion.This publication makes use of data products from the Two Micron All Sky Survey,which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology,funded by the National Aeronautics and Space Administration and the National Science Foundation.

PGPG wishes to acknowledge the Spanish Ministry of Education and Culture for the reception of a Formaci′o n de Profesorado Universitario fellowship.AGdP acknowledges ?nancial support from NASA through a Long Term Space Astrophysics grant to B.F.Madore.During the course of this work AAH has been supported by the National Aeronautics and Space Administration grant NAG5-3042through the University of Arizona and Contract960785through the Jet Propulsion Laboratory.AAS acknowledges generous?nan-cial support from the Royal Society.We also would like to thank George and Marcia Rieke for kindly allowing us to use their near-infrared camera on the University of Arizona 2.3m Bok Telescope.

We are grateful to the anonymous referee for her/his helpful comments and suggestions.

The present work was supported by the Spanish Pro-grama Nacional de Astronom′?a y Astrof′?sica under grant AYA2000-1790.

REFERENCES

Abraham R.G.,van den Bergh S.,2002,in Disks of Galax-ies:Kinematics,Dynamics and Perturbations.ASP Con-ference Proceedings,Vol.275.Edited by E.Athanassoula.

A.Bosma and R.Mujica.ISBN:1-58381-117-6.Puebla, Mexico.,eds.Athanassoula E.,Bosma A.,Mujica R., Disks of Galaxies:Kinematics,Dynamics and Perturba-tions

Alonso O.,Garc′?a-Dab′o C.E.,Zamorano J.,Gallego J., Rego M.,1999,ApJS,122,415

Arag′o n-Salamanca A.,Ellis R.S.,Couch W.J.,Carter D., 1993,MNRAS,262,764

Balzano V.A.,1983,ApJ,268,602

Bell E.F.,de Jong R.S.,2000,MNRAS,312,497

Bell E.F.,de Jong R.S.,2001,ApJ,550,212 Brocklehurst M.,1971,MNRAS,153,471

Cair′o s L.M.,V′?lchez J..,Gonz′a lez P′e rez J...,Iglesias-P′a ramo J.,Caon N.,2001,ApJS,133,321

Calzetti D.,2001,PASP,113,1449

Calzetti D.,Armus L.,Bohlin R.C.,Kinney A.L.,Koorn-neef J.,Storchi-Bergmann T.,2000,ApJ,533,682 Cardelli J.A.,Clayton G.C.,Mathis J.S.,1989,ApJ,345, 245

Charlot S..,Fall S.M.,2000,ApJ,539,718

Charlot S..,Longhetti M.,2001,MNRAS,323,887 Corradi R.L.M.,Beckman J.E.,Simonneau E.,1996, MNRAS,282,1005

Davidge T.J.,1992,AJ,103,1512

Doublier V.,Caulet A.,Comte G.,2001,A&A,367,33 Elias J.H.,Frogel J.A.,Matthews K.,Neugebauer G., 1982,AJ,87,1029

Ellis R.S.,1997,ARA&A,35,389

Ferguson H.C.,Dickinson M.,Williams R.,2000,ARA&A, 38,667

Ferland G.J.,1980,PASP,92,596

Fioc M.,Rocca-Volmerange B.,1999,A&A,351,869 Fukugita M.,Shimasaku K.,Ichikawa T.,1995,PASP,107, 945

Gallego J.,1998,Ap&SS,263,1

Gallego J.,Zamorano J.,Arag′o n-Salamanca A.,Rego M., 1995,ApJL,455,L1

Gallego J.,Zamorano J.,Rego M.,Alonso O.,Vitores A.G.,1996,A&AS,120,323

Gil de Paz A.,Arag′o n-Salamanca A.,Gallego J.,Alonso-Herrero A.,Zamorano J.,Kau?mann G.,2000a,MNRAS, 316,357

18P.G.P′e rez-Gonz′a lez et al.

Gil de Paz A.,Madore B.F.,2002,AJ,123,1864

Gil de Paz A.,Zamorano J.,Gallego J.,2000b,A&A,361, 465

Gil de Paz A.,Zamorano J.,Gallego J.,Dom′?nguez F.D., 2000c,A&AS,145,377

Gonz′a lez Delgado R.M.,Leitherer C.,Heckman T.M., 1999,ApJS,125,489

Guzm′a n R.,Gallego J.,Koo D.C.,Phillips A.C.,Lowen-thal J.D.,Faber S.M.,Illingworth G.D.,Vogt N.P., 1997,ApJ,489,559

Hawarden T.G.,Leggett S.K.,Letawsky M.B.,Ballantyne D.R.,Casali M.M.,2001,MNRAS,325,563

Hughes D.H.,Serjeant S.,Dunlop J.,Rowan-Robinson M., Blain A.,Mann R.G.,Ivison R.,Peacock J.,Efstathiou A.,Gear W.,Oliver S.,Lawrence A.,Longair M.,Gold-schmidt P.,Jenness T.,1998,Nature,394,241

Hunt L.K.,Mannucci F.,Testi L.,Migliorini S.,Stanga R.M.,Ba?a C.,Lisi F.,Vanzi L.,1998,AJ,115,2594 Iwamuro F.,Motohara K.,Maihara T.,Iwai J.,Tanabe H., Taguchi T.,Hata R.,Terada H.,Oya M.G.S.,Iye M., Yoshida M.,Karoji H.,Ogasawara R.,Sekiguchi K.,2000, PASJ,52,73

Jarrett T.H.,Chester T.,Cutri R.,Schneider S.,Skrutskie M.,Huchra J.P.,2000,AJ,119,2498

Kennicutt R.C.,1983,ApJ,272,54

Kr¨u ger H.,Fritze-v.Alvensleben U.,Loose H.-H.,1995, A&A,303,41

Kurucz R.L.,1992,in IAU Symp.149:The Stellar Pop-ulations of Galaxies.Kluwer Academic Publishers,Dor-drecht.Angra dos Reis(Brazil),1991August.,eds.Bar-buy B.,Renzini A.,Vol.149,Model Atmospheres for Pop-ulation Synthesis.p.225

Leitherer C.,Schaerer D.,Goldader J. D.,Delgado R.M.G..,Robert C.,Kune D.F.,de Mello D..F., Devost D.,Heckman T.M.,1999,ApJS,123,3

Loose H.H.,Thuan T.X.,1985,in Star Forming Dwarf Galaxies and Related Objects.Editions Fronti`e res,Gif sur Yvette,eds.Kunth D.,Thuan T.X.,Tran T.V.,The Mor-phology and Structure of Blue Compact Dwarf Galaxies from CCD Observations.p.73

Massey P.,Hunter D.A.,1998,ApJ,493,180

Miller G.E.,Scalo J.M.,1979,ApJS,41,513 Moorwood A.F.M.,van der Werf P.P.,Cuby J.G.,Oliva E.,2000,A&A,362,9

Murtagh F.,Heck A.,1987,Multivariate data analysis(As-trophysics and Space Science Library,Dordrecht:Reidel, 1987)

Osterbrock D.E.,1989,Astrophysics of gaseous nebulae and active galactic nuclei(Research supported by the Uni-versity of California,John Simon Guggenheim Memorial Foundation,University of Minnesota,et https://www.doczj.com/doc/d99399519.html,l Valley, CA,University Science Books,1989,422p.) Papaderos P.,Loose H.-H.,Thuan T.X.,Fricke K.J.,1996, A&AS,120,207

Pascual S.,Gallego J.,Arag′o n-Salamanca A.,Zamorano J.,2001,A&A,379,798

P′e rez-Gonz′a lez P.G.,Gallego J.,Zamorano J.,Gil de Paz A.,2001,A&A,365,370

P′e rez-Gonz′a lez P.G.,Gil de Paz A.,Zamorano J.,Gallego J.,2002a,ApJ,in preparation

P′e rez-Gonz′a lez P.G.,Gil de Paz A.,Zamorano J.,Gal-lego J.,Alonso-Herrero A.,Arag′o n-Salamanca A.,2002b,

MNRAS,in press,astro-ph/0209397

P′e rez-Gonz′a lez P.G.,Zamorano J.,Gallego J.,Arag′o n-Salamanca A.,Gil de Paz A.,2002c,ApJ,in preparation P′e rez-Gonz′a lez P.G.,Zamorano J.,Gallego J.,Gil de Paz A.,2000,A&AS,141,409

Persson S.E.,Murphy D.C.,Krzeminski W.,Roth M., Rieke M.J.,1998,AJ,116,2475

Pettini M.,Kellogg M.,Steidel C.C.,Dickinson M.,Adel-berger K.L.,Giavalisco M.,1998,ApJ,508,539

Pettini M.,Shapley A.E.,Steidel C.C.,Cuby J.,Dickinson M.,Moorwood A.F.M.,Adelberger K.L.,Giavalisco M., 2001,ApJ,554,981

Sakhibov F.,Smirnov M.,2000,A&A,354,802

Salpeter E.E.,1955,ApJ,121,161

Salzer J.J.,MacAlpine G.M.,Boroson T.A.,1989,ApJS, 70,479

Scalo J.M.,1986,Fundamentals of Cosmic Physics,11,1 Schaerer D.,Guseva N.G.,Izotov Y.I.,Thuan T.X.,2000, A&A,362,53

Schlegel D.J.,Finkbeiner D.P.,Davis M.,1998,ApJ,500, 525

Schmidt M.,Green R.F.,1983,ApJ,269,352

Selman F.,Melnick J.,Bosch G.,Terlevich R.,1999,A&A, 347,532

Steidel C.C.,Adelberger K.L.,Giavalisco M.,Dickinson M.,Pettini M.,1999,ApJ,519,1

Steidel C.C.,Giavalisco M.,Pettini M.,Dickinson M., Adelberger K.L.,1996,ApJL,462,L17

Trager S. C.,Worthey G.,Faber S.M.,Burstein D., Gonz′a lez J.J.,1998,ApJS,116,1

Tresse L.,Maddox S.,Le Fevre O.,Cuby J.,2001,MNRAS, astro-ph/0111390

van der Werf P.P.,Moorwood A.F.M.,Bremer M.N., 2000,A&A,362,509

Vitores A.G.,Zamorano J.,Rego M.,Alonso O.,Gallego J.,1996a,A&AS,118,7

Vitores A.G.,Zamorano J.,Rego M.,Gallego J.,Alonso O.,1996b,A&AS,120,385

Wainscoat R.J.,Cowie L.L.,1992,AJ,103,332

Yan L.,McCarthy P.J.,Weymann R.J.,Malkan M.A., Teplitz H.I.,Storrie-Lombardi L.J.,Smith M.,Dressler A.,2000,AJ,120,575

Zamorano J.,Gallego J.,Rego M.,Vitores A.G.,Alonso O.,1996,ApJS,105,343

Zamorano J.,Rego M.,Gallego J.G.,Vitores A.G., Gonz′a lez-Riestra R.,Rodr′?guez-Caderot G.,1994,ApJS, 95,387

计算机网络实验一-组建小型以太网

HoogLe 一、实验目的 通过对小型以太网的组建,掌握以太网的基本组建方法,加深对局域网中软硬件各部分协同工作、实现主机互联的理解。 二、实验环境 硬件:PC机4~8台,相应数量的网卡,集线器或交换机一台 RJ45接头及5类双绞线若干,网线夹、网络测试各一套 软件:操作系统软件选用Windows、Unix(或Linux) 三、实验步骤 步骤一、根据实际硬件及实现要求规划出网络框架,确定主机和各网络设备的位置 拓扑结构可以参考以下各图: 例1 使用一台交换机连接各终端 例2 连接利用千兆端口将两组局域网互连 步骤二、配置主机软、硬件环境 1、安装网卡 2、安装网卡驱动程序 3、在操作系统中安装TCP/IP协议 4、配置TCP/IP协议,按拓扑图给各主机设置相应的IP地址及相关协议部分。 (1)同步骤4中(1)、(2)打开“本地连接属性”对话框。 (2)选中“Internet协议(TCP/IP)”,点击“属性”按钮,打开“Internet协议(TCP/IP) 属性”对话框。 (3)设置和主机对应的IP地址、子网掩码、网管。 下图为设置示例:

(4)如有需要,也可以单击“高级”按钮进入更详细的设置对话框,进行更复杂的设置 工作。 (5)单击“确定”按钮,使刚才进行的设置生效。 在Windows2000及以后版本中,不需要重新启动计算机即可使对TCP/IP协议的设置内容生效。 步骤三、制作连接网线 1、确定各连接网线的长度 2、根据EIA/TIA 568A/568B标准,确定实际连接标准。 ●普通网线(即直接传输电缆),两端均采用EIA/TIA 568B标准制作。 ●交叉网线(即交叉电缆),一端采用EIA/TIA 568B标准制作,另一端采用EIA/TIA 568A 标准制作。 3、使用网线夹、RJ45接头及双绞线根据已确定连接标准制作网线 (1)剪平网线的一端。 (2)使用网线夹的剥线口将剪平这一端网线的外部包层去除约1-2厘米左右。 (3)将裸露出来的缠绕在一起的四对线分开并理平,注意不要把白线混在一起。 (4)按照选择的EIA/TIA 568A或568B标准,将线按顺序理在一起,并理平。 (5)使用网线夹的剪线口将线剪齐,注意捏住线的手不要松开。 (6)取一个未制作过的RJ45接头,将刚才剪齐的线小心插入接头中,注意接头的插槽位置和弹簧片位置。 (7)观察网线插入的情况,当确认位置正确后,将带线的RJ45接头插入网线夹的压线口,注意不要使线脱离了原来的位置。 (8)使用网线夹夹紧RJ45接头,注意用力适度。

世界近代史 大二上册名词解释

织田信长泰姬陵东印度公司通讯委员会莱茵邦联 地理大发现 西方史学家对15至18世纪欧洲航海者一系列航海活动的通称。15世纪后,西欧商品货币经济迅速发展,引起了封建贵族、大商人和新兴资产阶级对贵金属的渴求。《马可·波罗行记》对东方富庶的夸张描绘,进一步煽动着欧洲人的寻金热情。15世纪中叶以后,阿拉伯人与奥斯曼土耳其人垄断了东西方传统通道,也促使西欧寻找通向东方的新航路。此外,快速帆船的制造,指南针用于航海及地圆学说的盛行使远洋航行成为可能。最初由葡萄牙、西班牙两国组织远洋航行。1492年,哥伦布航抵“美洲”,开辟了欧美航线;1498年达·伽马开辟自西欧绕过非洲南端直达印度的航路;1519—1522年麦哲伦与其同伴首次环球航行。新航路的开辟和美洲的发现,扩大了世界市场,开始了西方国家殖民掠夺的狂潮。欧洲的商业中心逐渐由地中海地区转移到大西洋沿岸。由此加速了西欧封建制度的解体和资本主义关系的增长,预示了世界史上一个新时代的来临。 教皇子午线 葡萄牙和西班牙划分势力范围的分界线。1492年,哥伦布发现“新大陆”后,西、葡为争夺殖民地和市场而大动干戈,互不相让。1493年5月,罗马教皇亚历山大六世发布训谕,规定佛得角群岛以西100里格处,自北极至南极划一条线,区分西、葡的势力范围。1494年6月,两国据此正式签订了《托德西拉斯条约》,并同意将此线西移至西经43°40'。麦哲伦船队环球航行后,两国在太平洋再起冲突,并于1529年签订《萨拉戈萨条约》,规定在摩鹿加群岛以东17°处划一线,线的东西两侧分别为西班牙和葡萄牙的势力范围。这两项条约,揭开了欧洲殖民列强瓜分世界的序幕。 文艺复兴 14世纪中叶至17世纪初在欧洲发生的思想文化运动。这个运动始于意大利,后扩大到英、法、德、西等欧洲国家。一些新生的资产阶级及其知识分子在“复兴”古代希腊罗马文化的号召下,把矛头直接指向教会神权统治,他们以人文主义为旗帜,主张尊重自然和人权,强调发展个性,反对禁欲主义;提倡科学文化,反对迷信愚昧;表现乐观主义,反对悲观主义。因而人文主义成为文艺复兴时期的主要思潮,也是新文化的基本内容,它逐渐形成为资产阶级思想体系。表面看来,文艺复兴是复兴希腊、罗马古典文化的运动,但是,它并不是对于古典文化“亦步亦趋”的简单模仿,而在很大程度上是一种创新,它冲破了黑暗的中世纪的重重禁锢,是新兴资产阶级反封建斗争在意识形态领域的反映。在人文主义思想指引下,文学艺术出现了前所未有的繁荣局面,以实验为基础的近代自然科学、唯物主义哲学、新的政治学、史学和教育学相继出现,产生了一大批多才多艺的代表人物,使文艺复兴时代成为硕果累累、人才辈出、灿若群星的时代。 马基雅维里 文艺复兴时期意大利著名政治思想家。出生于佛罗伦萨的一个律师家庭。曾长期担任佛罗伦萨共和国政府外交、军事等要职。因涉嫌反对美第奇家族而被逮捕,不久获释,归隐乡下开始著书。1513年,代表作《君主论》问世。全书26篇,主要论述为君之道。通过对历史和时事的分析,具体说明君主应具备的条件和才能,以及治理国家的策略。明确指出,要使国家统一,唯一的办法是建立一个强有力的、具有无限君权、并掌握强大军队的君主政权。他主张君主应把国家利益放首位。君主为达到政治目的,可以背弃信义、不择手段。在他看来,政治归根结底是力量问题。他的政治学说,反映了新兴资产阶级建立民族国家、实现祖国

电大公共行政学小抄名词解释

1.公共行政学:公共行政学是研究公共组织依法处理政务的有效性、公平性、民主性的规律的交叉性与综合性学科。(在这里公共组织主要是指政府,公共行政就是政府行政。) 2.公共行政环境:公共行政环境是指直接或间接地作用或影响公共组织、行政心理、行政行为和管理方法与技术的行政系统内部和外部的各种要素的总和。 3.组织文化:组织文化是指组织在一定的环境中,逐步形成的全体公共组织成员所共同信奉和遵守的价值观,并支配他们的思维方式和行为准则。(组织文化在政府也可以称之为公共行政组织文化,在企业则称之为企业文化。组织文化包括组织观念、法律意识、道德感情和价值观等。) 4.政府职能:政府职能是指政府在国家和社会中所扮演的角色以及所应起的作用。(换句话说,就是指政府在国家和社会中行使行政权力的范围、程度和方式。) 5.市场失效:市场失效是指因为市场局限性和缺陷所导致资源配置的低效率或无效率,并且不能解决外部经济与外部不经济的问题以及社会公平问题。 6.行政体制:行政体制指政府系统内部行政权力的划分、政府机构的设置以及运行等各种关系和制度的总和。 7.地方政府体制:地方政府体制是指地方政府按照一定的法律或标准划分的政府组织形式. 8.行政区划体制:行政区划体制是指根据一定的原则将全国领土划分为若干部分和若干层次的管理区域,并设置相应的行政机关的组织体制。 9.完整制:完整制又叫一元统属制,是指公共组织的同一层级或同一组织内部的各个部门,完全接受一个公共组织或同一位行政首长的领导、指挥和监督的组织类型。 10.分离制:分离制又称多元领导制,是指一个公共组织的同一层级的各个组织部门或同一组织部门,隶属于两个或两个以上公共组织或行政首长领导、指挥和监督的组织类型。 11.首长制:首长制又称独立制、一长制或首长负责制。它是指行政首长独自掌握决策权和指挥权,对其管辖的公共事务进行统一领导、统一指挥并完全负责的公共组织类型。 12.层级制:层级制又分级制,是指公共组织在纵向上按照等级划分为不同的上下节制的层级组织结构,不同等级的职能目标和工作性质相同,但管理范围和管理权限却随着等级降低而逐渐变小的组织类型。 13.机能制:机能制又称职能制,是指公共组织在横向上按照不同职能目标划分为不同职能部门的组织类型。14.行政领导者:行政领导者是指在行政系统中有正式权威和正式职位的集体或个人。 15.委任制:亦称任命制,是指由立法机关或其他任免机关经过考察而直接任命产生行政领导者的制度。 16.考任制:考任制是指由专门的机构根据统一的、客观的标准,按照公开考试、择优录取的程序产生行政领导者的制度。 17.行政领导权力:行政领导权力是指行政领导者在行政管理活动中,利用其合法地位以不同的激励方式和制约方式,引导下属同心协力达成行政目标的影响力。18..行政领导责任:行政领导责任是指行政领导者违反其法定的义务所引起的必须承担的法律后果。 19.人事行政:人事行政是指国家的人事机构为实现行政目标和社会目标,通过各种人事管理手段对公共行政人员所进行的制度化和法治化管理。20.人力资源:人力资源是指在一定范围内能够作为生产性要素投入社会经济活动的全部劳动人口的总和。它可分为现实的人力资源和潜在的人力资源两部分。 21.程序性决策:也叫常规性决策,是指决策者对所要决策的问题有法可依,有章可循,有先例可参考的结构性较强,重复性的日常事务所进行的决策。 22.非程序性决策:也叫非常规性决策,是指决策者对所要决策的问题无法可依,无章可循,无先例可供参考的决策,是非重复性的、非结构性的决策。 23.危机决策:是指领导者在自然或人为的突发性事件发生后,迅速启动各种突发事件应急机制,大胆预测,做出决定的过程。 24.行政决策参与:是指行政领导者个人或集体在行政决策时,专家学者、社会团体、公民等对决策提出意见或建议的活动。 25.行政执行:行政执行是行政机关及行政人员依法实施行政决策,以实现预期行政目标和社会目标的活动的总和。 26.行政控制:行政控制指行政领导者运用一定的控制手段,按照目标规范衡量行政决策的执行情况,及时纠正和调节执行中的偏差,以确保实现行政目标的活动。27.行政协调:行政协调是指调整行政系统内各机构之间、人员之间、行政运行各环节之间的关系,以及行政系统与行政环境之间的关系,以提高行政效能,实现行政目标的行为。 28.法制监督:法制监督,又称对行政的监督,是指有权国家机关对行政机关及其工作人员是否合法正确地行使职权所进行的监督与控制。 29.舆论监督:舆论监督是指通过在公共论坛的言论空 间中所抒发的舆论力量对政府机构和政府官员滥用权力等不当行为的监督与制约。 30.行政立法:行政立法一般是指立法机关通过法定形 式将某些立法权授予行政机关,行政机关得依据授权法(含宪法)创制行政法规和规章的行为。 31.行政法规:行政法规是指国务院根据宪法和法律,按照法定程序制定的有关行使行政权力,履行行政职责的规范性文件的总称。 32.标杆管理: 标杆管理是指公共组织通过瞄准竞争的 高目标,不断超越自己,超越标杆,追求卓越,成为强中之 强组织创新和流程再造的过程. 33.政府全面质量管理:政府全面质量管理是一种全员 参与的、以各种科学方法改进公共组织的管理与服务的,对公共组织提供的公共物品和公共服务进行全面管理,以获得顾客满意为目标的管理方法、管理理念和制度。 34.行政效率:行政效率是指公共组织和行政工作人员 从事公共行政管理工作所投入的各种资源与所取得的成果和效益之间的比例关系。 35.行政改革:行政改革是指政府为了适应社会环境,或者高效公平地处理社会公共事务,调整内部体制和组织结构,重新进行权力配置,并调整政府与社会之间关系的过程。 36.政府再造:政府再造是指对公共体制和公共组织绩 效根本性的转型,大幅度提高组织效能、效率、适应性以及创新的能力,并通过改革组织目标、组织激励、责任机制、权力结构以及组织文化等来完成这种转型过程。

工业以太网控制系统论文

工业以太网控制系统论文 一、工业以太网技术的特点 以太网技术具有价格低廉、稳定可靠、通信速率高、软硬件产品丰富、应用广泛以及支持技术成熟等优点,已成为最受欢迎的通信网络之一。近些年来,随着网络技术的发展,以太网进入了控制领域,形成了新型的以太网控制网络技术。这主要是由于工业自动化系统向分布化、智能化控制方面发展,开放的、透明的通讯协议是必然的要求。以太网技术引入工业控制领域,其技术优势非常明显: (一)Ethernet是全开放、全数字化的网络,遵照网络协议不同厂商的设备可以很容易实现互联。 (二)以太网能实现工业控制网络与企业信息网络的无缝连接,形成企业级管控一体化的全开放网络。 (三)软硬件成本低廉,由于以太网技术已经非常成熟,支持以太网的软硬件受到厂商的高度重视和广泛支持,有多种软件开发环境和硬件设备供用户选择。 (四)通信速率高,随着企业信息系统规模的扩大和复杂程度的提高,对信息量的需求也越来越大,有时甚至需要音频、视频数据的传输,目前以太网的通信速率为10M、100M的快速以太网开始广泛应用,千兆以太网技术也逐渐成熟,10G以太网也正在研究,其速率比目前的现场总线快很多。 (五)可持续发展潜力大,在这信息瞬息万变的时代,企业的生存与发展将很大程度上依赖于一个快速而有效的通信管理网络,信息技术与通信技术的发展将更加迅速,也更加成熟,由此保证了以太网技术不断地持续向前发展。 二、工业以太网在控制领域应用现状 工业以太网与现场总线相比,它能提供一个开放的标准,是企业从现场控制到管理层实现全面的无缝的信息集成,解决了由于协议上的不同导致的`“自动化孤岛”问题,但从目前的发展看,工业以太网在控制领域的应用主要体现在以下几种形式。 (一)混合Ethernet/Fieldbus的网络结构 这种结构实际上就是信息网络和控制网络的一种典型的集成形式。以太网正在逐步向现场设备级深入发展,并尽可能的和其他网络形式走向融合,但以太网和TCP/IP原本不是面向控制领域的,在体系结构、协议规则、物理介质、数据、软件、实验环境等诸多方面并不成熟,而现场总线能完全满足现代企业对底层控制网络的基本要求,实现真正的全分布式系统。因此,在企业信息层采用以太网,而在底层设备级采用现场总线,通过通信控制器实现两者的信息交换。

组建简单以太网要点

-------------学院 课程设计III课程设计设计说明书 组建简单以太网 学生姓名 学号 班级网络1202 成绩 指导教师 数学与计算机科学学院 2015年 3月 7 日

课程设计任务书 2014—2015学年第二学期 课程设计名称:课程设计III课程设计 课程设计题目:组建简单以太网 完成期限:自2015 年 3 月 5 日至2015 年 3 月13 日共 2 周 设计内容: 在Cisco Packet Tracer中构建一个局域网(有计算机、交换机和集线器构成),并且对每台计算机的IP地址和子网掩码进行配置,让局域网中的每台计算机可以相互通信 认识简单的网络拓扑结构;掌握组建以太网的技术与方法:网卡、安装配置、连通性测试等。 指导教师:教研室负责人: 课程设计评阅

摘要 本次课程设计是通过PacketTracer软件组建一个简单的以太网,并采用PacketTracer软件作为网络模拟开发环境实现该以太网,测试其连通性,采用计算机网络原理进行配置和连接,使本以太网具有基本的连接、通信功能,由此对网络结构有所掌握和学习。 关键词:计算机;以太网;PacketTracer

目录 1 课题描述 (1) 2 原理介绍 (2) 2.1 实验目的及要求 (2) 2.2网络设备概述 (2) 2.2 以太网介绍 (3) 3 以太网设计与实现 (5) 3.1网络的设计 (5) 3.2 PC机的IP设置 (5) 4测试及分析 (7) 4.1测试连通性 (7) 4.2分析注意事项 (10) 5 总结 (11) 参考文献 (12)

1 课题描述 本次课程设计是通过认识简单的网络拓扑结构;掌握组建以太网的技术与设计方法;并且基本了解网卡的安装、配置驱动程序、配置TCP/IP协议、连通性测试等操作,对计算机网络原理有实践性认识,提高对实际网络问题的分析解决能力。 开发工具:PacketTracer

世界近代史名词解释

世界近代史名词解释 1.地理大发现—— 西方史学家对15至18世纪欧洲一系列航海活动的通称。15世纪后,由于对外贸易的需要和对贵金属的渴求,在宗教狂热和人文主义精神的鼓舞下,西欧一些探险家开始寻找通向东方的新航路。1492年,哥伦布航抵“美洲”,开辟了欧美航线;1498年达?伽马开辟自西欧绕过非洲南端直达印度的航路;1519—1522年麦哲伦与其同伴首次环球航行。地理大发现,引起了商业革命和西方国家殖民掠夺的狂潮,加速了西欧封建制度的解体和资本主义关系的成长,预示了世界史上一个新时代的来临。 2.商业革命—— 16世纪欧洲商业的突然扩大和新的世界市场兴起的现象被称为商业革命。新航路的发现,给新兴的资产阶级开辟了新的活动场所,欧洲人的经商范围由地中海一带扩展到大西洋及世界各地,欧洲与亚洲、非洲、美洲之间都有了商业往来,世界市场扩大。各地对欧洲商品的需求也在扩大,使贸易额和商品种类都大为增加。商业革命对欧洲封建社会的解体和资本主义生产方式的兴起,起了很大的推动作用。 3.文艺复兴—— 文艺复兴是14至17世纪欧洲文化和思想史上的一次重大的新文化运动。因欧洲思想文化界人士力图恢复希腊、罗马典文化,使之“复活”、“再生”,“文艺复兴”即由此得名。文艺复兴起源于意大利,15世纪后期传播到英法德等其他西欧国家,运动的中心是意大利。文艺复兴的指导思想人文主义,是一种以人为中心,为创造现世的幸福而奋斗的乐观进取的精神。文艺复兴时期在文学、艺术、政治思想和自然科学等方面都取得了辉煌的成就。文艺复兴运动是欧洲历史上第一次思想解放运动,具有重要的历史意义:促使欧洲人开始以神为中心过渡到以人为中心,唤醒了人们的进取精神、创造精神和科学实验精神;文艺复兴创造的光辉灿烂的文化是人类文明的重要组成部分。 4.人文主义—— 文艺复兴运动的主要思潮,是早期资产阶级的思想体系。人文主义一词来源于拉丁文,又译为“人道主义”或“人本主义”,其思想核心是个人主义。它是资产阶级用来反对封建束缚,谋求自身政治经济地位的思想武器。其基本特征是:以人为本,强调个人“才能”和自我奋斗;重视现世生活,反对宗教禁欲主义,反对经院哲学;否认对教皇和教会的绝对服从;反对封建特权和等级制;提倡理性,重视科学实验;表现乐观主义精神,反对悲观主义;欣赏资产阶级的文学艺术。人文主义对于人们摆脱神权的束缚,争取自由平等乃至推翻封建统治,都具有巨大进步作用 5.克伦威尔——

电大专科《公共行政学》名词解释简答题题库及答案(试卷号:2202)

电大专科《公共行政学》名词解释简答题题库及答案(试卷号:2202) 盗传必究 一、名词解释 1.政府职能:是指政府在国家和社会中所扮演的角色以及所应起的作用。 2.行政区划体制:是指根据一定的原则将全国领土划分为若干部分和若干层次的管理区域,并设置相应的行政机关的组织体制。 3.完整制:又叫一元统属制,是指公共组织的同一层级或同一组织内部的各个部门,完全接受一个公共组织或同一位行政首长的领导、指挥和监督的组织类型。 4.行政效率:是指公共组织和行政工作人员从事公共行政管理工作所投入的各种资源与所取得的成果和效益之间的比例关系。 5.市场失效:是指因为市场局限性和缺陷所导致资源配置的低效率或无效率,并且不能解决外部性问题以及社会公平问题。 6.行政体制:指政府系统内部行政权力的划分、政府机构的设置以及运行等各种关系和制度的总和。 7.程序性决策:也叫常规性决策,是指决策者对所要决策的问题有法可依,有章可循,有先例可参考的结构性较强,重复性的日常事务所进行的决策。 8.行政法规:是指国务院根据宪法和法律,按照法定程序制定的有关行使行政权力,履行行政职责的规范性文件的总称。 9. 管理幅度:是指领导机关或领导者直接领导下属的部门或人员的数额。 10.行政决策参与:是指行政领导者个人或集体在行政决策时,专家学者、社会团体、公民等对决策提出意见或建议的活动。 11.电子政府:是指在政府内部采用电子化和自动化技术的基础上,利用现代信息技术和网络技术,建立起网络化的政府信息系统,并利用这个系统为政府机构、社会组织和公民提供方便、高效的政府服务和政务信息。 12. 公共行政学:是研究公共组织依法处理政务的有效性、公平性、民主性的规律的交叉性与综合性学科。 13. 行政领导责任:是指行政领导者违反其法定的义务所引起的必须承担的法律后果。 14. 风险型决策:是指决策者对决策对象的自然状态和客观条件比较清楚,也有比较明确的决策目标,但是实现决策目标结果必须冒一定风险。 15. 事前监督:是指在某种公共行政管理活动开展之前,监督部门围绕公共行政管理主体的行政行为进行的监督检查。 16. 政府再造:是指对公共体制和公共组织绩效根本性的转型,大幅度提高组织效能、效率、适应性以及创新的能力,并通过改革组织目标、组织激励、责任机制、权力结构以及组织文化等来完成这种转型

工业以太网的构成及重要性能介绍

工业以太网的构成及重要性能介绍 西门子就逐步地把以太网的概念引入到工业控制领域,到今天,西门子SCALANCE系列工业以太网交换机产品,已经在冶金、烟草、汽车、煤矿、造船、地铁、电力、风电、交通、石化、水处理等多个行业的多个项目中得到了成功的应用,产品线也日臻完善。 工业以太网简介 工业以太网是基于IEEE 802.3(Ethernet)的强大的区域和单元网络。利用工业以太网,SIMATIC NET提供了一个无缝集成到新的多媒体世界的途径。 企业内部互联网(Intranet),外部互联网(Extranet),以及国际互联网(Internet) 提供的广泛应用不但已经进入今天的办公室领域,而且还可以应用于生产和过程自动化。继10M波特率以太网成功运行之后,具有交换功能,全双工和自适应的100M波特率快速以太网(Fast Ethernet,符合IEEE 802.3u的标准)也已成功运行多年。采用何种性能的以太网取决于用户的需要。通用的兼容性允许用户无缝升级到新技术。 为用户带来的利益 市场占有率高达80%,以太网毫无疑问是当今LAN(局域网)领域中首屈一指的网络。以太网优越的性能,为您的应用带来巨大的利益:通过简单的连接方式快速装配。 通过不断的开发提供了持续的兼容性,因而保证了投资的安全。 通过交换技术提供实际上没有限制的通讯性能。

各种各样联网应用,例如办公室环境和生产应用环境的联网。 通过接入WAN(广域网)可实现公司之间的通讯,例如,ISDN 或Internet 的接入。 SIMATIC NET基于经过现场应用验证的技术,SIMATIC NET已供应多于400,000个节点,遍布世界各地,用于严酷的工业环境,包括有高强度电磁干扰的区域。 工业以太网络的构成 一个典型的工业以太网络环境,有以下三类网络器件: 网络部件 连接部件: FC快速连接插座 ELS(工业以太网电气交换机) ESM(工业以太网电气交换机) SM(工业以太网光纤交换机) MC TP11(工业以太网光纤电气转换模块) 通信介质:普通双绞线,工业屏蔽双绞线和光纤 SIMATIC PLC控制器上的工业以太网通讯外理器。用于将SIMATIC PLC连接到工业以太网。 PG/PC上的工业以太网通讯外理器。用于将PG/PC连接到工业以太网。 工业以太网重要性能 为了应用于严酷的工业环境,确保工业应用的安全可靠,SIMATIC

简单以太网组网及双绞线电缆的制作

实验一简单以太网组网及双绞线电缆的制作 1.实验目的 (1)掌握以太网卡的安装与配置 (2)掌握Windows中的TCP/IP或NetBEUI协议的设置 (3)掌握以太网平行双绞线和交叉双绞线电缆的制作方法 (4)学会使用测试工具对双绞线电缆进行测试 (5)掌握集线器或简单交换机的使用,学会利用集线器组建简单的以太网 2.实验设备和环境 (1)5类双绞线电缆3×2米 (2)RJ-45插头6个 (3)RJ-45压线钳一把 (4)双绞线电缆测试工具(ST-248)一台 (5)PC机两台 (6)带有RJ-45接口的网卡两块 (7)集线器(或交换机)一个 3.实验内容 (1)安装TCP/IP和NetBEUI协议,对于TCP/IP协议应注意IP地址的设置 (2)利用ipconfig命令查看IP地址等网络基本配置信息 (3)制作两根平行双绞线电缆 (4)用双绞线测试工具对制作好的平行双绞线电缆进行测试,注意分析测试结果 (5)打开集线器(或交换机)电源,观察集线器和网卡的状态灯,判断它们的工作情况(6)利用制作的两根平行双绞线电缆将两台PC机和一台集线器组建成一个简单的以太网,用Ping命令测试网络的连通性 (7)双击桌面上的“网上邻居”图标,查看局域网中的其他计算机 (8)将一台计算机中的某个文件夹设置为共享,在另一台计算机上通过局域网访问该文件夹 (9)制作一根交叉双绞线电缆 (10)用双绞线测试工具对制作好的交叉双绞线电缆进行测试,注意分析测试结果 (11)用制作好的交叉双绞线将两台PC机对接起来,用Ping命令测试连通性 4.背景知识 1)NetBEUI是什么 NetBEUI是网络基本输入输出系统,是局域网上的程序可以使用的应用程序编程接(API)。NetBIOS为程序提供了请求低级服务的统一的命令集,这些服务是管理名称、执行会话和在网络节点之间发送数据报所要求的。 NetBEUI则是NetBIOS的扩展用户接口,是Microsoft网络的本地网络协议。它通常用于小的、有1~200客户的部门大小的局域网。它可以使用令牌环源路由作为其路由的惟一方法。它是NetBIOS标准的Microsoft实现。 2)交换机的应用 交换机是交换式网络上设备的公用连接点。交换机包含多个端口。计算机用网线和交换机相连的方法是:将双绞线的一端RJ-45接头插到交换的一个口上,另一端插到计算机网卡上的RJ-45插座上。如果所有设备都已接通电源,那么交换机上的连接指示灯就会显示连接状态,可据此判断网络连接是否正常。

世界现代史名词解释

世界现代史 名词解释: 1.美西战争:美西战争是1898年,为夺取属地、和而发动的战争,是列强重新瓜分的第一次战争。和既有重要的价值,又是分别向和扩张的。新兴的拥有雄厚的、军事潜力,已建立起一支较强大的。 2.门户开放政策:在整个范围,列强都有进行贸易的权利。它的主要精神是利益均沾,机会平等。不论是在哪个列强的内,不论是否在或都实行这个原则。是美国侵华行动的“里程碑”。受到列强的普遍欢迎,由此而使得列强在侵华步骤上取得暂时的一致。避免了列强因在华利益的相互抵触而使得列强间本以十分尖锐的矛盾进一步激化。也由此而使得列强由争夺在华利益而转化为在这个问题上相互合作。 3.日俄战争:是指1904年2月,与为了侵占东北和,在中国东北的土地上进行的一场战争。以沙皇俄国的失败而告终。日俄战争促成日本在东北亚取得军事优势,并取得在、中国东北驻军的权利,令俄国于此的扩张受到阻挠。日俄战争的陆上战场是清朝本土的,而清朝政府却被逼迫宣布中立,甚至为这场战争专门划出了一块交战区。日、俄、中(清)三方在这场中都蒙受到了严重损失,并为之后各国的发展道路造成了一定的影响。 4.三国同盟:这是第一次世界大战时帝国主义列强结成的军事与政治集团。1879年,德国、奥匈帝国为了对抗俄国与法国缔结军事同盟条约。1882年意大利加入,三国同盟正式形成。三国同盟的目标直接对准法国。后意大利于1915年脱离同盟国集团,转而加入协约国集团。同年,保加利亚与土耳其则相继加入同盟国。1918年11月,同盟国集团在与协约国的军事战争中失败,最终随着德国的战败,同盟国集团瓦解。 5.三国协约:第一次世界大战期间与三国同盟相对抗的帝国主义集团,由英、法、俄三国于1904—1907年期间签订一系列协议而组成。1893年为抗衡德、意同盟,法俄首先签订军事协定。面临日益增长的德国威胁,英法调整在殖民地上的矛盾,于1904年签订英法协约。随后在日俄战争中遭到失败的俄国为了摆脱自己的困境,也于1907年和英国签订英俄协约。至此协约国最终形成。第一次世界大战期间,日、意、美等二十五国先后加入。十月革命后,苏俄宣布出。1918年德国投降后,美、英、法、日等帝国主义曾以协约国的名义三次向苏俄发动武装干涉,均遭失败。因协约国间矛盾不断加深,逐步瓦解。 6.马恩河战役:1914年5月,德军在进攻中,右翼第一、二集团军之间出现了50公里宽的暴露地段,补英法联军楔入,被迫撤退。联军开始反攻但其后受阻,遂设防固守,此为马恩河战役。马恩河战役是第一次世界大战中的第一次大规模战略决战,以德军第一次撤退和失败,联军取得胜利告终,联军向前推进改革60公里。马恩河之战是大战的第一个转折点,德军在6周内打败法国的计划宣告破产。 7.坦能堡战役:第一次世界大战期间协约国与同盟国军队在东线的一次重要战役。一战爆发后,俄军为配合西线协约国的军事作战,于1914年8月在东线发动军事进攻,但由于其指挥系统差,后勤补给困难,东线德军在兴登堡与鲁登道夫的指挥下,最终击溃入侵俄军,俄军全线溃败,12万人被俘。德军在东线由此从防御进入进攻,最终在12月,在俄国内陆战局陷入僵持状态。

公共行政学名词解释

1.委员会制 委员会制是指在公共组织中,由两个人以上掌握决策权和指挥权,按照多数原则进行决策的公共组织类型。 2.层级制 层级制又分级制,是指公共组织在纵向上按照等级划分为不同的上下节制的层级组织结构,不同等级的职能目标和工作性质相同,但管理范围和管理权限却随着等级降低而逐渐变小的组织类型。 3.机能制 机能制又称职能制,是指公共组织在横向上按照不同职能目标划分为不同职能部门的组织类型。 4.战略管理 公共组织的战略管理是指对公共组织在一定时期的全局的、长远的发展方向、目标、任务和政策,以及资源调配做出的决策和管理艺术。 5.政府再造的含义 政府再造是指对公共体制和公共组织绩效根本性的转型,大幅度提高组织效能、效率、适应性以及创新的能力,并通过改革组织目标、组织激励、责任机制、权力结构以及组织文化等来完成这种转型过程。 政府再造就是用企业化体制取代官僚体制,即创造具有创新习惯和持续改进质量能力的公共组织和公共体制,而不必靠外力驱使。 企业家政府是政府再造的重要内容。企业家政府是指具有企业家精神的行政管理者,用企业的管理方式,以低成本高产出为目标,敢于冒风险、敢于创新、敢于打破僵化官僚体制,取得高绩效的政府。

企业家政府重视政府的成本效益,重视创新与改革,强调利用市场机制和竞争,强调对执行者授权,主张顾客导向,主张放松规制。 6.目标管理的涵义和特点 目标管理是以目标为导向,以人为中心,以成果为标准,而使组织和个人取得最佳业绩的现代管理方法。目标管理的特点是以人、工作和成果为中心的现代管理方法。 7.行政规章的含义 行政规章是指特定的行政机关根据法律和法规,按照法定程序制定的具有普遍约束力的规范性文件的总称。行政规章简称规章。 8.事前监督; 事前监督是指在某种公共行政管理活动开展之前,监督部门围绕公共行政管理主体的行政行为进行的监督检查。 9.行政评估的含义 行政评估是指对行政执行活动的进展情况和效果进行评价和总结,包括行政执行过程评估和行政执行效果评估两个方面。一般意义上所说的行政评估主要是指行政执行效果评估。 10.行政领导权力的概念 行政领导权力是指行政领导者在行政管理活动中,利用其合法地位以不同的激励方式和制约方式,引导下属同心协力达成行政目标的影响力。 11.完整制 完整制又叫一元统属制,是指公共组织的同一层级或同一组织内部的各个部门,完全接受一个公共组织或同一位行政首长的领导、指挥和监督的组织类型。

世界近代史名词解释

世界近代史名词解释 价格革命16至17世纪西欧社会上出现的金银贬值、物价上涨的现象。新航路开辟后,西班牙等国从殖民地掠回大量金银,使欧洲贵金属的储量急剧增长,从而引起欧洲各国通货膨胀。至16世纪末,西班牙的物价平均上升四倍多,英、法、德等国的物价平均上涨二至二点五倍。价格革命打乱了传统的经济关系。其结果是从事商业的人大发横财,新兴资产阶级的经济力量愈益增长,而靠传统方式收取地租的封建地主的地位受到削弱,收入微薄的劳动者的生活日益下降,价格革命加速了西欧各国资本原始积累的进程和封建制的解体。 商业革命16世纪欧洲商业的突然扩大和新的世界市场兴起的现象被称为商业革命。新航路的发现,给新兴的资产阶级开辟了新的活动场所,欧洲人的经商范围由地中海一带扩展到大西洋及世界各地,欧洲与亚洲、非洲、美洲之间都有了商业往来。各地对欧洲商品的需求也在扩大,使贸易额和商品种类都大为增加。工业的发展、商业活动的迅速扩大以及殖民制度的建立,对欧洲封建社会的解体和资本主义生产方式的兴起,起了很大的推动作用。商业革命是产业发展所引起的,而商业革命开发了广大市场,又促进了资本主义经济的发展。 地理大发现:西方史学家对15至18世纪欧洲航海者一系列航海活动的通称。15世纪后,西欧商品货币经济迅速发展,引起了封建贵族、大商人和新兴资产阶级对贵金属的渴求。《马可?波罗行记》对东方富庶的夸张描绘,进一步煽动着欧洲人的寻金热情。15世纪中叶以后,阿拉伯人与奥斯曼土耳其人垄断了东西方传统通道,也促使西欧寻找通向东方的新航路。此外,快速帆船的制造,指南针用于航海及地圆学说的盛行使远洋航行成为可能。最初由葡萄牙、西班牙两国组织远洋航行。1492年,哥伦布航抵“美洲”,开辟了欧美航线;1498年达?伽马开辟自西欧绕过非洲南端直达印度的航路;1519—1522年麦哲伦与其同伴首次环球航行。新航路的开辟和美洲的发现,扩大了世界市场,开始了西方国家殖民掠夺的狂潮。欧洲的商业中心逐渐由地中海地区转移到大西洋沿岸。由此加速了西欧封建制度的解体和资本主义关系的增长,预示了世界史上一个新时代的来临。 文艺复兴:14世纪中叶至17世纪初在欧洲发生的思想文化运动。这个运动始于意大利,后扩大到英、法、德、西等欧洲国家。一些新生的资产阶级及其知识分子在“复兴”古代希腊罗马文化的号召下,把矛头直接指向教会神权统治,他们以人文主义为旗帜,主张尊重自然和人权,强调发展个性,反对禁欲主义;提倡科学文化,反对迷信愚

公共行政学作业3答案

公共行政学作业3答案 一、名词解释 1、行政监察管辖:行政监察管辖,是指对某个监督对象确定由哪一级或者哪一个行政监察机关实施监督和哪一级或者哪一个行政监察机关对哪些特定监督事项有权进行管辖的法律制度。 2、招标性采购:是指通过招标的方式,邀请所有的或一定范围的潜在的供应商参加投标,采购主体通过某种事先确定并公布的标准从所有投标商中评选出中标供应商,并与之签订合同的一种采购方式。 3、标杆管理:是指一个组织瞄准一个比其绩效更高的组织进行比较,以便取得更好的绩效。 4、行政诉讼:所谓行政诉讼,就是公民或法人对行政机关或行政工作人员就违法行政行为向司法机关提起诉讼。俗称“民告官”。 二、单项选择题 1.整个行政执行过程中最具实质意义的、最为关键的阶段是( C )。 A.协调阶段 B.总结阶段 C.实施阶段 D.准备阶段 2.对具有公务员身份的中国共产党党员的案件,需要给予处分的,由( D )给予处分。

A.检察机关 B.行政监察机关 C.党的纪律检查机关 D.党的纪律检查机关和行政监察机关 3.国家预算中占主导地位的是( A )。 A.中央预算 B.县级预算 C.省级预算 D.市级预算 4.根据《立法法》,行政法规和规章应当在公布后的( B )天内报有关部门备案。 A.15 B.30 C.45 D.60 5.批准是一种约束力较强的( A )监督方式。其内容包括:要求监督对象报送审批材料、审查和批准(含不批准)三个基本步骤。 A.事先 B.事中 C.事后 D.全面 6.从20世纪( C )年代开始,西方发达国家相继开始进行行政改革,然后许多发展中国家因为实行市场化也进行不同程度的行政改革。 A.50 B.60 C.70 D.80 7.为了解决在实施决策的过程中出现的而一时又难以查清原因的问题的决策方案,称为( D )。 A.积极方案 B.追踪方案 C.应变方案 D.临时方案 8.行政决策体制的核心( D )。

几种典型工业以太网技术比较

几种典型工业以太网技术比较

1 工业以太网总览 表1给出了常见的几种工业以太网及其管理组织。 表1-1 常见工业以太网及其管理组织列表 上述各种工业以太网管理组织的标识如图1所示。 图1-1 工业以太网管理组织标识 根据从站设备的实现方式,可将工业以太网分为三种类型: (1)类型A ——通用硬件、标准TCP/IP协议 Modbus/TCP、Ethernet/IP、PROFInet/CbA(版本1)采用这种方式。使用标准TCP /IP协议和通用以太网控制器,结构如图1-2所示。这种方式下,所有的实时数据(如过程数据)和非实时数据(如参数配置数据)均通过TCP/IP 协议传输。其优点是成本低廉,实现方便,完全兼容通用以太网。在具体实现中,某些产品可能更改/优化了TCP/IP协议以获得更好的性能,但其实时性始终受到底层结构的限制。

通用以太网控制器IP TCP/UDP IT 应用 HTTP SNMP FTP … 图1-2 工业以太网类型A 结构 (2)类型B —— 通用硬件、自定义实时数据传输协议 Ethernet Powerlink 、PROFInet/RT (版本2)采用这种方式。采用通用以太网控制器,但不使用TCP/IP 协议来传输实时数据,而是定义了一种专用的包含实时层的实时数据传输协议,用来传输对实时性要求很高的数据,结构如图1-3所示。TCP/IP 协议栈可能依然存在,用来传输非实时数据,但是其对以太网的读取受到实时层(Timing-Layer )的限制,以提高实时性能。这种结构的优点是实时性较强,硬件与通用以太网兼容。 通用以太网控制器 IT 应用 HTTP SNMP FTP … 图1-3 工业以太网类型B 结构 (3)类型C —— 专用硬件、自定义实时数据传输协议 EtherCAT 、SERCOS-III 、PROFInet/IRT (版本3)采用这种方式。这种方式在类型B 的基础上底层使用专有以太网控制器(至少在从站侧),以进一步

实验一网线制作和组建简单以太网

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 实验一网线制作和组建简单以太网 一.实验目的 1.掌握平行双绞线和交叉双绞线的制作方法(初级) 2.掌握对等网和代理服务器网络的组建(初级) 3.会用ipconfig和ping命令(初级) 4.掌握网络中文件夹共享和打印机共享(初级) 5.实现一线多机上网(高级) 6.搭建无线局域网(高级) 二.实验设备和环境 1.5类双绞线 2*2米 2.水晶头6个 3.RJ-45压线钳 1把 4.双绞线电缆测试工具(NS-468) 1台 5.PC机 2台(安装了win2000或者win2003) 6.带有RJ-45接口的网卡 2块 7.集线器或者交换机 1台 三.实验内容和步骤 1.制作一根交叉双绞线 2.用测试工具测试双绞线,注意分析测试结果 3.把制作好的双绞线分别插入两台电脑的网卡(IP设置 4.用ipconfig /all (如果是WIN98,用winipcfg)命令查看自己的网络配置 5.用ping命令测试网络是否连通 6.共享资源,查看能否互相访问 7.制作两根平行双绞线 8.两根线分别一端与HUB(或者SWITCH)相连,另一端与PC机相连 9.用ping命令测试网络是否连通 10.查看能否互相访问 11.把一台电脑设置成服务器,另一台设置成客户端,查看能否互相访问 12.设置网络打印机

四.基础知识 1.双绞线的制作方法: 直通线与交叉线的区别 568A标准从左到右的线序是:白绿,绿,白橙,蓝,白蓝,橙,白棕,棕。 568B标准从左到右的线序是:白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 (568A、568B的区别:1和3交换,2和6交换) 正线(直通线、平行线):两端线序一样,都是采用568A标准。 反线(交叉线):两端线序不一样,一端用568A标准,另一端用568B标准。 以下是各种设备的连接情况下,正线和反线的正确选择。其中HUB代表集线器,SWITCH 代表交换机,ROUTER代表路由器:(一般情况:连接两端相同用交叉线,连接两端不同用平行线) PC-PC:反线 PC-HUB:正线 HUB-HUB普通口:反线 HUB-HUB级连口-级连口:反线 HUB-HUB普通口-级连口:正线 HUB普通口-SWITCH:反线 HUB级联口-SWITCH:正线 SWITCH-SWITCH:反线 SWITCH-ROUTER:正线 ROUTER-ROUTER:反线 100BaseT连接双绞线,以100Mb/S的EIA/TIA 568B作为标准规格。 制作步骤如下: 步骤 1:利用斜口错剪下所需要的双绞线长度,至少 0.6米,最多不超过 100米。然后再利用双绞线剥线器(实际用什么剪都可以)将双绞线的外皮除去2-3厘米。有一些双绞线电缆上含有一条柔软的尼龙绳,如果您在剥除双绞线的外皮时,觉得裸露出的部分太短,

世界近代史名词解释和问答题

《世界近代史》课程作业 一、名词解释 1.教皇子午线:1494 年经教皇仲裁,西班牙和葡萄牙在世界上划分势力范围的分界线。 1492年哥伦布到达美洲后,西、葡两国为争夺殖民地、市场和掠夺财富,长期进行战争。为缓和两国日益尖锐的矛盾,由教皇亚历山大六世(1492~1503在位)出面调解,于1494年6月7日两画了一条线,线西归西班牙,东归葡萄牙,此即所谓“教皇子午线”。 这条由教皇作保规定的西、葡两国势力范围的分界线,开创近代殖民列强瓜分世界、划分势力范围的先河。(参课本P19) 2.人文主义:文艺复兴时期,资产阶级表现在文学、艺术、教育、哲学和自然科学等方面的思想内容,通常被称为人文主义。 人文主义是一种哲学理论和一种世界观,以人为衡量一切事物的标准。作为文艺复兴时期主要的社会思潮,他的核心是:肯定人,注重人性,要求把人从宗教束缚中解救出来。反对神权,提倡人权;反对神性,提倡人性;反对封建特权,提倡自由平等;反对教会蒙昧主义,提倡发展文化教育;反对封建割据和外族入侵,主张中央集权和民族独立。 人文主义是资产阶级的世界观和历史观,是资产阶级反封建、反中世界神学世界观的思想武器。同时我们也应看到,对人文主义的过分推崇,造成文艺复兴运动个人私欲的膨胀、泛滥和社会混乱。 3.薄伽丘:乔万尼·薄伽丘(1313—1375),一译卜伽丘,意大利文艺复兴运动的杰出代表,人文主义者。 代表作《十日谈》批判宗教守旧思想,揭露教会的虚伪和腐化,提倡个性解放,歌颂人对现世生活的追求。主张“幸福在人间”,被视为文艺复兴的宣言。创作了西欧

文学史上第一部心理小说《菲亚美达》;其与但丁、彼特拉克合称“文学三杰”。 4.因信称义:是德国神学家马丁·路德的神学思想核心。 他认为,基督徒之所以是自由的,是因为他们“因信称义”,不再受善功律的支配,他们通过自己的信仰而与基督建立了新的个人关系。信徒不必依靠教会极其繁琐的宗教礼仪,只凭对上帝对的虔诚信仰就可以得到灵魂的拯救。内容有:1.圣经乃唯一的、最高的成就。2.平信徒皆为祭司3.僧俗平等,恪守天职。 这一宗教伦理是对天主教会所宣扬的“行为称义”的否定,所蕴含的是一种积极的人生态度。具有宗教情感的个人主义与文艺复兴中具有理性的个人主义结合在一起,成为早期资本主义发展的重要精神动力之一。 5.预定论: 由宗教改革家加尔文(1509——1564)提出,也成为加尔文派的奠基。 预定论认为神的旨意是绝对的,也是无条件的,一切有限的受造物联合起来也不能影响神的旨意,这旨意完全是神在永恒里安排的。神是万物的主宰,伟大而有能力,安排大自然的运行,支配人类的历史,任何细节都在他的掌管之下。其内容为将人分为“选民”和“弃民”。 预定论提出了解放人的思想,鼓励人们在世俗生活中去发财致富。 6.开明专制:18世纪下半叶欧洲一些国家封建专制君主执行的一种政策,是为了适应资本主义发展和阶级矛盾尖锐化而进行的具有明显资本主义色彩的改革。 当时,欧洲大陆诸国的封建制度日趋衰落,资本主义生产关系在封建社会内有所发展。各国封建君主为了巩固其专制统治,接过了法国启蒙学者要求改革的旗帜,宣称要进行自上而下的改革。把自己装扮成“开明”的君主,高喊“开明”的口号,进行种种改革,如改革教会,兴办教育事业,编纂法典等 “开明专制”的时代是从普鲁士国王弗里德里希二世登基时开始的。他自称“国家的第一

相关主题
文本预览
相关文档 最新文档