当前位置:文档之家› 高二数学选修1、2-3-2抛物线的简单几何性质

高二数学选修1、2-3-2抛物线的简单几何性质

高二数学选修1、2-3-2抛物线的简单几何性质
高二数学选修1、2-3-2抛物线的简单几何性质

2.3.2抛物线的简单几何性质

一、选择题

1.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k ,-2)与F 点的距离为4,则k 的值是( )

A .4

B .4或-4

C .-2

D .2或-2

[答案] B

[解析] 由题意,设抛物线的标准方程为:x 2=-2py ,

由题意得,p 2

+2=4,∴p =4,x 2=-8y . 又点(k ,-2)在抛物线上,

∴k 2=16,k =±4.

2.抛物线y =1m

x 2(m <0)的焦点坐标是( ) A.???

?0,m 4 B.??0,-m 4 C.????0,14m D.????0,-14m [答案] A

[解析] ∵x 2=my (m <0),∴2p =-m ,p =-m 2

, 焦点坐标为???

?0,-p 2,即????0,m 4. 3.抛物线的顶点在原点,对称轴是x 轴,抛物线上的点(-5,25)到焦点的距离是6,则抛物线的方程为( )

A .y 2=-2x

B .y 2

=-4x C .y 2=2x

D .y 2=-4x 或y 2=-36x [答案] B

[解析] 由题意,设抛物线的标准方程为:y 2=-2px (p >0),由题意,得p 2

+5=6,∴p =2,

∴抛物线方程为y 2=-4x .

4.直线y =kx -2交抛物线y 2=8x 于A 、B 两点,若AB 中点的横坐标为2,则k =( )

A .2或-2

B .-1

C .2

D .3 [答案] C

[解析] 由?????

y 2=8x y =kx -2得k 2x 2-4(k +2)x +4=0, 则4(k +2)k 2

=4,即k =2. 5.(2010·陕西文,9)已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的

值为( )

A.12

B .1

C .2

D .4 [答案] C

[解析] 本题考查抛物线的准线方程,直线与圆的位置关系.

抛物线y 2=2px (p >0)的准线方程是x =-p 2,由题意知,3+p 2

=4,p =2. 6.等腰Rt △AOB 内接于抛物线y 2=2px (p >0),O 为抛物线的顶点,OA ⊥OB ,则△AOB 的面积是( )

A .8p 2

B .4p 2

C .2p 2

D .p 2 [答案] B

[解析] ∵抛物线的对称轴为x 轴,内接△AOB 为等腰直角三角形,

∴由抛物线的对称性,知直线AB 与抛物线的对称轴垂直,从而直线OA 与x 轴的夹角为45°.

由方程组????? y =x y 2=2px ,得????? x =0y =0,或?????

x =2p y =2p . ∴A 、B 两点的坐标分别为(2p,2p )和(2p ,-2p ).

∴|AB |=4p .∴S △AOB =12

×4p ×2p =4p 2. 7.抛物线y 2=2px 与直线ax +y -4=0的一个交点是(1,2),则抛物线的焦点到该直线的距离是( ) A.

32 3 B.25 5 C.7510 D.

172 [答案] B

[解析] 由已知得抛物线方程为y 2=4x ,直线方程为2x +y -4=0,抛物线y 2=4x 的焦

点坐标是F (1,0),到直线2x +y -4=0的距离为d =|2+0-4|22+1

=255. 8.过抛物线焦点F 的直线与抛物线相交于A 、B 两点,若A 、B 在抛物线准线上的射

影是A 1、B 1,则∠A 1FB 1等于( )

A .45°

B .60°

C .90°

D .120° [答案] C

[解析] 由抛物线的定义得,|AF |=|AA 1|,

|BF |=|BB 1|,∴∠1=∠2,∠3=∠4,

又∠1+∠2+∠3+∠4+∠A 1AF +∠B 1BF =360°,

且∠A 1AF +∠B 1BF =180°,∴∠1+∠2+∠3+∠4=180°,∴2(∠2+∠4)=180°,即∠2+∠4=90,

故∠A 1FB =90°.

9.(2009·全国Ⅰ,5)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( ) A. 3

B .2 C. 5

D. 6 [答案] C

[解析] 本题主要考查圆锥曲线的有关知识.

双曲线的渐近线方程为y =±b a

x . ∵渐近线与y =x 2+1相切,

∴x 2±b a

x +1=0有两相等根, ∴Δ=b 2a 2-4=0,∴b 2=4a 2, ∴e =c a =c 2a 2=a 2+b 2

a 2= 5. 10.(2010·辽宁理,7)设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=( )

A .4 3

B .8

C .8 3

D .16

[答案] B

[解析]如图,K AF=-3,

∴∠AFO=60°,

∵|BF|=4,∴|AB|=43,

即P点的纵坐标为43,

∴(43)2=8x,∴x=6,∴|PA|=8=|PF|,故选B.

二、填空题

11.抛物线y2=16x上到顶点和焦点距离相等的点的坐标是________.

[答案](2,±42)

[解析]设抛物线y2=16x上的点P(x,y)

由题意,得(x+4)2=x2+y2=x2+16x,

∴x=2,∴y=±4 2.

12.抛物线y2=4x的弦AB垂直于x轴,若AB的长为43,则焦点到AB的距离为________.

[答案] 2

[解析]由题意,设A点坐标为(x,23),则x=3,

又焦点F(1,0),∴焦点到AB的距离为2.

13.已知F为抛物线y2=2ax(a>0)的焦点,点P是抛物线上任一点,O为坐标原点,以下四个命题:

(1)△FOP为正三角形.

(2)△FOP为等腰直角三角形.

(3)△FOP为直角三角形.

(4)△FOP为等腰三角形.

其中一定不正确

...的命题序号是________.

[答案]①②

[解析]∵抛物线上的点到焦点的距离最小时,恰好为抛物线顶点,∴①错误.

若△FOP为等腰直角三角形,则点P的横纵坐标相等,这显然不可能,故②错误.14.(2009·宁夏、海南)已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为________.[答案]y2=4x

[解析]设抛物线为y2=kx,与y=x联立方程组,消去y,得:x2-kx=0,x1+x2=k =2×2,故y2=4x.

三、解答题

15.已知抛物线y2=4x的内接三角形OAB的一个顶点O在原点,三边上的高都过焦点,求三角形OAB的外接圆的方程.

[解析] ∵△OAB 的三个顶点都在抛物线上,且三条高都过焦点,

∴AB ⊥x 轴,故A 、B 关于x 轴对称,

设A ????y 214,y 1,则B ???

?y 2

14,-y 1, 又F (1,0),由OA ⊥BF 得,y 1y 214·-y 1y 214

-1=-1,解得y 21=20, ∴A (5,25),B (5,-25),

因外接圆过原点,且圆心在x 轴上,故可设方程为:x 2+y 2+Dx =0,

把A 点坐标代入得D =-9,

故所求圆的方程为x 2+y 2-9x =0.

16.一抛物线拱桥跨度为52m ,拱顶离水面6.5m ,一竹排上载有一宽4m ,高6m 的大木箱,问竹排能否安全通过?

[解析] 如图所示建立平面直角坐标系,

设抛物线方程为x 2=-2py ,则有A (26,-6.5),B (2,y ),

由262=-2px ×(-6.5),得p =52,

∴抛物线方程为x 2=-104y .

当x =2时,4=-104y ,y =-

126

, ∵6.5-126>6,∴能通过. 17.若抛物线y 2=2x 上两点A (x 1,y 1)、B (x 2,y 2)关于直线y =x +b 对称,且y 1y 2=-1,求实数b 的值.

[解析] 因为A (x 1,y 1),B (x 2,y 2)在抛物线上,

所以y 21=2x 1 ① y 22=2x 2 ②

①-②并整理可得y 1-y 2x 1-x 2=2y 1+y 2

=k AB , 又因为k AB =-1,所以y 1+y 2=-2,

所以y 1+y 22=-1,而x 1+x 22=y 21+y 224

=(y 1+y 2)2-2y 1y 24=(-2)2-2×(-1)4=32

因为???

?x 1+x 22,y 1+y 22在直线y =x +b 上, 所以-1=32b ,即b =-52

, 所以b 的值为-52

. 18.设抛物线y 2=2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明:直线AC 经过原点O .

[证明] 如图,

设直线方程为y =k ????x -p 2,

A (x 1,y 1),

B (x 2,y 2),

C ???

?-p 2,y 2, 由????? y =k ????x -p 2y 2=2px

消去x 得,y 2-2py k -p 2=0, ∴y 1y 2=-p 2,k OA =y 1x 1k OC =y 2-p 2=y 1y 2-p 2

1=2p y 1, 又∵y 21=2px 1,∴k OC =y 1x 1

=k OA ,即AC 经过原点O . 当k 不存在时,AB ⊥x 轴,同理可得k OA =k OC .

高二数学教案:抛物线教案人教版

人教版抛物线教案 一.教学目的: 1.掌握抛物线的概念. 2.掌握抛物线的标准方程及其应用. 3.理解并应用抛物线的几何性质. 二.重点难点: 1.重点:抛物线的标准方程及其应用.抛物线的几何性质. 2.难点:抛物线的几何性质. 三.教学过程: 引入新课:与一定点的距离和一条定直线的距离比是常数e的点的轨迹,当e<1时,是椭圆,当e>1时,是双曲线。当e=1时,是什么曲线呢?(让同学们看课件抛物线的定义部分,然后让学生回答,给出抛物线的定义。) 如图平面内与一个定点F 和一条定直线L 的距离 相等的点的轨迹叫做抛物线. 结合课件,让学生推导抛物线的标准方程. 取过焦点F且垂直与准线L的直线为x轴,x轴与L相交于点K,以线段KF 的垂直平分线为y轴,如右图.设KF =p,则焦点F的坐标为F(2 p ,0),准线L 的方程为:x=- 2 p . 设抛物线上的点M(x,y)到L的距离为d.抛物线也就是集合P={MMF =d}. ∵MF =2 2y p x +??? ?? - , d=2 p x +, ∴2 2y p x +??? ?? - =2 p x + 将上式整理可得抛物线的标准方程:y2 =2px(p>0) 让学生自己总结,写出抛物线标准方程的其他几种形式.教师总结如下表:

最后让学生看课件抛物线的标准方程部分,加深印象. 接着让学生看e与图线形状之间的关系.让学生对抛物线、椭圆、双曲线有一个整体认识,为后面综合应用打好基础. 例题1:求下列抛物线的焦点坐标和准线方程: ⑴x2=2y: ⑵y2-6x=0: 例题2:拱形桥洞是一段抛物线,宽7m,高为0.7m,求这条抛物线的方程.

抛物线的简单几何性质教案 (1)

抛物线的简单几何性质; ●教学目标 1.掌握抛物线的几何性质; 2.能根据几何性质确定抛物线的标准方程; 3.能利用工具作出抛物线的图形. ●教学重点 抛物线的几何性质 ●教学难点 几何性质的应用 ●教学方法 学导式 ●教具准备 三角板 ●教学过程 Ⅰ.复习回顾 简要回顾抛物线定义及标准方程的四种形式(要求学生回答) 师:这一节,我们根据抛物线的标准方程)0(22 p px y = ①来研究它的几何性质 Ⅱ.讲授新课 1. 范围 当x 的值增大时,y 也增大,这说明抛物线向右上方和右下方无限延伸.(但应让学生注意与双曲线一支 的区别,无渐近线). 2.对称性 抛物线关于x 轴对称. 我们把抛物线的对称轴叫抛物线的轴. 3.顶点 抛物线和它的轴的交点叫抛物线的顶点.即坐标原点. 4.离心率 抛物线上的点M 与焦点的距离和它到准线的距离的比,叫抛物线的离心率,用e 表示.由抛物线定义可知,e =1. 说明:对于其余三种形式的抛物线方程,要求自己得出它们的几何性质,这样,有助于学生掌握抛物线四种标准方程. 师:下面,大家通过问题来进一步熟悉抛物线的几何性质. 例1.已知抛物线关于x 轴对称,它的顶点在原点,并且经过点M (2,-22),求它的标准方程,并用描点法画出图形. 师:由已知条件求抛物线的标准方程时,首先要根据已知条件确定抛物线标准方程的类型,再求出方程中的参数P . 解:因为抛物线关于x 轴对称,它的顶点在原点,并且经过点M (2,-22),所以可设它的标准方程为: )0(22 p px y =

因为点M 在抛物线上,所以22)22(2?=-p ,即2=p 因此所求方程是.42x y = 下面列表、描点、作图: 说明:①利用抛物线的对称性可以简化作图步骤; ②抛物线没有渐近线; ③抛物线的标准方程)0(22 p px y =中p 2的几何意义:抛物线的通 径,即连结通过焦点而垂直于x 轴直线与抛物线两交点的线段. 师:下面我们通过练习进一步熟悉并掌握抛物线的标准方程. Ⅲ.课堂练习 课本P 122练习1,2. ●课堂小结 师:通过本节学习,要求大家掌握抛物线的几何性质,并在具体应用时注意区分抛物线标准方程的四种形式. ●课后作业 习题8.6 1,2,5. ●板书设计 ●教学后记

高中数学抛物线的简单几何性质教案

《抛物线的简单几何性质》教案 《抛物线的简单几何性质》教案及教材分析 教材:《全日制高级中学课本(必修)数学》第二册(上) 一. 教学理念 “数学教师不能充当数学知识的施舍者,没有人能教会学生,数学素质是学生在数学活动中自己获得的。”因此,教师的责任关键在于在教学过程中创设一个”数学活动”环境,让学生通过这个环境的相互作用,利用自身的知识和经验构建自己的理解,获得知识,从而培养自己的数学素质,培养自己的能力。 数学源于生活,高于生活,学习数学的最终目的是应用于生活(回归生活),通过平时教学,注意这方面的渗透,培养学生解决实际问题的能力。 二. 教材分析 1、本节教材的地位 本节通过类比椭圆、双曲线的几何性质,结合抛物线的标准方程讨论研究抛物线的几 何性质,让学生再一次体会用曲线的方程研究曲线性质的方法,学生不难掌握抛物线的范围、对称性、顶点、离心率等性质,对于抛物线几何性质的应用是学生学习的难点,教学中应强调几何模型与数学问题的转换。例1的设计,在于让学生通过作图感知p 的大小对抛物线开口的影响,引出通径的定义。例2的设计旨在利用抛物线的几何性质数学地解决实际问题即作抛物线的草图。 本节是第一课时,在数学思想和方法上可与椭圆、双曲线的性质对比进行,着重指出它 们的联系和区别,从而培养学生分析、归纳、推理等能力。 2、教学目标 (1) 知识目标: ⅰ 抛物线的几何性质、范围、对称性、定点、离心率。. ⅱ 抛物线的通径及画法。 (2) 能力目标:. ⅰ 使学生掌握抛物线的几何性质,根据给出条件求抛物线的标准方程。 ⅱ 掌握抛物线的画法。 (3) 情感目标: ⅰ 培养学生数形结合及方程的思想。 ) 0(22>=p px y

高中数学抛物线经典性质的总结

抛物线

焦点弦长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) (4) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: o x ()22,B x y F y ()11,A x y

???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点

高中数学专题:抛物线

抛物线专题复习 通径:过焦点且垂直于对称轴的相交弦 通径:d 2= AB 为抛物线px y 22 =的焦点弦,则=B A x x 4 2p ,=B A y y 2 p -,||AB =p x x B A ++ 考点1 抛物线的定义 [例1 ]已知点P 在抛物线x y 42 =上,则点P 到点)1,2(-Q 的距离与点P 到抛物线焦点距离之和的最小值为 考点2 抛物线的标准方程 [例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点)2,3(-; (2)焦点在直线240x y --=上 考点3 抛物线的几何性质 [例3 ]设B A ,为抛物线px y 22 =上的点,且O AOB (2 π = ∠为原点),则直线AB 必过的定点坐标为_______ [例4 ]设F 是抛物线2 :4G x y =的焦点.(I )过点(04)P -, 作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足,0=?→ → FB FA 延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 二.基本题型 1.过抛物线x y 42 =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,如果621=+x x ,那么||AB =( )

(A )10 (B )8 (C )6 (D )4 2.已知抛物线22(0)y px p =>的焦点为F ,点111222()() P x y P x y ,,,,33 3()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+ B . 3 21y y y =+ C .2312x x x =+ D. 2312y y y =+ 3.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( ) (A )3 (B )4 (C )5 (D )6 4.过抛物线()02>=a ax y 的焦点F 作直线交抛物线于P 、Q 两点,则=+| |1 ||1QF PF ( ) (A )a 2 (B ) a 21 (C )a 4 (D )a 4 5.已知抛物线C :24y x =的焦点为,F 准线为,l 过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△ AOF (其中O 为坐标原点)的面积之比为3:1,则点A 的坐标为( ) A .(2,22) B .(2,-22) C .(2,±2) D .(2,±22) 6.过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,则=∠11FB A ( ) A. 45 B. 60 C. 90 D. 120 7.两个正数a 、b 的等差中项是 9 2 ,一个等比中项是,b a >则抛物线2()y b a x =-的焦点坐标为( ) A .1 (0,)4- B .1(0,)4 C .1(,0)2- D .1(,0)4 - 8.抛物线,42 F x y 的焦点为=准线为l l ,与x 轴相交于点,E 过F 且倾斜角等于3 π 的直线与抛物线在x 轴上方的部分相交于点,,l AB A ⊥垂足为,B 则四边形ABEF 的面积等于( ) A .33 B .34 C .36 D .38 9.已知抛物线C :2 1 2 x y = ,过点(0,4)A -和点(,0)B t 的直线与抛物线C 没有公共点,则实数t 的取值范围是( ) A .(,1)(1,)-∞-+∞ B. (,()22 -∞+∞ C .(,)-∞-+∞ D .(,)-∞-+∞ 10.如果1P ,2P ,…,8P 是抛物线2 4y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21* ∈N n x x x n 成等差数列且45921=+++x x x ,则||5F P =( ). A .5 B .6 C . 7 D .9 11.设O 是坐标原点,F 是抛物线2 4y x =的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60 ,则OA 为 . 12.若直线10ax y -+=经过抛物线2 4y x =的焦点,则实数a =

高二数学抛物线公式总结

高二数学抛物线公式总结 同学们进入高二要求背诵的公式也逐渐增多,为此查字典数学网整理了高二数学抛物线公式总结,请参考。 1.抛物线的定义摘 定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线。这个定点F叫抛物线的焦点,这条定直线l 叫抛物线的准线。 需强调的是,点F不在直线l上,否则轨迹是过点F且与l 垂直的直线,而不是抛物线。 2.抛物线的方程 对于以上四种方程:应注意掌握它们的规律:曲线的对称轴是哪个轴,方程中的该项即为一次项;一次项前面是正号则曲线的开口方向向x轴或y轴的正方向;一次项前面是负号则曲线的开口方向向x轴或y轴的负方向。 3.抛物线的几何性质 以标准方程y2=2px为例 (1)范围:x (2)对称轴:对称轴为y=0,由方程和图像均可以看出; (3)顶点:O(0,0),注:抛物线亦叫无心圆锥曲线(因为无中心); (4)离心率:e=1,由于e是常数,所以抛物线的形状变化是由方程中的p决定的;

(6)焦半径公式: 抛物线上一点P(x1,y1),F为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p0): (7)焦点弦长公式: 对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式。设过抛物线y2=2px(pO)的焦点F的弦为AB,A(x1,y1),B(x2,y2),AB的倾斜角为,则有 ①|AB|=x1+x2+p 以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用弦长公式来求。 (8)直线与抛物线的关系: 直线与抛物线方程联立之后得到一元二次方程: ax2+bx+c=0,当a0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果a=0,则直线是抛物线的对称轴或是和对称轴平行的直线,此时,直线和抛物线相交,但只有一个公共点。 (9)抛物线y2=2px的切线: ①如果点P(x0,y0)在抛物线上,则y0y=p(x+x0); (10)参数方程 教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边

3.3.2 抛物线的简单几何性质

3.3.2抛物线的简单几何性质 基础过关练 题组一抛物线的几何性质及其运用 1.已知抛物线x2=2py(p>0)的准线经过点(-1,-1),则抛物线的焦点坐标为() A.(-1,0) B.(0,-1) C.(1,0) D.(0,1) 2.已知点P(6,y)在抛物线y2=2px(p>0)上,若点P到抛物线焦点F的距离等于8,则焦点F到抛物线准线的距离等于() A.2 B.1 C.4 D.8 3.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为() B.1 C.2 D.4 A.1 2 4.已知点A是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,O为坐标原点,当 |AF|=4时,∠OFA=120°,则抛物线的准线方程是() A.x=-1 B.y=-1 C.x=-2 D.y=-2 5.抛物线y2=4x的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,当 △FPM为等边三角形时,其面积为() A.2√3 B.4 C.6 D.4√3 6.一条光线从抛物线y2=2px(p>0)的焦点F射出,经抛物线上一点B反射后,反射光线经过点A(5,4),若|AB|+|FB|=6,则抛物线的标准方程为.

题组二直线与抛物线的位置关系 7.已知直线l:y=x-1与抛物线C:y2=4x相交于A、B两点,则|AB|为() A.5 B.6 C.7 D.8 8.已知直线y=kx-k及抛物线y2=2px(p>0),则() A.直线与抛物线有一个公共点 B.直线与抛物线有两个公共点 C.直线与抛物线有一个或两个公共点 D.直线与抛物线可能没有公共点 9.过点(0,1)且与抛物线y2=4x只有一个公共点的直线有() A.1条 B.2条 C.3条 D.0条 10.(2020山东菏泽高二上期末)已知斜率为k的直线l与抛物线C:y2=4x交于A、B 两点,线段AB的中点为M(2,1),则直线l的方程为() A.2x-y-3=0 B.2x-y-5=0 C.x-2y=0 D.x-y-1=0 11.已知抛物线C:y2=4x的焦点为F,直线l:y=x-2与抛物线C交于A,B两点. (1)求弦AB的长; (2)求△FAB的面积.

抛物线的简单几何性质练习题

课时作业(十三) [学业水平层次] 一、选择题 1.已知点P (6,y )在抛物线y 2=2px (p >0)上,若点P 到抛物线焦点F 的距离等于8,则焦点F 到抛物线准线的距离等于( ) A .2 B .1 C .4 D .8 【解析】 抛物线y 2=2px (p >0)的准线为x =-p 2,因为P (6,y ) 为抛物线上的点,所以点P 到焦点F 的距离等于它到准线的距离,所 以6+p 2=8,所以p =4,即焦点F 到抛物线的距离等于4,故选C. 【答案】 C 2.(2014·成都高二检测)抛物线y 2=4x 的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当△FPM 为等边三角形时,其面积为( ) A .2 3 B .4 C .6 D .43 【解析】 据题意知,△FPM 为等边三角形,|PF |=|PM |=|FM |, ∴PM ⊥抛物线的准线.设P ? ?? ??m 24,m ,则M (-1,m ),等边三角形边长为1+m 24,又由F (1,0),|PM |=|FM |,得1+m 24=1+12+m 2,得m =23,∴等边三角形的边长为4,其面积为43,故选D. 【答案】 D 3.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准

线方程为( ) A .x =1 B .x =-1 C .x =2 D .x =-2 【解析】 设A (x 1,y 1),B (x 2,y 2),代入抛物线方程得:????? y 21=2px 1, ①y 22=2px 2, ② ①-②得, (y 1+y 2)(y 1-y 2)=2p (x 1-x 2). 又∵y 1+y 2=4,∴y 1-y 2x 1-x 2=2p 4=p 2 =k =1,∴p =2. ∴所求抛物线的准线方程为x =-1. 【答案】 B 4.(2014·课标Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( ) B .6 C .12 D .73 【解析】 焦点F 的坐标为? ?? ??34,0,直线AB 的斜率为33,所以直线AB 的方程为y =33? ?? ??x -34, 即y =33x -34,代入y 2=3x , 得13x 2-72x +316=0,

高中数学抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

焦 点弦 长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) o x ()22,B x y F y ()11,A x y

2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+=

抛物线经典性质总结

抛物线 抛 物 线 ) 0(22>=p px y ) 0(22>-=p px y ) 0(22>=p py x ) 0(22>-=p py x 定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。 {MF M =点M 到直线l 的距离} 范围 0,x y R ≥∈ 0,x y R ≤∈ ,0x R y ∈≥ ,0x R y ∈≤ 对称性 关于x 轴对称 关于y 轴对称 焦点 ( 2 p ,0) (2p -,0) (0,2p ) (0,2 p - ) 焦点在对称轴上 顶点 (0,0)O 离心率 e =1 准线 方程 2 p x - = 2 p x = 2 p y - = 2 p y = 准线与焦点位于顶点两侧且到顶点的距离相等。 顶点到准线的距离 2 p 焦点到准线的距离 p 焦半径 11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ x y O l F x y O l F l F x y O x y O l F

焦点弦长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,)A x y 22(,)B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) (4) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0( p ① 联立方程法: o x ()22,B x y F y ()11,A x y

高中数学抛物线的常见结论

抛物线的常见结论 一、知识点总结 1. 抛物线的弦长公式 2122122124)(11x x x x k x x k l -+?+=-+=, 其中k 是弦所在直线的斜率,21,x x 是交点的横坐标,本表达式不包含斜率不存在的情况。 2122122124)(11y y y y m y y m l -+?+=-+=,其中弦长所在直线 方程为b my x +=,21,y y 是交点的纵坐标,本表达式包含斜率不存在的情况。 2. 抛物线的焦点弦 对于抛物线,022 >=p px y ,,倾斜角为α的直线过抛物线的焦点,与抛物线交于A ,B 两点,过A,B 做抛物线准线的垂线,垂足分别为C,D ,那么有: ①2212 21,4 p y y p x x -== A B F C D O α

由?????+==222p my x px y 得0222=--p pmy y (*) ,因此?? ???==-=44)(2222121221p p y y x x p y y ②焦点弦长 p x x AB ++=21,焦点弦长α 2 sin 2P AB = α αsin 4)(sin 212212 1y y y y y y AB -+= -=,结合(*)式与αtan 1 =m 得: α ααααααααα sin sin sin sin cos 2sin 1tan 12sin 4tan 4sin 442 22222 222 22+= +=+= += p p p p p m p AB α αα22sin 2sin sin 1 2p p == ③ P BF AF 211=+ 简单证明如下:p p p y y p y y P BF AF BF AF BF AF 222sin sin sin 211221212====+=+ααα ④焦点三角形面积α sin 22 P S = 简单证明如下:以 AB 为底,以O 到AB 的距离为高,该三角形面积课表示为: α αααsin 2sin 2sin 221sin 2122p p p OF AB S AOB =??== ⑤焦点弦相关的几何关系: a. 以AF/BF 为直径的圆与y 轴相切 b. 以AB 为直径的圆与准线相切,切点与焦点连线垂直于AB. c. 以CD 为直径的圆与AB 相切 d. A,B 在准线上的投影对F 的张角为90°,?=∠90CFD

抛物线的几何性质

抛 物 线 一、抛物线22(0)y px p =>的简单几何性质 1、范围:因为0p >,由方程22y px =可知,这条抛物线上任意一点M 的坐标(),x y 满足不等式0x ≥,所以这条抛物线在y 轴的右侧;当x 的值增大时,y 也增大,这说明抛物线向上方和右下方无限延伸,它的开口向右. 2、对称性:以y -代y ,方程22(0)y px p =>不变,因此这条抛物线是以x 轴为对称轴的轴对称图形.抛物线的对称轴叫作抛物线的轴 3、顶点:抛物线和它的轴的焦点叫作抛物线的顶点.在方程22(0)y px p =>中,当 0y =时,0x =,因此这条抛物线的顶点就是坐标原点. 4、离心率:抛物线上的点到焦点的距离与到准线的距离的比,叫作抛物线的离心率,用e 表示.按照抛物线的定义,1e = 知识剖析:抛物线的通径:过焦点且与焦点所在的轴垂直的直线与抛物线交于点12,M M ,线段12M M 叫作抛物线的通径,将02 p x =代入22y px =得y p =±,故抛物线22y px =的通径长为2p 例1、已知点(),M x y 在抛物线28y x =上,则()22,129f x y x y x =-++的取值范围? 分析:本题的实质是将(),f x y 转化为关于x 的二次函数,求二次函数在区间[)0,+∞上的最值. ()()2 2,812925f x y x x x x =-++=++,又[)0,x ∈+∞,所以当0x =时,(),f x y 取得最小值9, 当[)0,x ∈+∞时,()()2 ,25f x y x =++,无最大值.故()22,129f x y x y x =-++的取值范围为 [)9,+∞ 答案:[)9,+∞

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第3讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点F的距离与它到定直线l(l F?)的距离相等的点的轨迹叫抛物线,这个定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 注1:在抛物线的定义中,必须强调:定点F不在定直线l上,否则点的轨迹就不是一个抛物线,而是过点F且垂直于直线l的一条直线。 注2:抛物线的定义也可以说成是:平面内到某一定点F的距离与它到定直线l(l F?)的距离之比等于1的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1.抛物线的标准方程 抛物线的标准方程有以下四种: (1) px y2 2= ( > p),其焦点为 )0, 2 ( p F ,准线为2 p x- = ; (2) px y2 2- =(0 > p),其焦点为 )0, 2 ( p F- ,准线为2 p x= ; (3) py x2 2= ( > p),其焦点为 ) 2 ,0( p F ,准线为2 p y- = ; (4) py x2 2- = ( > p),其焦点为 ) 2 ,0( p F- ,准线为2 p y= . 2.抛物线的标准方程的特点

抛物线的标准方程px y 22±=(0>p )或py x 22±=(0>p )的特点在于:等号的一端 是某个变元的完全平方,等号的另一端是另一个变元的一次项,抛物线方程的这个形式与其位置特征相对应:当抛物线的对称轴为x 轴时,抛物线方程中的一次项就是x 的一次项,且一次项x 的符号指明了抛物线的开口方向;当抛物线的对称轴为y 轴时,抛物线方程中的一次项就是y 的一次项,且一次项y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 px y 22 =(0>p )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:0≥x ,R y ∈; (2)顶点:坐标原点)0,0(O ; (3)对称性:关于x 轴轴对称,对称轴方程为0=y ; (4)开口方向:向右; (5)焦参数:p ; (6)焦点: )0,2(p F ; (7)准线: 2p x - =; (8)焦准距:p ; (9)离心率:1=e ; (10)焦半径:若 ) ,(00y x P 为抛物线 px y 22=(0>p )上一点,则由抛物线的定义,有20p x PF + =; (11)通径长:p 2. 注1:抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 px y 22=

高中数学抛物线-高考经典例题

1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。 ④顶点平分焦点到准线的垂线段:2 p OF OK == 。 ⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。所有这样的圆过定点F 、准线是公切线。 ⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。所有这样的圆过定点F 、过顶点垂直于轴的直线是公切线。 ⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。所有这样的圆的公切线是准线。 3抛物线标准方程的四种形式: ,,px y px y 2222-==。,py x py x 2222-== 4抛物线px y 22 =的图像和性质: ①焦点坐标是:?? ? ??02,p , ②准线方程是:2 p x - =。 ③焦半径公式:若点),(00y x P 是抛物线px y 22 =上一点,则该点到抛物线的焦点的距离(称为焦半径)是:02 p PF x =+ , ④焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+ ++=++ ⑤抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2(2,2)P pt pt 或P px y y x 2),(2 =其中 5一般情况归纳: 方程 图象 焦点 准线 定义特征 y 2=kx k>0时开口向右 (k/4,0) x= ─k/4 到焦点(k/4,0)的距离等于到准线x= ─k/4的距离 k<0时开口向左 x 2=ky k>0时开口向上 (0,k/4) y= ─k/4 到焦点(0,k/4)的距离等于到准线y= ─k/4的距离 k<0时开口向下 抛物线的定义: 例1:点M 与点F (-4,0)的距离比它到直线l :x -6=0的距离4.2,求点M 的轨迹方程. C N M 1 Q M 2 K F P o M 1 Q M 2 K F P o y x

抛物线常用性质总结

结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则: 2 124 p x x = ,212y y p =-。 结论二:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:112= AF BF p + 。 结论三:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则 2 2sin P A B α = (α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。 结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。 (2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。

证明结论二: 例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证: 11AF BF + 为定值。 证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12 p A F x =+ ,22 p B F x =+ ,又 AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2 124 p x x = 。 则:2 12121211()() ()222 4AF BF AB AB p p p p AF BF AF BF x x x x x x ++== =?+ + + ++ = 2 2 2()4 2 4 AB p p p p AB p = + -+ (常数 证明:结论四: 已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。 (2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 为直径的圆与直线AB 相 切。 证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。 由抛物线定义:AM AF =,BN BF =, ∴111()()2 2 2 Q P A M B N A F B F A B = += += , ∴以AB 为直径为圆与准线l 相切 (2)作图如(1),取MN 中点P ,连结PF 、MF 、NF , ∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO , ∴∠AFM=∠MFO 。同理,∠BFN=∠NFO , ∴∠MFN= 12 (∠AFM+∠MFO+∠BFN+∠NFO )=90°, ∴12 M P N P F P M N === , ∴∠PFM=∠FMP ∴∠AFP=∠AFM+∠PFM=∠FMA+∠FMP=∠PMA=90°,∴FP ⊥AB B A M N Q P y x O F O A M N P y x F B

高中数学抛物线及其性质知识点大全

抛物线及其性质 1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔. 开口方向 右 左 上 下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =-> 焦 点位 置 X 正 X 负 Y 正 Y 负 焦 点坐 标 (,0)2 p (,0)2p - (0,)2p (0,)2p - 准 线方 程 2 p x =- 2p x = 2 p y =- 2 p y = 范 围 0,x y R ≥∈ 0,x y R ≤∈ 0,y x R ≥∈ 0,y x R ≤∈ 对 称轴 X 轴 X 轴 Y 轴 Y 轴 顶 点坐 标 (0,0) 离心率 1e = 通 径 2p 焦半径11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 焦点弦长AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦长AB 的补充 11(,)A x y 22(,)B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,2 2sin p AB α = 若AB 的倾斜角为α,则22cos p AB α = 2124 p x x = 2 12y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 3.抛物线)0(22>=p px y 的几何性质: (1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.

抛物线的简单几何性质教学设计

第 二 章圆锥曲线与方程 第 2.4.2 抛物线的简单几何性质(4课时) 主备教师 陈本川 一、内容及其解析 学的内容是抛物线的一些基本性质,其核心内容是抛物线的离心率及准线,理解它关键是先让学生认识抛物线的图形,从中概括出抛物线的性质。 学生已经学过抛物线线概念和标准形式,本节课的内容抛物线的基本性质就是在其基础上的发展。由于它还与椭圆、双曲线等圆锥曲线有密切的联系,并有参照对比的作用。是抛物线的核心内容。教学重点是抛物线的性质及范围,解决重点的关键是引导学生动手、动脑,从图形的直观得到抛物线性质的准确刻画。 二、目标及其解析 1、目标定位 (1)了解抛物线的基本性质及基本线段的概念。 (2)能够根据抛物线的标准方程及性质进行简单的运算。 2、目标解析 (1)是指:抛物线的基本线段范围及概念,对称性,离心率,准线表示。 (2)是指:能够根据抛物线中准线与焦点之间的关系能求出抛物线的标准方程。 三、问题诊断分析 在本节抛物线性质的教学中,学生可能遇到的问题是抛物线的一些基本概念会与其它圆锥曲线的概念产生混淆,产生这一问题的原因是学生对各种曲线的概念把握不清。要解决这一问题,就要类比着其它圆锥曲线的概念及性质学习,其中关键是借助图形直观类比。 四、教学支持条件分析 在本节课双曲线的性质教学中,准备使用多媒体辅助教学。因为使用多媒体辅助教学有利于学生对抛物线性质从直观到具体的把握。 五、教学设计过程 问题一:抛物线性质有哪些?观察抛物线的标准方程)0(22>=p px y 的形状, 设计意图:推导、识记抛物线的性质,并能够熟练的应用 问题1你能从图中看出它的范围吗? 问题2它具有怎样的对称性?

高二数学《抛物线的几何性质》学案

高二数学《抛物线的几何性质》学案 一、课前检测 1、过点的抛物线的标准方程为、 2、已知抛物上一点到焦点的距离为5,则这个点的坐标为、 3、抛物线的焦点坐标为,准线方程为、 二、问题情境类比椭圆与双曲线的性质,我们可得出抛物线会有哪些性质? 三、性质讲解 1、以为例讨论。范围对称轴顶点开口方向 2、方程为,填表:范围对称轴顶点开口方向 四、例题讲解例 1、(1)求顶点在原点,焦点为F(5,0)的抛物线标准方程。(2)求顶点在原点,焦点在直线x+y=5上的抛物线标准方程。总第65页(第17课时第1页)例 2、汽车前灯的反光曲面与轴截面的交线为抛物线,灯口直径为197mm,反光曲面的顶点到灯口的距离是69mm,由抛物线的性质可知,当灯泡安装在抛物线的焦点处时,经反光曲面反射后光线是平行光线。为了获得平行光线,应怎样安装灯泡?(精确到1mm) (选修1-1课本P45例2,或选修2-1课本P48例2)、例 3、(焦点弦问题)若直线过抛物线的焦点,与抛物线交于点A,

B、①若线段AB的中点的横坐标为2,求线段AB的长、(选修1-1课本P52第13题,或选修2-1课本P66第9题)②若弦长|AB|=4,求直线的倾斜角、 【选讲】 ③若,求证:(可进步得一般性结论)④若弦AB中点为M,求证:以M为圆心,以MA为半径的圆与抛物线准线相切、 五、课堂总结总第66页(第17课时第2页)作业班级学号姓名等第 1、点P()在抛物线上,F为抛物线的焦点,则|PF|= A、 B、 C、 D、2、以椭圆的对称中心为顶点,椭圆的焦点为焦点的抛物线的标准方程为 3、经过抛物线的焦点F,作一直线与其对称轴垂直,和抛物线相交于AB两点,则线段AB的长为(用p表示)、 4、抛物线上一点P,(1)若P到焦点的距离为5,则P点坐标为(2)若P 点到准线距离为3,则P点坐标为 (3)焦半径PF的取值范围为 5、写出适合下列条件的抛物线标准方程。(1)顶点在原点,焦点为(0,3,4)、 6、已知抛物线的顶点是双曲线的中心,而焦点是双曲线的左顶点,求抛物线的方程。

相关主题
文本预览
相关文档 最新文档